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A BAYESIAN APPROACH TO EDGE DETECTION IN IMAGES 

N.D.A. Mascarenhas and L.O.C. Prado (')  

Abstract - New statistical techniques for the edge detection problem 

in images are developed. The image is modeled by signal and noise,which 

are independent, additive, Gaussian and autorregressive in two 

dimensions. The optimal solution, in terms of statistical decision 

theory, leads to a test that decides among multiple, composite, 

overlapping hypotheses. A redefinition of the problem, involving non-

overlapping hypotheses, allows the formulation of a computationally 

atractive scheme. 

Results are presented with both simulated data and real satellite 

images. A comparison with standard gradient techniques is made. 

I. INTRODUCTION 

In digital image processing it is often necessary to delineate the 

boundary between two regions having different gray levels, that remamn 

approximately constant in each region. This computational task of 

image segmentation is usually called edge detection. 

Edge detection may be necessary as a preprocessing operation in 

automatic pattern recognition systems. Once the boundaries are detected, 

it is possible to proceed with the classification of the resulting 

homogeneous regions. Image registration problems are often more 
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efficiently handled by first detecting the edges in the images. Other 

applications include data compression for the storage and transmission 

of images using just their contours. The problem of edge detection is 

complicated by the inevitable presence of noise. Noise could be due to 

the electromagnetic sensors and the associated analog electronic 

circuits that introduce thermal and shot noise; or to the quantization 

that is necessary for the digital representation of the image; or to 

graininess of the photographic films, for example. 

The present methods for edge detection are often heuristic. The most 

classical technique is based on the magnitude of the gradient of a 

function of two spatial variables, which is high in regions corresponding 

to edges. Operations involving higher order derivatives,such as the 

laplacian, have also been considered. A basic problem arising in the 

application of these techniques using differentiation is their 

susceptibility to noise in the image. As an attempt to cope with noise, 

methods that utilize some degree of smoothing like least squares 

approximations by polynomials could be used. However, this is done at 

the price of considerable increase of the computation load. For a survey 

on techniques for edge detection the reader could consult [1]. A few 

statistical methods for detecting edqes have been considered. Nahi and 

Habibi [2] used a replacement process to decide if a picture element 

belongs to the object or to the background. Modestino and Fries [3] 

used two-dimensional recursive digital filtering structures. 

The method that is proposed in this article is based on statistical 

decision theory and it explicitly takes into consideration the 

randomness of signal and noise. Moreover, the algorithm can be 

implemented with a computational effort that is at worst comparable 

to those techniques involving derivatives. 

II. STATEMENT OF THE PROBLEM 

The statistical algorithm adopts the following two-dimensional 

autorregressive model for the signal [2] 
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s (k+1, t+1) = P1 s (k+1, t) + p2 s (k, t+l) - 

- P1 p2 s (k, 	+ 1/(1 - Pi) ( 1  - 	U (k, i) 	 ( 1 ) 

In this model, the random variables have null means P1(P2) is 

the correlation coefficient between non-noisy pixels in the 

horizontal (vertical) direction; {U(k,t)} is a set of non-correlated 

random variables with the same variance as {s(k+1,9+1)}. The 

stationarity assumption that is implied by this model may not be 

strictly true for the whole image, particularly near the edges but, 

nevertheless, the simplicity of the mathematical model and our 

experimental results tend to justify this simplifying assumption. 

We also adopt the hypothesis that the signal is Gaussian. Although 

this may not be perfectly accurate, it has often been assumed, 

particularly for multispectral earth resources imagery [5]. Furthermore, 

the model has the feature of being easy to determine experimentally, 

since it only requires estimation of means and covariance between 

pixels. 

The noise of the image might come from several sources, as stated 

earlier. Some of these sources may be multiplicative and signal 

dependent but, in order to keep the model tractable, it is convenient 

to assume that this noise is Gaussian, additive, independent of the 

signal and also described by Eq. (1). Again, our experimental results 

tend to confirm that, despite the limitations, the assumption is 

reasonable. 

Once the models for signal and noise are established, the next 

step is to adequately define the edge-detection problem. This definition 

should be simple and yet should take into consideration the manner 

in which humans tend to interpret edges. 

With this perspective, the edge detection problem is proposed in the 

following terms: having observed four noisy pixels v(i,j), v(i,j+1), 

v(i+1, j) and v(i+1,j+1), as in Fig. (1), where v(k, t)=s(k,t)+n(k,t) 
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(i.e, noisy signal = signal + noise), we want to make a decision 

about the signal without noise. 

This formulation of the problem in terms of statistical decision 

tneory leads to a set of seven possible hypotheses 

1) s(i,j) 	
s(i,j+1)+s(i+1,j)+s(i+1,j+1)  ?. A  

3 

2) s(i,j+1) 	
s(i,j)+s(i+1,j)+s(i+1,j+1)  

A 
3 

3) s(i+1,j) 	- 	
s(i ,j)+s(i ,j+1)+s(i+1 ,j+1)  A  

4) 

3 

s(i,j)+(i,j+1)+s(i+1,j)  
s(i+1,j+1) A 

3 

5) 
S(i ,j)+S(i ,j+1) 	S(i+1,j)+S(i+1,j+1) 6  

2 	 2 

6) s(i,j)+s(i+1,j) 	_ 	s(i,j+1)+s(i+1,j+1) 
?. 	A 

2 	 2 

7) s(i,j) 	- 	
s(i,j+1)+s(i+1,j)+s(i+1,j+1)  < A  

3 
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s(i,j+1) 	
s(i,j)+s(i+1,j)+s(i+1,j+1) 	< A  

3 

s(i+1,i)  _ s(i,j)+s(i,j+1)+s(i+1,j+1) 	< A  

3 

s(i+1,j+1) - s(i,j)+s(i,j+1)+s(i+1,j) 	< A  

3 

s(i,j)+s(i,j+1)  s(i+1,j)+s(i+1,j+1)  < A  

2 

s(i,j)+s(i+1,j)  

2 

s(i,j+1)+s(i+1,j+1)  _ 
<A (2) 

2 	 2 

The non-negative parameter A is chosen by some interaction with the 

machine through a computer display andallowsone to adjust the result 

of the decision to a visual judaement. 

Hypotheses 1 to 6 correspond, respectively, to the existence of edges 

according to diagonal (Figs. 2 to 5), horizontal (Fig. 6) and vertical 

(Fig. 7) directions and hypothesis 7 corresponds to the non-existence 

of an edge. 

Proposed as such, the edge detection problem is reduced to the 

solution of a multiple hypotheses problem. Moreover, these hypotheses 

are composite (since each of them involves a region in the space of 

the signal) and they overlap (since, for example, the following set 

of non-noisy pixels (Fia. 8) satisfies hypotheses 1, 2 and 5, for A=0.5). 

In the next two sections, several solution methods for this hypothesis 

testing problem will be developed. 

III. OPTIMAL SOLUTION 

The statistical decision problem presented in the previous section 

will be solved by adopting the Bayesian point of view. 
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Fig. (9) illustrates the diagram of the model. We want to partition 

the observation space V, that is to choose the optimal decision rule. 

u(s) defines the probability density function of the non-noisy signal; 

f(vis) gives the probability density function of the noisy signal, 

conditioned upon the value of the non-noisy signal; with respect to 

the decision rule d(y/v), that assigns a decision 

conditioned upon an observation v, it is well known that nothing is 

gained by admitting a randomized decision rule. Therefore, the space V 

will be partitioned in seven regions, corresponding to seven possible 

decisions. 

The overall risk for a decision y i  is given by 

R (y i ) = I 	dv I 
) V 	) S 

ds C(s,yi) f (vis)  a(s) ( 3 ) 

Note that this optimal solution, as is usual in bayesian formulations, 

depend on the choice of the cost functions C (y i ,$). 

This risk will be minimized by selecting the decision y i  that 

corresponds to the minimal inner integral given by: 

A i (v) = fs  C(s,y i ) f(v/s) a(s) ds 
	

(4) 

Although the problem is close to the theoretical solution, there is a 

significant point to be considered: the fact that the hypotheses 

overlap. One can imagine space S as being partitioned into two regions: 

a) hypothesis 7 (non-edge), which is disjoint of the other six 

hypotheses by definition; b) hypotheses 1 to 6, which overlap each 

other. 

Ogg [6] and Middleton [7] proposed the following cost function to 

solve the overlapping hypotheses testing problem: 

7 

X 

C(s,yi ) - j=1  
7 

X 

j=1 

c(yi  ,j) Pi  Wi  (s) 

P. W. (s) 
J J 

(5) 
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where P = 	a(s) ds is the a priori probability associated with 

region j 

hypothesis j, W(s) is the conditional probability density of s, 

given hypothesis j, and c (y i , j) is the cost to decide for 

nypotnesis .y., when we consider class j. 

If we select the following cost functions: 

1  1 	if ij 
c (Yi, j) = 	 (6) 

O if i = j 

it follows that: 

7 
A. (v) = 	a (s) f (vis) ds 
	

( 7 ) 

region j 

We must take the minimum value for A. (v), i = 1,2,... 7. It is easy 1 
to see that A. (v) will be minimum if 

J 	

1 

a (s) f (v/s) ds is maximum. The final decision, for the costs 

region i 

given by (6), would consist in performing seven integrais of the la,st 

type and to consider the largest of them. 

Although the edge detection problem is now formally solved, there 

are still computational obstacles that have to be removed. First, 

integrations in a four-dimensional space must be made. The integration 

over the region that defines the seventh hypothesis (non-existence of 

edge) is very difficult to be numerically computed since this region 

is defined by the intersection of regions, as is clear from Eq. (2). 

The next section will show the development of a redefinition of the 

problem that will circumvent this difficulty. 

IV. REDEFINITION OF THE PROBLEM 

The computational problems involved in the optimal solution, led us 

to develop the following scheme: one first makes binary decisions, 
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involving non-overlapping hypotheses of the type edge versus non-edge 

of the same type. Then, the results of the preliminary tests are 

compared and the final decision is made. This scheme is illustrated 

by Fig.(10). 

This type of formulation tends to favor the acceptance of the non-

edge hypothesis, for two reasons: 

.1.  

a) the integration 	a (s) f (vis)  ds in each binary decision is 

region non-edge 

made over a region that is larger than the one that is used in the 

optimal solution, because in the optimal scheme the region that defines 

the hypothesis non-edge is an intersection of the non-edge areas. 

Observe that the regions that define the hypothesis non-edge are 

different in each of the preliminary tests; 

b) the non-edge hypothesis appears in ali six preliminary tests, 

while any other hypothesis shows up in only one of the tests. 

This preferential treatment of the non-edge hypothesis can be somehow 

compensated by making the cost higher for choosing the hypothesis non-

edge when the opposite is true in the partia] tests. 

The derivation of the decision procedure for each binary detection 

problem can start with Eq. (4) since it does not depend upon whether 

the hypotheses overlap or not. In this situation, there are two 

hypotheses, edge of a certain type versus non-edge of the same type 

and we have two functions A 1 (v) and A 2 (v). 

Since the hypotheses do not overlap, one can use as the cost 

functions constantvalues c li , —where the first and second 

indexes denote the true and chosen hypothesis, respectively. Index O 

represents hypothesis non-edge of a certain type and index 1 denotes 

edge of the same type. 

Therefore, the final decision is given by: 

í a (s) f (v/s) ds 
1 

A 	 > C01 - Coo 
< 
0 Clo 	Cii a (s) f (v/s) ds 

H < á 

(8) 
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where 1 denotes decision for an edge of a certain type and O denotes 

decision for no edge. 

Therefore, the classical Bayesian test that decides between two 

composite hypotheses, involving a likelihood ratio, is obtained [8]. 

Once the binary decisions, involving edge versus non-edge of a 

certain type, are made, the final decision about which type of edge (or 

non-edge) is chosen (Fig. 10) has to be made. For this, we will 

associate with the accepted hypothesis in the preliminary test the 

value 

a (s) f (vis) ds 
C io  - ClI 	

' á 	 (9) 
Col 	Coo 	(s) f (v/S) ds 

< á  

or its reciprocal, depending on whether this value is not less (there 

is an edge) or less (there is no edge) than one. 

We will accept the hypothesis that is associated with the highest 

value. Observe that the hypothesis non-edge can furnish up to six 

candidates for the final decision. 

In section II, the signal and noise were both modeled as Gaussian 

processes. It is possible to specify the test given by Eq. (8) in this 

particular case. We must then give the vector of expected values and 

the covariance matrix. 

The model for the non-noisy signal, given by Eq. (1), admits zero 

mean. In order for this model to reflect reality it is necessary to 

subtract the sample mean from the image before the processing is made. 

From the separability of the correlation structure of the process 

on the horizontal and vertical directions, it follows that the 

covariance matrix is given by the Kronecker product of two matrices 

[9] so that 



2 
1 

C  
—S - 

- a 

P1 
, 

, 
P1 	'1 

0 
1 	 P2 

, 

P2 

1 

1 	P2 	P1 	P1P2 

=a 
2 
	P2 	1 	P1P2 	P1 	

(10) 
P1 	P1P2 	1 	P2 

P1P2 	P1 	P2 	1 

2 
where a is the variance of the non-noisy signal and p 1 (p 2 ) is the 

correlation coefficient between adjacent pixels on the horizontal 

(vertical) direction. 

The same structure is assumed for the covariance matrix of the noise, 

which is also supposed to have zero mean. It follows that 

1 

C = a 2  N 	N 

1 PI N e)  í 
1 

P 2 N 

P 2 N 

1 

One can then write the expression for u(s) as 

1 1 a(s) - 
(210 2 1Cs il l, 

 2 exp [": 	(s(i,j) s(i,j+1) s(i+1,j) s(i+1,j+1)) 

C-1 ( s(ij) s(i " j+1) s(i+1,j) s(i+ 1 ,j+1)) T 	 (12) —S  

and for f (vis)  as 



1 	 
f(v/s) - 	 exp [-- (v(i,j)-s(i,j) v(i,j+1)-s(i,j+1) 

	

(2 1-02 I 4 11/2 	2 

v(i+1,j)-s(i+1,j) v(i+1,j+1)- s(i+1,j+1) 5 -4\1-1  (v(i,j)-s(i,j) v(i,j+1)- 

-s(i,j+1) v(i+1,j)-s(i+1,j) 	v(i+1,j+1)-s(i+1,j+1)) T 	 (13) 

--1 	-1  
In order to determine C 	and C 	it is only necessary to compute --S 

inverses of matrices of dimension two, due to the result [161: 

(A (X) B) 	= A-1  OB-1 
	

(14) 

The computational implementation of the likelihood ratio test may 

demand the construction and the use of tables, which avoids the 

necessity of repeating the numerical calculation of the integrais. 

From the symmetry of the problem, it is only necessary to compute 

the two tables corresponding to hypothesis 1 and 5 (edges at 45 °  and 

horizontal). However, these tests depend on tables with four entry 

variables and this computational effort may make the algorithm 

unfeasible in practice. In the next section the development of a 

computationally attractive approximation to the redefinition of 

the problem is introduced. 

V. APPROXIMATION ON THE REDEFINITION OF THE PROBLEM 

In order to make feasible the solution to the edge detection problem, 

it is necessary to make a new approximation. Rather than examine the 

four noisy pixels in order to make the decision, only two random 

variables will be observed. 

Therefore, to decide edge of type 1 against non-edge of type 1 (edge 

at 45 ° ), instead of observing v(i,j), v(i, j+1), v(i+1, j) and 

v(i+1, j+1), only v(i, j) and 

v(i, j+1) + v(i+1, j) + v(i+1, j+1)  
will be observed. Likewise, in 

3 
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the test of edge of type 5 (horizontal edge) versus non-edge of the 

same type, the likelihood functions will depend on 

v(i, j) + v(i, j+1) 	v(i+1, 	j) + v(i+1, j+1)  
and 	 . As a result, 

2 	 2 
the necessary tables will depend on only two variables, which 

considerably reduces the computational task. 

Therefore, in the case of edge of type 1, the denominator of 

expression (8) assumes the form: 

í a(s(i,j), s(i,j+1), s(i+1,j), s(i+1, j+1)) f ((v(i, 

I 	I 

 

<A 

v(i,j+1) + v(i+1, j) + v(i+1,j+1) ) I s(i,j), s(i,j+1), s(i+1, 

3 

s(i+1, j+1)) ds(i,j) ds(i,j+1) ds(i+1,j) ds(i+1, j+1) 
	

(15) 

Specializing the previous equation in the Gaussian case, it follows 

that 

1 

(21) 2  Ic s 1 1 / 2  
exp 

 [

1 - - (s(i,j) s(i,j+1) s(i+1,j) s(i+1,j+1)) 

Cs 1 (s(i,j) s(i,j+1) s(i+1,j) s(i+ 1 ,j+ 1 )) T  I 	
1  

2n 15fiT 1 1 / 2  

v(i,j+1) +v(i+1,j) + v(i+1,j+1)  exp 	1 [- - (v(i,j)-s(i,j) 
2 	 3 

s(i,j+1) + s(i+1,j) + s(i+1,j+1))54-scIr 	(v(i,j) - s(i,j) 
3 

v(i,j+1) + v(i+1,j) + v(i+1,j+1) _ s(i,j+1) + s(i+1,j) + s(i+1,j+1) ) T 1 

3 	 3 

ds(i,j) ds(i,j+1) ds(i+1,j) ds(i+1,j+1) 	 (16) 
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where [111 

	

CNT = T CN T
T 	 (17) 

and 

	

1 	O 	O 	O ' 

T= 

	

O 	1/3 	1/3 	1/3 

VI. SIMPLIFICATION OF THE INTEGRALS COMPUTATION 

Let us assume the following notation: 

s l  = s (i, j) 

s 2  = s (i, j+1) 

s 3  = s (i+1, j) 

S4 = S (i+1, j+1) 

S2 	53 4" S4 
S i  — 	  

3 

Vi = V (is j) 

vi _ v(i,j+1)+v(i+1,j)+v(i+1,j+1)  

3 

Under these conditions, expression (15) assumes the forni: 

S4)* J f I f (vi, v' I S1 S2 S3 S 	 (s1, s 2 , S3,4) fS l  S 2  S3 $4 

S2 + S3 1-  S4 

	

1 Si — 	3 	< A 	 (18) 

dsi ds2 ds 3 ds4 

In Appendix A we show that, in the Gaussian case, expression (18) 

can be obtained by performing only a double integration, instead of 
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quadruple integration, that is, Eq. (18) can be given by: 

s i+A 

j ds i 	ds' fev i , v' 

-. 	Si-a 

s l , s' ) fs i s. (S1, s') 	 (19) 

This result considerably reduces the computational effort of 

numerical integration. Therefore, by explicitly denoting the Gaussian 

densities, Eq. (19) is given by: 

f+. 	
1 

fs 1 +á 

[ 1 	

-1 

	

dsi 	ds' 	  exp - 	(vi-si v'-s') 54\17.(vi-sivi-s 1 )1 
2111C 	1 1 /2  

	

s i -à 	—NT 

	

1 	 - 	1 	 exp  

2111CSTI1/2 	

- — (s1 s ') 5.sT  (s i  s') T1 	 (20) 
- 2 

where 

C =TC T
T 

—ST 	
(21) 

--S — 

Observe that the simplification performed in this section does not 

introduce any new approximation on the solution in the Gaussian case. 

VII. NUMERICAL COMPUTATION OF THE INTEGRALS 

Eq. (2) specifies the likelihood ratio test, which requires the 

computation of integrais in the numerator and the denominator. 

The denominator, given by 

a (s) f (vis) ds, 

' 11 	< 

can be calculated by 

j
S +A 
a 

ds 	ds a(s 	s ) f (v 	v Is 	s) a 	0 	a' 0 	a' 0 	a' 0 
S -A 
a 

(22) 
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where 

v = v (i, j) a 

S = s (i, j) a 

v  _ v(i, j+1) + v(i+1, j) + v(1+1, j+1)  

3 

s(i, j+1) +s(i+1, j)+s(i+1, j+1)  
s 

3 

in the case of the test for an edge of type 1 (diagonal edoe), for 

example. An analogous expression is used with tests type 2, 3 and 4. 

For test type 5 (horizontal edge), we have 

v  - V(i, j) + V(i, j+ 1 )  
a 	 2 

s - sei ' 
j) + s(i, j+1)  

a 	 2 

_ v(i+1, j) + v(i+1, j+1)  

2 

s(i+1, j) + s(i+1, j+1)  
s - 

2 

An analogous convention can be used with test type 6 (vertical edge). 

The numerator of Eq. (8), given by 

J a (s) f (vis) ds , can be calculated by 

II k á 

		

f

+co 	/S a-6 
ds 	ds a(s

a
,) f (va , V O 	S) + a 

J. +. 

	f+. 

	

ds 	ds a(S , s) f (va , v e i sa , s O ) 	 (23) a 	r3 	a 	13,  

	

-o, 	S +6 a 
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In the following we shall present the general scheme of numerical 

integrations of expressions C22) e C23). 

Under the hypothesis of signal and noise being Gaussian, those 

integrais have the general form. 

+- 

í

4) 

K- 	dx exp (-x2 ) -2- exp (-y 2/2) dy 

1.2'17 .a -. 

(24) 

In the case of Eq. (22), a and b are finite; in the first term 

of Eq. (23), a = and b is finite, while in the second temi, a 

is finite and b = +00. 

The integration 

-1 	dy exp (-y 212) 	is performed by storing a Gaussian distribution 

table. The integration from -- to +- then can be put in the form: 

K. 
 I

+. 

dx exp (-x2 ) f (x) 	 (25) 

This integral can be numerically calculated through the application 

of the Gauss-Hermite formula [12]: 

j dx exp (-x2 ) f (x) 	Hk  f (9( ) 

K=1 

where xK is the K-th zero of the Hermite polynomial H m (x) of the m--th  

degree and the weights H K  are given by: 

H
K 

- 	2m  (1111): /ff  
(27) 

HM (xK ) Hm_ l  (sK ) 

Values of xK and H K are given by tables [13]. 

(26) 
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VIII. EXPERIMENTAL RESULTS 

To test the proposed algorithm simulation workwas performed on a 

cartoon image of size 128 x128 pixels with 9 gray leveis (Fig. 11). 

White gaussian noise was added to the image, under different signal to 

noise ratios; 20 roots were used when performing the Gauss-Hermite 

integration and a normal distribution with precision up to 6.8 standard 

deviations was stored. 

The number of hypotheses were reduced from 7 to 5, in order to avoid 

an excessive amount of computation, according to Figs. 12, 13, 14 and 

15. Hypothesis 5 corresponds to non-existence of edge. There was 

overlappinq of two pixels in two groups of four pixels that were 

examined on the horizontal and vertical directions. The scheme for 

darkenina the pixels in this simulation work is indicated by the 

circles in the previously mentioned figures. Despite the overlapping 

in the groups of pixels, no change in the darkening of pixels was made 

after the decision was taken. 

The results with SNR (that is, the ratio of signal variance to noise 

variance) 100 (Figs. 16 and 17), 30 (Figs. 18 and 19), 10 (Figs. 20 and 

21) and using the correlation coefficient of the signal equal to 0,96 

(estimated from the original image), show that the algorithm is able 

to cope with noise quite effectively. 

Decreasing the SNR further (SNR = 5) (Figs. 22 and 23), there is a 

tendency for the edges to disappear. This can be interpreted in terms 

of the fact that, for those values of the parameters, P(D o !H I ) is 

much higher than P(D ' H o ) in the binary tests, besides the preference 

given to the non-edge hypothesis, by being present in ali these 

partial tests. This problem was solved by increasing the value of the 

costClo from 1.0 to 1.5 (see Fig. 24). 

A comparison of the results of the proposed algorithm with the 

gradient procedure under SNR = 5 is made in Figs. 25 and 26. In Fig. 25 

the threshold of the gradient was low (90) and although more edges 

are picked than the proposed method, there is considerable sensitivity 

to noise. The best result with the gradient (Fig. 26) was obtained 

with a threshold of 200 and it can be observed that some loss of edges 

occurs on the top of the house, the head of the figure and on the 

boundary of the tree and the cloud, as compared to Fig. 24. 
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The CPU time for the 128 x 128 pixels image, using the overlapping 

scanning method with 5 hypotheses, in a B-6700machine and Algol 

language, was 320 seconds when performing the likelihood ratios 

repeatedly by calculation, but this time was reduced to 24 seconds by 

the use of look-up tables. 

The corresponding gradient procedure took 19 seconds. However, in the 

proposed method, the edges are indicated by a gray levei that depends 

on the ratio of the two greatest likelihood ratios of the partial 

tests. If we simply associate a dark tone to the existence of an edge 

and a light tone to the non-existence, it is possible to store in the 

look-up table only the information of which edge is decided and that 

requires only one entry (instead of four) in a table that uses a 

maximum of 3 bits of storage per pair of values, with substantial 

reduction of computational effort. 

The proposed algorithm, under 5 hypotheses with overlap, was applied 

to detect edges on a 512 x 51" pixels NOAA-V metereological satellite 

picture (Fig. 27) with 32 (Fig. 28) and 2 (Fig. 29) leveis of 

quantization,using as parameters p s  = 	p N  = O, SNR = 60 (the 

difference due to a greater quantization noise with E leveis was not 

considered), C 10  = 10, A = 0,90 (32 leveis) and A = 0,35 (2 leveis). 

These results show that, by attempting to preserve the number of 

quantization leveis, some continuity of the edges seem to be lost. 

The correlation coefficient (assumed equal on the horizontal and 

vertical direction) as well as the signal variancewereestimated on an 

average basis over the whole image with 32 leveis. The noise levei was 

determined experimentally by estimating the variance of areas of 

approximately equal reflectance, like the surface of the ocean,in 

similar pictures. No artificial noise was added on the processing of 

the satellite images. 

The construction of the table took approximately 2 minutes for 32 

leveis, while the execution time on a POP 11/45 in FORTRAN took 20 

minutes. The limited precision of the Gaussian table and of the 

floating point representation of the minicomputer forced some 

approximations. 
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IX. CONCLUDING REMARKS 

A new algorithm to detect edges in images was developed, under the 

framework of statistical decision theory. The scheme takes into 

consideration the randomness of signal and noise. A redefinition of 

the problem was proposed, with computational effort at least 

comparable to the classical procedures like the gradient, and better 

performance under noisy conditions. 

It is possible to extend this work in several directions: a) by 

taking context into consideration, and conditioning the decision upon 

what is decided on a neighbourhood; b) by considering the blurring 

in satellite pictures due to atmospheric turbulence or limited sensor 

resolution, for example; c) by considering a definition of an edge 

that would include the multispectral character of earth resources or 

meteorolooical imagery. 
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APPENDIX 

We shall show that in the Gaussian case, expression (18) can be 

given by a double integration. 

First, observe that, in the Gaussian case: 

f (v1, v' 1  sl, s2, s3, s4) = f (v1, v' 	s l , s') 
	

(A1) 

since s l , s 2 , 5 3  and s 4  only appear in this Gaussian conditional 

probability density in the form of s l  and 

S2 +53+ 54 

3 
	- 	 JIM...0 

f (v1, v' I sl, s2, 53, s4) = K. expr--1  (vi - sl v' - s') 
_ 2 

(v i  - s 1 v' _ s . ) T 

it is enough then to show that 

fSl S2 53 54 (51, 52, 53, 54) d51 dS2 dS3 d54 • 

51 - (52 	53 	54)! < A 

3 

isi+6 

= 	ds i  	s') fS i S 2  
-- 	51-A 

For this, let us calculate initially the distribution function 

FS'S , (s1, s'): 

F
SiS 

. (s 1 , s') = P [" 1 5 51, s' < 5'1 = 

i 

Si 	-1-00 	T 	35 1 -53-54 

= 	dsl 	ds4 	ds3 	ds2 f- 1  s S2  S 3  S 4 (51 ' 52 ' 53 ' 54)  
_. 	_. 	-. 	.... 

(A2) 

(A3) 

(A4) 
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Now determining fc 	s'): 

a 2  F 	asl, s! ) SS  
fSiS

asi, s') - 	
i 	

- 
8 Si 8 s' 

s 

J _00 

1  r 	
dsl ds3 ds 

. 14. 
= 	3 	 fs s s s (s1,3s's 3 -s 4 ,s 3 ,s4) 	 4 

aS1 	 -1-2 3 4 J-. J„, 
-. 

= 3 j 	

f 

S 1 S 2 S 3S 4 
 (s , 3s'-s -s 	s 	s 	s 3 49 	39 4, d 3  d S4 	 (A5) 

Thus, substituting (A5) into (19), we obtain: 

+- 	s l+A 

ds i 	ds'f 	(s 1 , s') = 

s l -á 

js i +A 	+. +. 

= I ds i 	ds' s 3j 	 (s 1 ,3s 1 -s 3 -s 4 ,s3, 4 )ds 3  ds4 (A6) fS 1 S 2 S 3 S 4  

	

S 1  -6 00 	00 

But: 

	

3s' - S3 - S4 = S2 	 (A7) 

3ds' = ds 2  

so thus, it follows that: 

+m 	+m 	+00 -3S1-53- 54+36 

dSl dS3 dS4 	052 fcsiç2S3S4(S15 S2, S3, S4) = 

-00 	• C;C. 	-CO 	'3S1 - Sr. S14.". 36 

= j I j j fS1S2S3S4 (Si, 52, S3, S4) dSi dS2 dS3 dS4 	 (A8) 

S2 + S3 + S4 

IS' -  	< 	 q.e.d. 
3 
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Fig. 3 - Edge of the 2 11-0  Type (diagonal) 
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Fig. 4 - Edge of the 3 1:0  Type (diagonal) 
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Fig. 5 - Edge of the 4t-h Type (diagonal) 
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Fig. 6 - Edge of the 01  Type (horizontal) 
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Fig. 7 - Edge of the 01  Type (vertical) 
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Fig. 8 - Example of Overlapping of Hypotheses 
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Fio. 9 - Spaces for the Detection Problem 
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Fig. 12 - Edge of the 	Type (diagonal) 
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Fig. 13 - Edge of the 2 1:1S1  Type (diagonal) 
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Fig. 14 - Edge of the 3 1:0  Type (horizontal) 
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Fig. 15 - Edge of the .1. -11  Type (vertical) 
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Fig. 17 
Edges in 
Cartoon 
Image 

SNR = 100 

Fig. 16 
Cartoon 
Image 

SNR = 100 

Fig. 18 
Cartoon 
Image 

SNR = 30 

Fig. 19 
Edges in 
Cartoon 
Image 

SNR = 30 

Fig. 	20 Fig. 	21 Fig. 	22 Fig. 	23 
Cartoon Edges 	in Cartoon Edges 	in 
Image Cartoon Image Cartoon 

SNR 	= 	10 Image SNR = 5 Image 
SNR 	= 	10 SNR = 5 

Cio 	= 	1 
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Fig. 	24 Fig. 	25 Fig. 	26 Fig. 	27 
Edges 	in Gradient Gradient Satellite 
Cartoon SNR = 5 SNR = 5 Picture 
Image Threshold = 90 Threshold=200 

SNR = 5 

Clo 	= 	1 . 5  
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, 	v, 
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Fig. 28 
Edges in 
Satellite 
Picture 

(32 Leveis) 

Fig. 29 
Edges in 
Satellite 
Picture 

(8 Leveis) 
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