A Web Portal Framework
for Remote Execution of High Performance
Applications in Astronomy

Otavio Migliavacca Madalosso®, Andrea Schwertner Charao®,
Haroldo Fraga de Campos Velho” and Renata Sampaio da Rocha Ruiz®

@Universidade Federal de Santa Maria, RS, Brazil
®National Institute for Space Research, Sao José dos Campos, SP, Brazil

Abstract

In recent years, the volume of astronomical data is increasing due
to advances in observational astronomy and simulations. To cope with
this growth, there is a need for high performance computing resources
and efficient tools for analysis and exploitation of the data. Moreover,
while researchers develop new algorithms and applications in astron-
omy, there is also a need for efficient ways to make them available to
the scientific community. Thus, it is necessary to create the means to
spread information to a wide audience quickly and efficiently. In this
scenario, Web portals can provide a simple interface for different users
to have access to new applications running on a high performance com-
puting infrastructure, with no need to perform advanced installations
and settings. In this work, we present a Web portal framework for re-
mote execution of high performance applications in astronomy. In this
framework, a Web server deals with user interactions and dispatches
tasks to an execution server. The framework allows for an adminis-
trator to manage applications that will be available to users, and also
deals with the registration of users interested on running these appli-
cations. We developed this framework using the Python programming
language along with Django Web development framework and Celery
distributed task queue. The Web portal framework has passed tests
using a parallel Friends-of-Friends application for classification of as-
tronomical objects. For application execution, the portal deals with
operations such as registration and activation of user accounts, dis-
patching requests for the application running and obtaining input and
output files.

Keywords: astronomy, remote execution, web portal, high performance
computing.

1 Introduction

Algorithms with high computational cost are easily found in areas such as
geosciences (meteorology, oceanography, geophysics), engineering, biology
and astronomy. These algorithms have the characteristic of requiring a high
level of processing. Consequently, the time required for processing tend to
be long and vary depending on the computational platform where they are
executed.

Often, new versions of the algorithms used by the community are not
made available for community use, not for license issues, but simply due to
the absence of a practical method to make it available to the public.

This scenario motivates the developing of a web portal framework en-
abling users to run high performance algorithms provided by researchers,
on a remote computational infrastructure. The users are also able to up-
load their own data to be processed by the algorithms and get the results
back when the jobs are completed. The framework also enables and ad-
ministrator or researcher to manage the available algorithms and associated
configurations and permissions.

Such kind of web portals already exist [8], but they are usually developed
as an ad-hoc facility for users of a given research project. Other web portal
solutions are too generic and full of features, so they may be difficult for
research teams to deploy. Our web portal framework aims to be a generic
yet simple solution.

An application of such web portal framework, for astronomy researchers,
is a Friends-of-Friends [5] algorithm implementation with N*log(N) com-
putational complexity. This implementation was developed in a research
project from the National Institute of Space Research (INPE), funded by
the National Institute of Science and Technology in Astronomy (INCT-
Astronomial!). For a dense distribution of astronomical objects within a
given volume, the Friends-of-Friends algorithm degrades its complexity to
N*N [4]. These characteristics enforce our motivation to provide access to
such implementation through a web portal.

1http ://www.astro.iag.usp.br/~incta/

2 Background and Related Work

2.1 Web Technologies

Currently, there are many alternatives for developing Web applications.
Languages as Java, Python and Javascript are mainstream, but there is
also Web development frameworks that aim to accelerate productivity as
well as enforce programming best practices. For this work, we chose Django
Web development framework.

Django is a framework for developing Web applications in Python. It en-
courages agile development with high level constructs and pragmatic design.
Since 2005, Django is an open source project with BSD license.

One of its main strengths is to facilitate creating dynamic Web applica-
tions which require a database in the back-end. It provides some ready-to-
use Web components, for example Web forms for managing database tables.
It is also extensible and based on a Model-View-Template pattern for orga-
nizing code development.

2.2 E-science Web Portals

There are some projects sharing some characteristics with our work. E-
science portals focus on users from the scientific community that require
high computing power with access to specific database. Some examples of
e-Science web portals are:

e National e-Science Centre - NeSC [7] - NeSC was a pioneering e-Science
infrastructure in United Kingdom (UK), maintained by the University
of Edinburgh and the University of Glasgow. From 2001 to 2011, it
sustained development of e-Science in UK, focusing on grid computing
applications in diverse research areas as bioinformatics, astronomy and
medical sciences.

e New Zealand e-Science - NeSI [8] - NeSI is a research infrastructure
service from New Zealand. Access to this service is tied to existing
projects from New Zealand. New projects and applications may be
registered by filling a request form.

3 Portal Framework Design

In order to achieve our goals, we designed our Web portal framework to
fulfill some requirements. First of all, our design should be as generic as

possible, without becoming large and difficult to use.

The applications should run on high performance servers, but the Web
interface should be isolated from time-consuming executions which could
affect the responsiveness to user interactions. To meet this requirement,
our software architecture comprises two types of software servers: a front-
end server, which runs a Web server, and one or more execution servers,
called workers. In the front-end server, we use Django to implement user
interaction and orchestrate the interaction with the workers, which in turn
use the Celery to manage the execution of tasks. In this process, there may
be transfers of input and/or output files, as required by the applications
running on the execution servers. This execution flow can be depicted in
Figure 1.

N
resh Servidor - Django Worker
User @
Q Requisita execucao RunExperiment L
‘\/ equisigaoDownload entrada ~

Requisigao Download saida
()
Envio Resultado

Usuario solicita execugéo enviande arquive de entrada

Django encaminha tarefa para um worker

Worker efetua o download do arquivo de entrada do servidor Django

Worker executa o experimento utilizando o arquivo de entrada

Worker envia o resultado e o tempo da execugdo para o servidor Django,
aonde ficara disponivel para o usuério.

GOOOO

Figure 1: Execution flow.

Another requirement is access control, so different user profiles could
have distinct permissions. To achieve this, we divided the system’s features
into 3 distinct groups according to the user profile: Anonymous, Registered
and Administrator.

An Anonymous user has permission to access information about the
system and to contact the system administrator. This user may also apply
for registration and, if granted, log in as a registered user.

A Registered user is allowed to select applications and start high perfor-
mance execution jobs. To do so, the user uploads a file that will be used
as input to the selected algorithm. Such user is also allowed to monitor the

status of her/his jobs and download the output files of each experiment. A
Registered user has also permission to cancel his/her jobs.

The Administrator has the same permissions than a registered user and
has privileged access to the Django admin panel. This allows the Adminis-
trator to register new applications in the system and edit any information
that the system stores in its database.

4 Implementation

This section discusses some issues and solutions adopted in the implemen-
tation of our Web portal framework.

4.1 Remote job execution

Implementing remote job execution required us to analyze different tools
and techniques. It is not feasible that the same process that deals with
all requests made by users need also to handle the jobs themselves, as this
would cause a very slow progress in the system.

To work around this problem, were found two techniques: create of a
new process that would manage the remote job execution, or use an external
application to manage job queues and distribute them to other processes
and/or machines (workers). In order to avoid creating a new system to
manage job executions, we decided to search for applications compatible
with the technologies used in the project that could meet our requirements.

We chose an application called Celery [2], which generates and manages
task execution queues by exchanging messages. The machine that keeps the
portal also maintains a process for implementing the broker Redis[9], which
coordinates sending and receiving messages between the process that creates
new jobs and the workers available to receive tasks.

This implementation allows the portal server to create tasks that will
be performed by the workers. The workers are independent processes that
should be started on server machines that will run the high-performance
applications and exchange messages with the process that requested the
execution.

4.2 Monitoring executions

Each job execution request generates an entry on a table which registers
all requests of a given user. Such table is presented in a section of the
Web portal (Figure 2). This table present an interface for users to monitor

and manage its execution requests (select, view, remove). The interface also
allows the user to upload input data to the server and download output data
after finishing executions. The table also presents the following information
to the user:

e Execution time: elapsed time of a job execution (for finished jobs).

e Status: tells the user whether a request is already finished or still
waiting a worker to perform the task.

Inicio Sobre Contato Experimentos otavio Sair

D Data Requisicio Status Algoritmo Tempo Arquivo Entrada Arquivo Safda

3 Nov. 29, 2015, 3:29 p.m Aguardando FoF

[==]
2 Nov. 29, 2015, 3:29 p.m Aguardando FoF -
' [==]

1 Nov. 29, 2015, 3:23 p.m Aguardando FoF

Figure 2: Monitoring job executions

4.3 File System Schema

Jobs started through the Web portal usually require input data. They also
generate output data which have to be stored for the user to download.
For a given application registered in the Web portal, there may be multiple
experiments which requires different input and output files. To cope with file
management, we create a file system schema presented in Figure 3. In this
schema, there is a root folder which will store multiple sub-folders for each
registered user. Users may request execution of multiple experiments with
varying applications and input data, so each experiment generates a sub-
folder for a given user. The leaf folders store all files for a given experiment.

5 Results

Our Web portal framework is able to fulfill the requirements we presented
in Section 3. The framework allows for researchers and developers to easily
showcase their applications and make them available to collaborators, as
well as share a computing infrastructure under strict permissions.

media_root

Figure 3: File system schema

Django administration

Home : Experiment » Algorithmss » Add alg
Add algorithms

NameAlg:
Desc:

Command:

Figure 4: Registering a new application

To register a new application, the Web portal administrator have to fill
the form illustrated in Figure 4. This form resembles a standard form in
Django, which we have customized to meet our requirements.

As a test case of our framework, we built a Web portal for showcasing
a parallel Friends-of-Friends application for classification of astronomical
objects. We describe this test in the next paragraphs.

5.1 Friends-of-Friends Algorithm

The Friends-of-Friends algorithm (FoF) [5] is used to manipulate and an-
alyze large amounts of data produced by simulations or observations in as-
tronomy, for example analysis of distribution of dark matter in large scale,

the formation of halos of dark matter, formation and evolution of galaxies
and clusters. These simulations or observations have a key role in the study
of these subjects [1, 3].

In previous works, we have presented multiple approaches for imple-
menting the FoF algorithm [6]. Depending on implementation strategies,
the computational complexity can be reduced from O(N?) to O(N log N).
Also, parallel programming can be used to reduce processing times.

The algorithm works using a data entry consisting of positions of N
celestial bodies that must be grouped together if there is gravitational in-
teraction between them. The interaction will only occur if the objects are
at a distance within a given radius. When two bodies are positioned at a
distance less than the radius informed, they belong to the same group. Any
other body that is at a distance less than or equal to the defined distance,
also belong to the group. The expected result of the algorithm is to identify
groups of objects that interact.

This algorithm may require a large volume of data that make up the
input file. During the development of the algorithm, we used an input data
file comprising 317,000 bodies. As this file needs to be sent from the user to
the system, it must be given a file size limit and a validity period for which
this file is still available in the system after use.

5.2 Web Portal for Friends-of-Friends Remote Execution

Our Web portal installation for FoF remote execution uses two machines
at the Laboratory of Computer Systems of Universidade Federal de Santa
Maria. One of them runs the Django system and the other runs a single
worker which execute job requests dispatched by the user.

We performed tests consisting of multiple remote executions of the FoF
algorithm, using different input data sets. All executions were dispatched
through the Web portal. We then compare the results with those obtained
from local runs of the FoF algorithm. All output data files resulted identical,
as expected.

We also tested the registration of a new user, using an e-mail address
to validate the account. After registering and confirming the e-mail, the
user have access to a restricted area on the Web portal. He or she may
then visualize execution requests or submit a new remote execution request
for the FoF algorithm. Also, he or she may visualize a table presenting
information on all of his/her requests, as well as its associated input and
output data files (Figure 5).

Inicio Sobre Contato Experimentos NovoUsuario Sair

D Data Requisi¢ao Status Algoritmo Tempo Arquivo Entrada Arquivo Saida

6 Nov. 30, 2015, 3:36 p.m. Finalizado Friends-of-Friends 12.6874's

5 Nov. 30, 2015, 3:36 p.m Finalizado Friends-of-Friends 17.7136 s

« . Exclir

Figure 5: FoF remote executions

6 Conclusions

This work presented a Web portal framework aimed to support remote ex-
ecution of high-performance applications and, in particular, the Friends-of-
Friends algorithm developed in a previous work.

Our solution is built upon Django Web development framework and uses
some extensions for remote job execution. Using distinct servers for user
interaction and high-performance processing, the Web portal is free of con-
tention for computing resources. Using access control, different user profiles
may have distinct permissions on system features. The framework enables
administrators to register new high-performance applications and registered
users to manage their remote execution jobs for previously registered appli-
cations.

To facilitate reuse in other cases, we created a repository with the source
code of the project, which can be accessed in https://github.com/Madalosso/
TG. The remote execution servers will migrate to the heterogeneous com-
puting cluster at LAC-INPE, where the Friends-of-Friends classifier will be
available for the astronomy community.

Acknowledgments. The authors gratefully acknowledge financial sup-
port from the National Institute of Science and Technology for Astrophysics
(INCT-A), who granted the Scientific Initiation scholarship to the first au-
thor, and the CNPq, Brazilian agency for research support.

References

[1] E. Bertschinger. Simulations of structure formation in the universe.
Annu. Rev. Astron. Astrophys 36, 1998.

[2] Celery. Celery: Distributed task queue, 2015. http://celery.
readthedocs.org/en/latest/, acessado em Outubro de 2015.

3]

G. Efstathiou, M. Davis, S. D. M. White, and C. S. Frenk. Numeri-
cal techniques for large cosmological n-body simulations. Astrophysical
Journal Supplement Series (ISSN 0067-0049), vol. 57, 1985.

B. Howe and M. Balazinska. New requirements for Scal-
able Data Processing, Chapter 8 (in: ”Data-Intensive
Computing: Architectures, Algorithms, and Applications”.

Editors: Ian Gorton and Deborah K. Gracio). Cambridge Univer-
sity Press, 2012.

J. P. Huchra and M. J. Geller. Groups of galaxies I. nearby groups. The
astrophysical Journal, 257:423-437, 1982.

O. M. Madalosso, A. S. Charo, and H. F. de Campos Velho. Imple-
mentao do algoritmo friends of friends de complexidade n*logn(n) para

classificao de objetos astronmicos. In Anais da XV Escola Regional de
Alto Desempenho do RS, 2015.

NeSC. National e-science centre, Novembro 2015. http://www.nesc.
ac.uk/, acessado em Novembro de 2015.

NeSI. New zealand escience infrastructure, Novembro 2015. https:
//www.nesi.org.nz/, acessado em Novembro de 2015.

S. Sanfilippo. Redis, Novembro 2015. http://redis.io/, acessado em
Novembro de 2015.

