
Self-configured neural network for data
assimilation using FPGA for ocean circulation

Sabrina B. M. Sambattia1, Haroldo Fraga de Campos Velhos a, Helaine C. M.

Furtado b, Vitor C. Gomes c and Andrea S. Charão d

aNational Institute for Space Research, São José dos Campos, SP, Brazil
bUniversidade Federal do Oeste do Par, Santarém, PA, Brazil

cInstituto de Estudos Avanados, Instituto de Estudos Avanados do DCTA, São
José dos Campos, SP, Brazil

dUniversidade Federal de Santa Maria, Santa Maria, RS, Brazil

Abstract

Physical processes can be represented mathematically by differen-
tial equations whose solutions are obtained employing numerical meth-
ods. The model never represent reality because there are disagreement
between the simulation model and the real world Adding observational
information to the model, the simulation error can be mitigated. This
process of combining data with observation data from a mathemati-
cal model is known as data assimilation (DA). Several techniques have
been developed to DA as Kalman filter, particle filter and variational
methods; however, the cited methods involve a high computational cost
and an approach to reduce this cost is to make use of Artificial Neu-
ral Networks (ANN). The definition of a quasi-optimal topology for a
neural network is a major challenge.An auto-configuration approach to
identify the best topology of RNA was adopted. The ideal of self-RNA
configuration was addressed as an optimization problem and solved by
a new metaheuristic: Multiple Particles Collision Algorithm (MPCA).
The dynamic model for testing this new approach is described by 2D
shallow water equations used to simulate the ocean circulation. The
data assimilation tests were performed by an RNA multi-layer percep-
tron trained to emulate the Kalman filter is implemented in an FPGA
(field-programmable gate array).

Keywords: Data Assimilation, Artificial Neural Network, FPGA.

1. Introduction

Data assimilation (DA) is an strategy to mitigate the modelling errors,
providing an appropriate combination between data from the mathematical
model and observations. The latter data fusion is called the analysis [1].
Modern techniques for DA are Ensemble Kalman Filter (EnKF), Particle
Filter (PF), and 3D/4D variational methods. However, these schemes are
computational expensive. Other algorithms can be applied to reduce the

1E-mail Corresponding Author: sabrinabms@gmail.com



computational effort. Here, the Artificial Neural Networks (ANN) is em-
ployed. Indeed, the application of ANN was tested for data assimilation to
emulate Kalman filter, particle filter, and variational method [2]. Recently,
the neural network was applied to 3D general circulation atmospheric model
SPEEDY (Simplified Parametrization primitivE-Equation DYnamics) emu-
lating the Local Ensemble Transform Kalman filter (LETKF) [3].

The appropriate configuration of an ANN topology is a complex task,
and requires a significant effort from the developer. Some studies are ad-
dressed to develop automatic schemes for configuring an ANN [4]. In our
approach, the configuration of multi-layer perceptron neural network (MLP-
NN) is formulated as an optimization problem. Multiple Particle Collision
Algorithm (MPCA)[5] is used to solve the optimization problem.

ANN is an intrinsically parallel algorithm. Software implementation
has difficulty to take advantage of the inherent parallelism. Hybrid com-
puters, mixing CPU and co-processors, has emerged using GPU (Graphics
Processing Units), FPGA (Field-Programmable Gate Arrays), MIC (Many
Integrated Cores).

Here, the DA is performed by FPGA. The results were obtained with
the hybrid computer Cray XD1 (12 processors and 6 FPGAs). The FPGA
is configured to implement a MLP-NN trained to emulate a Kalman filter.
The two dimenson shallow water model applied to simulate the oceanic
circulation is the prediction model [6].

2. Artificial Neural Network

Artificial neural network is a machine designed to model the behaviour
of brain carrying out a particular task or function of interest [7]. They are
composed by artificial neurons for calculating certain mathematical function.
The neurons may be arranged within one or more layers, and the neurons
are interconnected [8]. Mathematically, an artificial neuron k, could be
described according to the following equations [7]:

vk =
n∑

j=1

wkjxj , yk = ϕ(vk + bk) , (1)

where x1, x2, ..., xn are the input signals, wkj are the synaptic weights of
neuron k, vk is the linear combination among the input signals, bk is the
bias; ϕ is the activation function, and yk is the output signal of the neuron.

The activation function, represented by ϕ, defines the output of a neuron
in terms of the induced local field v[7]. There are various types of activation
functions that can be used: Gaussian function, logistic, Heaviside function,
and hyperbolic tangent function.



2.1. Multi-layer Perceptron Artificial Neural Network

Multi-layer perceptrons have been applied successfully to solve some dif-
ficult problems by training them with a popular back-propagation algorithm,
a supervised algorithm based on the error correction [7].

The overall architecture of a MLP-ANN comprising: an input layer,
where the patterns are presented to the network, one or more intermediate
layers, which works as a recognizer of characteristics that are stored in the
synaptic weights and account for most of the processing, and an output
layer, where the results are presented. In order to evaluate the performance
of ANN models, the mean square error is used:

Egen =
1

N

N∑
k=1

(yk − ŷk)2 (2)

where N is the number of grid points, yk is the true observational value,
and ŷk is the estimation computed by the neural model.

3. Multiple Particle Collision Algorithm

Multiple Particle Collision Algorithm (MPCA) is an stochastic optimiza-
tion method developed by Luz et al. [5]. The MPCA is a new version of the
PCA (Particle Collision Algorithm) [9]. The latted was inspired traveling
particle in a nuclear reactor. The MPCA was prepared to run in a paral-
lel machine and uses multiple particles in a collaborative way, organizing a
population of candidate solutions.

The PCA starts with a selection of an initial solution (Old-Config), it
is modified by a stochastic perturbation (Perturbation{.}), leading to the
construction of a new solution (New-Config). The new solution is compared
(function Fitness{.}), and the new solution can or cannot be accepted. If
the new solution is not accepted, the scheme of scattering (Scaterring{.}) is
employed. The exploration around closer positions is guaranteed by using
the functions Perturbation{.} and Small-Perturbation{.}. If the new solu-
tion is better than the previous one, this new solution is absorbed. If a
worse solution is found, the particle can be send to a different location in
the search space[10].

The implementation of the MPCA algorithm uses a set with n particles,
where a blackboard strategy mechanism is used to share the particle infor-
mation. The best-fitness information is shared among all particles in the
process implemented with Message Passing Interface (MPI).



3.1. Configuring the MLP-ANN by MPCA

ANN architecture is not previously known. The identification of an
optimal architecture can be formulated as a search problem in the solution
space, where each point represents a possible architecture. If a performance
value is associated which each point,it is possible to construct a hyper-
surface, where the highest point (or the lowest) is equivalent to the best
architecture. Therefore, the problem can be treated as an optimization
problem [4].

The optimization problem is formulated by an objective function, and
a set of restrictions needs to be satisfied. The objective function used is a
combination of two factors: square difference between the target values and
the ANN output, and a penalty factor. The latter factor is expressed by [4]:

fobj = penalty ×
(
ρ1 × Etrain + ρ2 × Egen

ρ1 + ρ2

)
(3)

where ρ1 = 1 e ρ2 = 0.1 are factors that modify the relevance allowed to the
training and generalization error. The function fobj consists of the sum of
squared errors for training and generalization multiplied by the penalty, who
is responsible by the complexity of neural network architecture in question.
The minimum value of fobj corresponds to a simple architecture that displays
consistent behaviour in the solution space combined with low training error
and generalization.

The penalty function is given by [4]:

penalty = c1e
x2

+ c2y + 1 (4)

where x is the number of neurons, y corresponds to the number of epochs
to convergence, c1 and c2 are fitting parameters to find the balance between
the factors in measuring complexity.

The MPCA is employed to identify the best configuration of an ANN,
considering: (i) the number of neurons in the intermediate layer, (ii) the
learning rate parameter η, (iii) momentum constant α. A set of candidate
solutions is generated by MPCA at each iteration, corresponding to differ-
ent ANN architectures. For each solution, the ANN is activated, and the
training process starts until the stopping criterion is satisfied. The ANN
output values are obtained, and the MPCA calculates the objective func-
tion, up dating the parameters for the ANN. This process is repeated until
an optimal value for the objective function is found.

4. Data Assimilation

Data assimilation is a set of techniques to have a proper combination
of data from a mathematical model prediction with observation data [11].



The more accurate is the estimate of the initial condition, the quality of
the forecast will be better. For this, it is necessary to use tools of DA to
initialize the numerical forecast models.

Mathematically, data assimilation is a two step process:
(i) Forecast step:

ηfn = M(ηan−1) (5)

(ii) Analysis step:
ηan = ηfn + ρ (6)

where ηfn is the vector of state variables of the model provided, the super-
scripts represent the forecast step and analysis step. M(.) represents the
numerical model, ρ is the increment of the analysis or innovation, that is
determined according to the technique assimilation used, ηan represents the
analysis data or initial condition(i.c.).

4.1. Assimilation: Kalman Filter

The Kalman filter is a well established statistical estimation process
under a stochastic Gaussian process. The algorithm for the cycle of DA,
when the observation is available, can be summarized as following:

1. Forecast model for state vector:
ηfv,n+1 = Mn+1η

a
v,n, with ηfv,n = [ηf1 (tn)...ηfNx

(tn)]T .

2. Update the covariance matrix:
P f
n+1 = Mn+1P

a
n+1M

T
n+1 +WMod

n

3. Compute the Kalman gain:
Kn+1 = P f

n+1H
T
n+1[W

Obs
n +Hn+1P

f
n+1H

T
n+1]

−1

4. Compute the analysis (data assimilation):

ηav = ηfv +Kn+1[η
Obs
v −Hn+1η

f
n+1]

5. Update the analysis covariance:
P a
n+1 = [I −Kn+ 1HT

n+1]P
f
n+1

The state value η(x, t) is discretized: η(xi, tn), and the matrix Mn repre-
sents the state transition matrix from the state ηn up to ηn+1 for the discrete
dynamical system. Matrices P , H, WObs, WMod are the state covariance
matrix, observation system matrix, and error covariance matrices for obser-
vations and modelling, respectively. The superscript f and a are the pre-
dicted values (forecasting, or also background), and the analysis. Subscripts
v and n identifies the grid point (xi) and discrete time (tn), respectively.
Finally, the matrix K is the Kalman gain.



5. Shallow Water Equations

The shallow water equations is a well known model. The system was
firstly derived for ocean simulation, but it has also been used in meteorology.
The equaions are expressed by [6]:

∂u

∂t
− fv + g

∂q

∂x
+ ruu = Fu (7)

∂v

∂t
+ fu+ g

∂q

∂y
+ rvv = Fv (8)

∂q

∂t
+H(

∂u

∂x
+
∂v

∂y
) + rqq = 0 (9)

on the domain (x, y) ∈ (0, X)× (0, Y ), with f is the Coriolis coefficient, the
gravitational constant is denoted by g, u and v are, respectively, velocity in
the direction x and y, q is the sea-level disturbance, H is average depth of
the ocean, and the external forcing model are Fu and Fv.

6. Data Assimilation by Hardware Device

Cray XD1 is a hybrid system composed by six interconnected nodes
(blades), each one containing two 2.4 GHz AMD Opteron general-purpose
processors and one Xilinx Virtex II Pro FPGA. The Cray offers the Rapi-
dArray API to allow communication between the FPGA and the processor
blade.

The use of FPGAs in HPC (High-performance computing) systems can
provide three distinct advantages over conventional compute clusters. Firstly,
FPGAs consume less power than CPU (Central Processing Unit); secondly,
using FPGAs as accelerators can significantly increases compute density;
and thirdly, FPGAs can provide a significant increase in performance for a
certain set of applications [12].

The implementation of the MLP-ANN on FPGA, designed for the data
assimilation, has different modules. Each module is embedded into other
modules as computation components.

The MAC (Multiplier and Accumulator) unit (Figure 1a) stores the re-
sult of the product between inputs and synaptic weights, adding the bias.
For selecting the operation to be done, the signal fc is provided. The next
module is the artificial neuron, and it uses a MAC and control structures
(Figure 1b). For the weights management, interconnected registers are
used on the circular queue. The weights are shifted at each xi input. The
last computational module is a combination of neurons, with the inputs are



connected by a unique bus. The output of each neuron is connected to a po-
sition of a shifting register with parallel loading (Figure 1c). The neurons
can receive data, and the results are flowing to the Lookup Table (LUT)
unit: this is operation to simulate the activation function.

(a) (b) (c)

Figure 1: ANN on FPGA: (a) Multiplier and accumulator (MAC), (b) neuron,
(c) ANN implemented: the pipeline.

The MLP-ANN design is complete with serial concatenating of layers
forming an artificial neural network. The input of each layer is directly
concatenated to the output of the previous layer. Considering a layer as
a computation module, a pipeline of a operation sequence is performed.
The computation for each layer can be independently executed, allowing
that multiples data set can be computed with a sequential delay for each
computation layer.

7. Results

The shallow water 2D model was spatially discretized with the Arakawa
C-Grid with a forward-backward scheme for time-stepping [13]. The param-
eters used for the model integration were adopted to reproduce the experi-
ment described in the Bennett’s book [6]

As already mentioned, the MPCA was applied to optimize the parame-
ters of ANN, and the Table 1 shows the obtained results, that corresponding
to an average of 15 experiment with seeds generate different random num-
bers. The parameters used to run the MPCA were: 1 particles per processor,
8 processors. The stopping criterion used was the maximum number of eval-
uation of the objective function.

The shallow water equations were integrated at 60 time steps, the q
variable was initialized with Gaussian function and the u = v = 0 at t = 0,
and the data assimilation process was made each 10 time step. In order to
training the MLP-ANN, the data set was made until 40 time steps, and the
remaining time steps were used to the generalization phase of ANN.



Table 1: ANN Topologies

Parameters ANN-Empirical ANN-MPCA

Hidden layer 1 1
Neuron hidden layer 10 10
Activation Function tanh tanh

Quadratic Error 0.5264 0.1583

The Figure 2(a) shows the evolution of variable q and makes a compar-
ison between the results obtained with: Kalman Filter, ANN defined by an
expert and ANN self-configured by MPCA. In Figure 2(b) can be seen that
the result obtained with ANN self-configured It can be seen that the result
obtained with ANN-MPCA is closer to the truth.

0 10 20 30 40 50 60
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

 

 

True

Kalman Filter

ANN−Empirical(Softw)

ANN−MPCA(Softw)

24 26 28 30 32 34 36 38

−0.26

−0.24

−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

 

 

True

Kalman Filter

ANN−Empirical(Softw)

ANN−MPCA(Softw)

(a) (b)

Figure 2: Temporal evolution of point q(59, 59): software results

An other comparison was made: results obtained with software and hard-
ware implementation of ANN Empirical and ANN-MPCA, the results can
be seen in Figure 3.

Conclusion

Artificial neural networks can be designed as a method for data assimila-
tion. Here, the MLP-NN was applied to emulate the Kalman filter to the 2D
shallow water equations. The implementation on FPGA works well, where
the fixed point arithmetic was adopted for avoiding memory constraints.
In the FPGA implementation, the activation function is not codified as a
mathematical function, instead a look at table approach was employed. The
strategy for the automatic configuration of the MLP-NN using MPCA meta-
heuristic was effective, with application for data assimilation. Actually, the



0 10 20 30 40 50 60
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

 

 

True

Kalman Filter

ANN−Empirical(Softw)

ANN−Empirical(Hardw)

24 26 28 30 32 34 36 38

−0.26

−0.24

−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

 

 

True

Kalman Filter

ANN−Empirical(Softw)

ANN−Empirical(Hardw)

(a) (b)

0 10 20 30 40 50 60
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

 

 

True

Kalman Filter

ANN−MPCA(Softw)

ANN−MPCA(Hardw)

24 26 28 30 32 34 36 38

−0.26

−0.24

−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

 

 

True

Kalman Filter

ANN−MPCA(Softw)

ANN−MPCA(Hardw)

(c) (d)

Figure 3: Temporal evolution of point q(59, 59): software and hardware results

computed ANN topology produced better results than a configuration de-
fined by an expert.

Acknowledgements:
The authors thank to the CNPq (Conselho Nacional de Pesquisa e De-

senvolvimento), Brazilian agency for research support.

References

[1] R. Daley, Atmospheric data analysis, Vol. 2, Cambridge university press, 1993.

[2] H. F. d. C. Helaine C. M. Furtado, E. E. N. Macau, Anais do DINCON.

[3] R. Cintra, H. F. Campos Velho, Global data assimilation using artificial neural
networks in seedy mode, International Symposium Uncertainty Quantification
and Stochastic Modeling, Maresias, 2012.


