
1. 	Publication N9

INPE - 3898 -PRE/940

2. 	Version 3. 	Date

May . , 1986

5. 	Distribution

E] Internal El External

C] Restricted 4. 	Origin 	 Program

DIN 	 POEPSIINFOR

. 	Key words - selected by the author(s)
DYNAMIC PROGRAMMING 	PLANAR PROCEDURE

ENUMERA TION SCHEME 	IMPLEMENTATION

. 	U.D.C.:

. Title 	 INPE - 3898 -PRE/940

SOME ASPECTS TO BE ONSIDERED IN THE ATTEMPT TO
FIND MORE EFFICIENT METHODS FOR SOL VING OPTIMIZATION

PROBLEM BY ENUMERATION

10. N9 of pages: 17

11. Last page: 	15

12. Revised by

9. Authorshi P 	Nei Yóshihiro Soma (*
Horacio Hidek

111111

i Yanass

111

.

/11110111111 ;Orr
Responsib ajletifOr)1""

h44 	•

P. 	o 	- 	to de Morais

_. 	.
13. Authorized by

t t7 7
Marco Antonio Raupp d

Diretor Geral

14. Abstract/No5/

In a new enumeration scheme to solve the unidimensional
knapsack problem, two characteristics called our attention: a) the
reduction of an N-dimensional problem to one in the plane; b) visiting
states and stages in a different sequence than the traditional dynamic
programming improved memory and computational requirements. The
implementation resulted in a more efficient algorithm compared with others
using dynamic programming. In this work we focus on these particularities,
making comparisons with the traditional methods. We believe that such
observations are potentially usefUl to other researches in deve loping new
and more efficient methods for solving some optimization problems.

15. Remarks 	(*) Instituto Tecnológico da Aerondutica
This paper was accepted for presentation at the III LatinIberoAmerican

Congress on Operations Research, to be held in Santiago, Chile, Aug 18
through 22, 1986.

RESUMO

EM um novo esquema enumerativo para resolver o problema
da mochila unidimensional, duas características chamaram a nossa aten
ção: a) a redução de um problema N-dimensional para um, no plano;
b) percorrendo estados e estdgios em uma sequãncia diferente daquela
da programação dinãmica tradicional ocasionou melhoras nos requisitos
computacionais e de memõria. A implementação resultou em um algoritmo
mais eficiente comparado com outros que usam programação dinãmica. Nes
te trabalho são focalizadas estas particularidades fazendo comparações
com os mêtodos tradicionais. Acredita-se que tais observações sejam
potencialmente úteis a outros pesquisadores para desenvolver nossos mi
todos mais eficientes de resolver alguns problemas de otimização.

ABSTRACT

In a new enumeration scheme to solve the unidimensional knapsack
problem, two characteristics calledour attention: a) the reduction of an
N-dimensional problem to one in the plane; h) visiting states and stages
in a different sequence than the traditional dynamic programming
improved memory and computational requirements. The implementation
resulted in a more efficient algorithm compared with others using
dynamic programming. In this work we focus on these particularities,
making comparisons with the traditional methods. We believe that such
observations are potentially useful to other researchersin developing
new and more efficient methodsfor solving some optimization problems.

1. 	INTRODUCTION

Let us define the unidimensional knapsack problem (KP)

Max Z= y C.x.
j=1

Subject to 	A.x.= B;
j = 1 J J

x j 	j=1,..., N;

A., BE NL 	N;

This problem, although simple, is quite representative of the

class of integer linear problems (see SALKIN [9]). Recall that there are

results on aggregation methods for discrete problems (see Onyekwelu

[8]; 	Kendall and Zionts [6]; Kannan [5]) where systems of

equations are aggregated to a single equation. Therefore, many integer

problems can be reduced in theory to a KP of the previous form.

This KP is considered in Yanasse and Soma [10]. There, they

propose on (N(B-A1)- y A.) algorithm, assuming without loss of

generality that Al < A2 < 	< An .

The Yanasse and Soma's algorithm presents some particularities

that we think would be worth discussing.

To be self-contained we present the Yanasse and Somais algorithm

in Section 2. In Section 3 two important features of this method are

discussed. In Section 4 we present some final comments.

2. 	THE YANASSE AND SOMA I S ALGORITHM

The Yanasse and Somais algorithm for solving (KP) is based on

Mignosi[7] work and cari be formulated as:

Algorithm

Step O [Initialization]

Make a list Z(A 1), Z(A1+1), Z(A1+2),..., Z(B-A 1) and Z(B)

and set

Ci , for I=A.; j. 1, 	N
Z(I).

1. -1, otherwise

Set POINTER A l

Step 1 DO FOR J÷1 TO N

BEGIN

IF pomut A- A 	B-A 1 OR

POINTER + A..B

BEGIN

zurvonywnER-hy= Z(POINTER) + C.

IF zuv(pouvrim-4.) > Z(POINTER+A.)
TH EM

Z(nINTER+A .). ZLIN(POINTER+A.) j

END

IF 	 . > B, THEN GO TO step 2 POINTER+AJ

END

Step 2: POINTER + POINTER+1

IF POINTER > B-A1, THEN GO TO Step 3

IF Z(POINTER) < 0, THEN GO TO Step 2

ELSE GO TO Step 1

Step 3: If Z(B) < 0, THEN the problem is infeasible, STOP

ELSE the optimal value is Z(B).

A few comments are necessary at this point. It is assumed in this

algorithm that ali Cj's are nonnegative. Adequate modifications can be

nade to include any real Cj.

The variable Z(k) carnes the best objective value encountered so

far at each step of the algorithm for a right-hand side equal to k of

the KP. If Z(K) is negative for some K at the end of the algorithm this

implies that the problem is infeasible for the right-hand side equal to

K.

The algorithm as previously formulated arrives only at the optimal

value. To also obtain the optimal solution, we must define a new

auxiliary variable. For details see Yanasse and Soma [10].

The variable POINTER indicatés the position of the right-hand side

value below which ali pptimal values have already been computed.

The variable ZLIN(K) keeps the objective value relative to the

feasible solution obtained in that step for the right-hand side equal to

K.

As can be seen the algorithm is quite simple. It enumerates

feasible solutions with right-hand side starting from A l to B, always

keeping the best value encounteredsofar.

One can say that the algorithm makesthe following enumeration

which, at first glance, does not seem that would have a good

performance:

X11 =1 /
/-

=1

START

The better performance of the algorithm (as compared with other

dynamic programming methods) is due to the implementation of such

enumeration.

We present now some interesting features of this algorithm.

3. 	FEATURES OF THE ALGORITHM

With N decision variables, it would be difficult to represent the

(KP) graphically when N is greater than 3. The traditional graphical way

of solving linear programs can be applied to integer ones, but only to

problems with a small number of variables, two or at most three.

In the Yanasse and .Soma [10] algorithm, the N-dimensional problem

is solved by an enumeration scheme that can be interpreted, under a

geometric point of view, as solving a problem in the plane.

To illustrate this, we will consider the following example.

Max. 	5x1 + 7x 2 + 9x 3

Subject to 5x 1 + 7x 2 + 9x 3 = 32, xl, x2, x 3 E N 	(1)

That is, we just want to know if the linear diophantine equation

(1) has a solution or not.

It is possible to draw the feasible region correspondent to

equation (1) in a three-dimensional space. However if we have more

variables this task would become difficult or impossible.

If one follows the Yanasse and Soma i s algorithm to solve the

example, one can see that what is done is equivalent to some specified

operations over a grid of size 32 as shown in figures 1 to 4.

We build a square grid of size B and draw diagonais in the

positions corresponding to A ' , A 2 ,..., A. We also draw a guideline

which is a secondary diagonal as shown in figure 1.

Starting from the first black dot from the top left we draw a

horizontal une that crosses the guideline at A (see figure 1). From

A we draw a vertical line that crosses the diagonal lines at 	B, C and

D, respectively. From B, C, D we draw horizontal lines that cross the

vertical scale at 	10, 12 and 14. So, these positions are marked with

black dots and they indicate values for which equation 1 has a solution

for the right-hand side equal to that value.

We proceed to the immediately near black dot and perform these

same operations. This is schematized in figure 2.

9 B7 6 5 4 3 2 1

Figure 1

3 -

140 5

(42) 7

44 31 9

15

17-*

19

21 -4

23

25 .4

27*

29-

31 -

(E) 	
31 	29 27 23 23 21 	19 	17 	15 	13 	11 	9

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

After a few iterations we arrive at the position shown in figure 3

indicating in this example that equation 1 has a feasible solution.

3-

(A1) 5

(A2) 7

15-*

19,

21 -*

2 3-

25"

27-

2 9-

31-
()

31 29 27 25 23 21 	19 17 15 13 11 	9

The same steps would be performed in the case where the objective

function is of a general form. The only difference would be the

necessity of keeping the objective value in correspondence with the

black dots in the vertical scale.

Variations can also be suggested, for instance, making black dots

in the horizontal scale in correspondence with the black dots in the

vertical scale, so that when one draws the vertical une from a point in

the guideline, if one reaches a black dot in the horizontal scale one

could stop immediately.

In figure 4 we illustrate what we would achieve with this

variation.

As can be seen from the previous example, the problem was reduced

to one in the plane. We should only work with a grid of size B, draw

diagonals corresponding to the values Al, A2,..., An and mark dots

conveniently, according to some specified rules. Observe that these

operations can be done for any KP of any size (at least in theory) of

the form presented, which is quite interesting.

Considering the Yanasse and Somas algorithm under another point

of view, let us make a comparison with a dynamic programming method.

If one solves KP using dynamic programming we would end up, for

instance, with the following recursion (see Garfinkel and Nemhauser [1]

Gilmore and Gomory [2], [3], [4]):

f(k,g)= max(C kx k + f(k-1, g-A kx k))

x k = 	[g/Aki

for each k=1,..., N, with f(0,0) O and f(0,g)A

for 9=1,..., B.

(2)

f(k,g) is the best objective value using the first k items, with the

right-hand side equal to g and Lg/A ki is the greatestinteger Iess than

or equal to (g/Ak).

We have then N+1 stages and B+1 states for each stage.

The recursion (2) implies that we have to find ali values for the

states in stage k-1 before going to stage k. In the Yanasse and Somais

algorithm this does not happen. They do some computation in stage k even

if ali the computations in stage k-1 are not completed. Let us

illustrate this with a small example. Consider the problem:

Max 5x 1 + 7x 2 + 11x 3

Subject to: 2x 1 + 3x 2 + 5x 3 = 11

Xls X2, X3 E N

If we solve this problem using recursion 2 we would have:

f(0,0). 	O, 	f(0,g). 	g= 	1,..., 	11,

f(1,0). max(0+f(0,0)). O,

f(1,1)= max(0+f(0,1))=

f(1,2). max(0+f(0,2), 	54(0,0)). 5,

f(1,3). max(0+f(0,3), 	5+f(0,1))=

f(1,4)= max(0+f(0,4), 54(0,2), 10+f(0,0)). 10,

f(1,5). max(0+f(0,5), 54(0,3), 104(0,1))=

f(1,6). max(0+f(0,6), 5+f(0,4), 10+f(0,2), 154(0,0)). 15,

f(1,7). max(04(0,7), 5+f(0,5), 10+f(0,7), 154(0,1)).

f(1,8)= max(04(0,8), 5+f(0,6), 10+f(0,4), 154(0,2), 204(00))=20

f(1,9).

f(1,10)= 	25,

f(1,11).

f(2,0). max(044(1,0)). 0,

f(2,1).= max(0.4(1,1))=

f(2,2). max(0+f(1,2)). 5,

f(2,3). max(0+f(1,3), 7+f(1,0))=.7,

f(2,4). max(0+f(1,4), 74(1,1)). 10,

f(2,5). max(0-14(1,5),,7+f(1,2))-- 12,

f(2,6)= max(0+f(1,6), 7+f(1,3), 1444(1,0)).= 15,

f(2,7). max(0+f(1,7), 74(1,4), 14+f(1,1))= 17,

f(2,8). max(0+f(1,8), 7+f(1,5), 14+f(1,2)). 20,

f(2,9). max(0+f(1,9), 74(1,6), 144(1,3), 21+f(1,0))= . 22,

f(2,10)= max(0+f(1,10), 714(1,7), 14+f(1,4), 21+f(1,1))-- 25,

f(2,11). max(0+f(1,11), 74(1,8), 14+f(1,5), 21+f(1,2)).= 27,

f(3,0)= max(04(2,0))=.0,

f(3,1)= max(0+f(2,1)).-

f(3,2). max(0+f(2,2)). 5,
f(3,3). max(0+f(2,3)). 7,

f(3,4). max(014(2,4)). 10,

f(3,5). max(0+f(2,5), 11+f(2,0)). 12,

f(3,6). max(0+f(2,6), 11+f(2,1)). 15,

f(3,7). max(0+f(2,7), 11+f(2,2))= 17,

f(3,8). max(0+f(2,8), 11+f(2,3))= 20,

f(3,9)= max(04(2,9), 11+f(2,4))- 22,

f(3,10) -- max(0+f(2,10), 114-f(2,5), 224(2,0)). 25,

f(3,11). max(0+f(2,11), 11+f(2,6), 22+f(2,1)). 27.

The dynamic programming steps can be schematized as in figures 5,

6 and 7.

If we solve this problem using Yanasse and Soma's algorithm we

would have:

Step (0) Z(2). 5,

z(3). 7,

Z(5). 11,

z(4). Z(6). Z.(7). Z.(8). Z(9). Z(11). -1;

POINTER. 2

Step (1) ZL IN (2+2). Z(2)+5 4- ZL IN(4). 10,

ZLIN(4) > Z(2+2) 4- Z(4). ZLIN(4). 10,

ZLIN(2+3). Z(2)+7 -4 ZLIN(5). 12,

ZLIN(5) > Z(5) -+ Z(5). ZLIN(5). 12,

ZLIN(2+5). Z(2)+11 .4- ZLIN(7). 16,

ZLIN(7) > Z(7) .4. Z(7)= ZLIN(7). 16;

Step (2) 	POINTER= 3, POINTER 	9,

Z(3). 11 > 0;

Step 1 	ZLIN(3+2). Z(3)+5 -+ ZLIN(5). 12,

ZLIN(5)= Z(5)

ZLIN(3+3). Z(3)+7 4- ZLIN(6). 14,

ZLIN(6) > Z(6) 4- Z(6). ZLIN(6). 14,

ZLIN(3+5). Z(3)+11 -÷ ZLIN(8). 18,

ZLIN(8) > Z(8). 18,

Step 2 	POINTER= 4, POINTER 	9,

Z(4). 10 > 0,

Step 1 	ZLIN(4+2). Z(4)+5 -÷ ZLIN(6). 15,

ZLIN(6) > Z(6) ÷ Z(6). 15,

ZLIN(4+3). Z(4)+7 4- ZLIN(7). 17,

ZLIN(7) > Z(7) -+ Z(7). 17,

ZLIN(4+5). Z(4)+11 .4- ZLIN(9)= 21,

ZLIN(9) > Z(9) -* Z(9). 21;

Step 2 	POINTER= 5, POINTER 	9,

Z(5) > 0;

Step 1 	ZLIN(5+2). Z(5)+5= 17,

ZLIN(7). Z(7),

ZLIN(5+3). Z(5)+7= 19,

ZLIN(8) > Z(8) 4- Z(8). 19,

POINTER + 5 > 9,

Step 2 	POINTER= 6, POINTER 	9,

2(6) > 0;

Step 1 ZLIN(6+2). Z(6)+5= 20,

ZLIN(8) > Z(8) -4- Z(8). 20,

ZLIN(6+3). Z(6)+7. 22,

ZLIN(9) > Z(9) -> Z(9). 22,

ZLIN(6+5). Z(6)+11. 26,

ZLIN(11) > Z(11) -> Z(11). 26;

Step 2 	POINTER. 7, POINTER 	9,

Z(7)> O;

Step 1 	ZLIN(7+2). Z(7)+5. 22,

ZLIN(9). Z(9),

POINTER + 3 > 9,

POINTER + 5 > 11,

Step 2 	POINTER. 8, POINTER 	9,

Z(8)> O;

Step 1 	POINTER + 2 > 9,

ZLIN(8+3). Z(8)+7. 27,

ZLIN(11) > Z(11) -> U11). 27

POINTER + 5 > 11;

Step 2 	POINTER. 9, POINTER 	9,

Z(9)> O;

Step 1 	ZLIN(9+2). Z(9) 4- 5= 27,

ZLIN(11). Z(11),
POINTER -1- 3 > 11,

POINTER -1- 5 > 11,

Step 2 	POINTER > 9 	stop.

In figures 8, 9, 10 we schematize the previous steps.

O C) 	O 	o o ®
O O 	0 	Oi O O ■

t■
O
O O 	O 	 O ela°

	

C) 	C) 	 C) o la o O 0 	O 	 0 'Na: O cr) 	c) 	 c)

	

° ® ® 	o N11°

	

 o O 	
e

c) 	 c) Ne O o 	o °Na°® 0 O ® ® 	® 	 e N0
C) 	O 	e 	

.
N ' 	e

O e 	O 	o 'o e
STAGE O
	

STAGE 1 	STAGE 2 	STAGE 3 	 STAGE O
	

STAGE 1 	STAGE 2 	STAGE 3

Figure 5
	

Figure 6

O O 	O 	O

C) 	CD 	o
O 0 	OL 	O

011 O
0 a C) 	C)

® Cla°

O 0 rta:

O 0 001 00
O
O 0
O e 	e 	

\°
O O O 	O

STAGE O
	

STAGE 1 	 STAGE 2
	

STAGE 2

Figure 7

e
00

00
STAGE O STAGE 1 STAGE 2 STAGE 5

00

00

0
C) 	C)

0

0 	0
00

O C)
O
C) O 0-

0000
C)

0

00 0
STAGE O STAGE 1 STAGE 2 	STAGE 5

o
0

o

O

o
e

o

e

e

O

STAGE O

O O O

O 0 O

C) 	C:)
STAGE 1 	STAGE 2. 	STAGE 3

Figure 8

Figure 9
	

Figure 10

As can be seen, there are economies in computation since only the

relevant states to the optimal solution in each stage are visited.

We can see that for this problem it was possible to follow a

different sequence of states and stages to compute the objective values

of interest. We conjecture that this might be true for other problems

that are solved by dynamic programming.

This different approach might lead to improved algorithms for such

problems.

4. 	FINAL COMMENTS

We first presented here a "planar" solution procedure for solving

an N-dimensional integer problem. The example shown is particular but

perhaps it might be extended to other "planar" solution procedures for

more general N.-dimensional integer problems.

The second aspect we tried to show was the different enumeration

scheme as compared with dynamic programming. This led to savingsin

computation and memory requirements.

We believe that these aspects discussed are interesting and

potentially useful to other researchers in developing new and more

efficient methods for solving some optimization problems by enumeration.

It would be interestingif we could establish the general conditions

under which one can follow a different order than the "serial" one,

stage after atage, used in dynamic programming methods. This is a topic

that still needs further research.

REFERENCES

[1] R. Garfinkel; G.L. Nemhauser, "Integer Programming", John Wiley
and Sons, New York, 1972.

[2] P. Gilmore; R. Gomory, "A linear programming approach to the

cutting stock problem II", Operations Research, 11(6), 863-888,
1963.

[3] P. Gilmore; R. Gomory, "Multistage cutting stock problems of two

and more dimensions", Operations Research, 13, 94-120,1965.

[4] P. Gilmore; R. Gomory, "The theory and computation of knapsack

functions", Operations Research, 14, 1045-1074, 1966.

[5] R. Kannan, "Polynomial time aggregation of Integer Programming

Problems", Journal of ACM, 30(1), 133-145, 1983.

[6] K. Kendall; S. Zionts, "Solving Integer Programming aggregation

constraints", Operations Research, 25(2), 346-351, 1977.

[7] G. Mignosi, "Sulla Equazione Lineare Indeterminata", Periodico di

Matematica, 23, 173-176, 1908.

[8] D.C. Onyekwelu, "Computational viability of a constraint

aggregation scheme for Integer Linear Programming Problems",

Operations Research, 31(4), 795-861, 1983.

[9] H. Salkin, "Integer Programming", Addison-Wesley, Reading, 1975.

[10] H.H. Yanasse; N.Y. Soma, "A new enumeration scheme for the

knapsack problem". Presented at the school of Combinatorial

Optimization, 8-19 July 1985, UFRJ, Rio de Janeiro, RJ.

(INPE-3563-PRE/769 - June 1985).

