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RESUMO  

EM um novo esquema enumerativo para resolver o problema 
da mochila unidimensional, duas características chamaram a nossa aten 
ção: a) a redução de um problema N-dimensional para um, no plano; 
b) percorrendo estados e estdgios em uma sequãncia diferente daquela 
da programação dinãmica tradicional ocasionou melhoras nos requisitos 
computacionais e de memõria. A implementação resultou em um algoritmo 
mais eficiente comparado com outros que usam programação dinãmica. Nes 
te trabalho são focalizadas estas particularidades fazendo comparações 
com os mêtodos tradicionais. Acredita-se que tais observações sejam 
potencialmente úteis a outros pesquisadores para desenvolver nossos mi 
todos mais eficientes de resolver alguns problemas de otimização. 



ABSTRACT  

In a new enumeration scheme to solve the unidimensional knapsack 
problem, two characteristics calledour attention: a) the reduction of an 
N-dimensional problem to one in the plane; h) visiting states and stages 
in a different sequence than the traditional dynamic programming 
improved memory and computational requirements. The implementation 
resulted in a more efficient algorithm compared with others using 
dynamic programming. In this work we focus on these particularities, 
making comparisons with the traditional methods. We believe that such 
observations are potentially useful to other researchersin developing 
new and more efficient methodsfor solving some optimization problems. 

1. 	INTRODUCTION  

Let us define the unidimensional knapsack problem (KP) 

Max Z= y C.x. 
j=1 

Subject to 	A.x.= B; 
j = 1 J J 

x j 	j=1,..., N; 

A., BE NL 	N; 

This problem, although simple, is quite representative of the 

class of integer linear problems (see SALKIN [9]). Recall that there are 

results on aggregation methods for discrete problems (see Onyekwelu 



[8]; 	Kendall and Zionts [6]; Kannan [5]) where systems of 

equations are aggregated to a single equation. Therefore, many integer 

problems can be reduced in theory to a KP of the previous form. 

This KP is considered in Yanasse and Soma [10]. There, they 

propose on (N(B-A1)- y A.) algorithm, assuming without loss of 

generality that Al < A2 < 	< An . 

The Yanasse and Soma's algorithm presents some particularities 

that we think would be worth discussing. 

To be self-contained we present the Yanasse and Somais algorithm 

in Section 2. In Section 3 two important features of this method are 

discussed. In Section 4 we present some final comments. 

2. 	THE YANASSE AND SOMA I S ALGORITHM 

The Yanasse and Somais algorithm for solving (KP) is based on 

Mignosi[7] work and cari be formulated as: 

Algorithm  

Step O  [Initialization] 

Make a list Z(A 1 ), Z(A1+1), Z(A1+2),..., Z(B-A 1 ) and Z(B) 

and set 

Ci , for I=A.; j. 1, 	N 
Z(I). 

1. -1, otherwise 

Set POINTER A l  

Step 1  DO FOR J÷1 TO N 

BEGIN 

IF pomut A- A 	B-A 1  OR 

POINTER + A..B 

BEGIN 

zurvonywnER-hy= Z(POINTER) + C. 

IF zuv(pouvrim-4.) > Z(POINTER+A.) 
TH EM 

Z(nINTER+A .). ZLIN(POINTER+A.) j  

END 

IF 	 . > B, THEN GO TO step 2 POINTER+AJ  

END 



Step 2: POINTER + POINTER+1 

IF POINTER > B-A1, THEN GO TO Step 3 

IF Z(POINTER) < 0, THEN GO TO Step 2 

ELSE GO TO Step 1 

Step 3: If Z(B) < 0, THEN the problem is infeasible, STOP 

ELSE the optimal value is Z(B). 

A few comments are necessary at this point. It is assumed in this 

algorithm that ali Cj's are nonnegative. Adequate modifications can be 

nade to include any real Cj. 

The variable Z(k) carnes the best objective value encountered so 

far at each step of the algorithm for a right-hand side equal to k of 

the KP. If Z(K) is negative for some K at the end of the algorithm this 

implies that the problem is infeasible for the right-hand side equal to 

K. 

The algorithm as previously formulated arrives only at the optimal 

value. To also obtain the optimal solution, we must define a new 

auxiliary variable. For details see Yanasse and Soma [10]. 

The variable POINTER indicatés the position of the right-hand side 

value below which ali pptimal values have already been computed. 

The variable ZLIN(K) keeps the objective value relative to the 

feasible solution obtained in that step for the right-hand side equal to 

K. 

As can be seen the algorithm is quite simple. It enumerates 

feasible solutions with right-hand side starting from A l  to B, always 

keeping the best value encounteredsofar. 

One can say that the algorithm makesthe following enumeration 

which, at first glance, does not seem that would have a good 

performance: 



X11 =1 / 
/- 

=1 

START 

The better performance of the algorithm (as compared with other 

dynamic programming methods) is due to the implementation of such 

enumeration. 

We present now some interesting features of this algorithm. 

3. 	FEATURES OF THE ALGORITHM 

With N decision variables, it would be difficult to represent the 

(KP) graphically when N is greater than 3. The traditional graphical way 

of solving linear programs can be applied to integer ones, but only to 

problems with a small number of variables, two or at most three. 

In the Yanasse and .Soma [10] algorithm, the N-dimensional problem 

is solved by an enumeration scheme that can be interpreted, under a 

geometric point of view, as solving a problem in the plane. 

To illustrate this, we will consider the following example. 

Max. 	5x1  + 7x 2  + 9x 3  

Subject to 5x 1  + 7x 2  + 9x 3  = 32, xl, x2, x 3  E N 	(1) 

That is, we just want to know if the linear diophantine equation 

(1) has a solution or not. 

It is possible to draw the feasible region correspondent to 

equation (1) in a three-dimensional space. However if we have more 

variables this task would become difficult or impossible. 

If one follows the Yanasse and Soma i s algorithm to solve the 

example, one can see that what is done is equivalent to some specified 

operations over a grid of size 32 as shown in figures 1 to 4. 

We build a square grid of size B and draw diagonais in the 

positions corresponding to A ' , A 2 ,..., A. We also draw a guideline 

which is a secondary diagonal as shown in figure 1. 



Starting from the first black dot from the top left we draw a 

horizontal une that crosses the guideline at A (see figure 1). From 

A we draw a vertical line that crosses the diagonal lines at 	B, C and 

D, respectively. From B, C, D we draw horizontal lines that cross the 

vertical scale at 	10, 12 and 14. So, these positions are marked with 

black dots and they indicate values for which equation 1 has a solution 

for the right-hand side equal to that value. 

We proceed to the immediately near black dot and perform these 

same operations. This is schematized in figure 2. 

9 B7 6 5 4 3 2 1 

Figure 1 
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After a few iterations we arrive at the position shown in figure 3 

indicating in this example that equation 1 has a feasible solution. 
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The same steps would be performed in the case where the objective 

function is of a general form. The only difference would be the 

necessity of keeping the objective value in correspondence with the 

black dots in the vertical scale. 

Variations can also be suggested, for instance, making black dots 

in the horizontal scale in correspondence with the black dots in the 

vertical scale, so that when one draws the vertical une from a point in 

the guideline, if one reaches a black dot in the horizontal scale one 

could stop immediately. 

In figure 4 we illustrate what we would achieve with this 

variation. 

As can be seen from the previous example, the problem was reduced 

to one in the plane. We should only work with a grid of size B, draw 

diagonals corresponding to the values Al, A2,..., An  and mark dots 

conveniently, according to some specified rules. Observe that these 

operations can be done for any KP of any size (at least in theory) of 

the form presented, which is quite interesting. 

Considering the Yanasse and Somas algorithm under another point 

of view, let us make a comparison with a dynamic programming method. 



If one solves KP using dynamic programming we would end up, for 

instance, with the following recursion (see Garfinkel and Nemhauser [1] 

Gilmore and Gomory [2], [3], [4]): 

f(k,g)= max(C kx k  + f(k-1, g-A kx k )) 

x k = 	[g/Aki 

for each k=1,..., N, with f(0,0) O and f(0,g)A 

for 9=1,..., B. 

(2) 

f(k,g) is the best objective value using the first k items, with the 

right-hand side equal to g and Lg/A ki is the greatestinteger Iess than 

or equal to (g/Ak ). 

We have then N+1 stages and B+1 states for each stage. 

The recursion (2) implies that we have to find ali values for the 

states in stage k-1 before going to stage k. In the Yanasse and Somais 

algorithm this does not happen. They do some computation in stage k even 

if ali the computations in stage k-1 are not completed. Let us 

illustrate this with a small example. Consider the problem: 

Max 5x 1  + 7x 2  + 11x 3  

Subject to: 2x 1  + 3x 2  + 5x 3  = 11 

Xls X2, X3 E N 

If we solve this problem using recursion 2 we would have: 

f(0,0). 	O, 	f(0,g). 	g= 	1,..., 	11, 

f(1,0). max(0+f(0,0)). O, 

f(1,1)= max(0+f(0,1))= 

f(1,2). max(0+f(0,2), 	54(0,0)). 5, 

f(1,3). max(0+f(0,3), 	5+f(0,1))= 

f(1,4)= max(0+f(0,4), 54(0,2), 10+f(0,0)). 10, 

f(1,5). max(0+f(0,5), 54(0,3), 104(0,1))= 

f(1,6). max(0+f(0,6), 5+f(0,4), 10+f(0,2), 154(0,0)). 15, 

f(1,7). max(04(0,7), 5+f(0,5), 10+f(0,7), 154(0,1)). 

f(1,8)= max(04(0,8), 5+f(0,6), 10+f(0,4), 154(0,2), 204(00))=20 

f(1,9). 

f(1,10)= 	25, 

f(1,11). 



f(2,0). max(044(1,0)). 0, 

f(2,1).= max(0.4(1,1))= 

f(2,2). max(0+f(1,2)). 5, 

f(2,3). max(0+f(1,3), 7+f(1,0))=.7, 

f(2,4). max(0+f(1,4), 74(1,1)). 10, 

f(2,5). max(0-14(1,5),,7+f(1,2))-- 12, 

f(2,6)= max(0+f(1,6), 7+f(1,3), 1444(1,0)).= 15, 

f(2,7). max(0+f(1,7), 74(1,4), 14+f(1,1))= 17, 

f(2,8). max(0+f(1,8), 7+f(1,5), 14+f(1,2)). 20, 

f(2,9). max(0+f(1,9), 74(1,6), 144(1,3), 21+f(1,0))= . 22, 

f(2,10)= max(0+f(1,10), 714(1,7), 14+f(1,4), 21+f(1,1))-- 25, 

f(2,11). max(0+f(1,11), 74(1,8), 14+f(1,5), 21+f(1,2)).= 27, 

f(3,0)= max(04(2,0))=.0, 

f(3,1)= max(0+f(2,1)).- 

f(3,2). max(0+f(2,2)). 5, 
f(3,3). max(0+f(2,3)). 7, 

f(3,4). max(014(2,4)). 10, 

f(3,5). max(0+f(2,5), 11+f(2,0)). 12, 

f(3,6). max(0+f(2,6), 11+f(2,1)). 15, 

f(3,7). max(0+f(2,7), 11+f(2,2))= 17, 

f(3,8). max(0+f(2,8), 11+f(2,3))= 20, 

f(3,9)= max(04(2,9), 11+f(2,4))- 22, 

f(3,10) -- max(0+f(2,10), 114-f(2,5), 224(2,0)). 25, 

f(3,11). max(0+f(2,11), 11+f(2,6), 22+f(2,1)). 27. 

The dynamic programming steps can be schematized as in figures 5, 

6 and 7. 

If we solve this problem using Yanasse and Soma's algorithm we 

would have: 

Step (0)  Z(2). 5, 

z(3). 7, 

Z(5). 11, 

z(4). Z(6). Z.(7). Z.(8). Z(9). Z(11). -1; 

POINTER. 2 



Step (1)  ZL IN (2+2). Z(2)+5 4- ZL IN( 4). 10, 

ZLIN(4) > Z(2+2) 4- Z(4). ZLIN(4). 10, 

ZLIN(2+3). Z(2)+7 -4 ZLIN(5). 12, 

ZLIN(5) > Z(5) -+ Z(5). ZLIN(5). 12, 

ZLIN(2+5). Z(2)+11 .4- ZLIN(7). 16, 

ZLIN(7) > Z(7) .4. Z(7)= ZLIN(7). 16; 

Step (2) 	POINTER= 3, POINTER 	9, 

Z(3). 11 > 0; 

Step 1 	ZLIN(3+2). Z(3)+5 -+ ZLIN(5). 12, 

ZLIN(5)= Z(5) 

ZLIN(3+3). Z(3)+7 4- ZLIN(6). 14, 

ZLIN(6) > Z(6) 4- Z(6). ZLIN(6). 14, 

ZLIN(3+5). Z(3)+11 -÷ ZLIN(8). 18, 

ZLIN(8) > Z(8). 18, 

Step 2 	POINTER= 4, POINTER 	9, 

Z(4). 10 > 0, 

Step 1 	ZLIN(4+2). Z(4)+5 -÷ ZLIN(6). 15, 

ZLIN(6) > Z(6) ÷ Z(6). 15, 

ZLIN(4+3). Z(4)+7 4- ZLIN(7). 17, 

ZLIN(7) > Z(7) -+ Z(7). 17, 

ZLIN(4+5). Z(4)+11 .4- ZLIN(9)= 21, 

ZLIN(9) > Z(9) -* Z(9). 21; 

Step 2 	POINTER= 5, POINTER 	9, 

Z(5) > 0; 

Step 1 	ZLIN(5+2). Z(5)+5= 17, 

ZLIN(7). Z(7), 

ZLIN(5+3). Z(5)+7= 19, 

ZLIN(8) > Z(8) 4- Z(8). 19, 

POINTER + 5 > 9, 

Step 2 	POINTER= 6, POINTER 	9, 

2(6) > 0; 



Step 1  ZLIN(6+2). Z(6)+5= 20, 

ZLIN(8) > Z(8) -4- Z(8). 20, 

ZLIN(6+3). Z(6)+7. 22, 

ZLIN(9) > Z(9) -> Z(9). 22, 

ZLIN(6+5). Z(6)+11. 26, 

ZLIN(11) > Z(11) -> Z(11). 26; 

Step 2 	POINTER. 7, POINTER 	9, 

Z(7)> O; 

Step 1 	ZLIN(7+2). Z(7)+5. 22, 

ZLIN(9). Z(9), 

POINTER + 3 > 9, 

POINTER + 5 > 11, 

Step 2 	POINTER. 8, POINTER 	9, 

Z(8)> O; 

Step 1 	POINTER + 2 > 9, 

ZLIN(8+3). Z(8)+7. 27, 

ZLIN(11) > Z(11) -> U11). 27 

POINTER + 5 > 11; 

Step 2 	POINTER. 9, POINTER 	9, 

Z(9)> O; 

Step 1 	ZLIN(9+2). Z(9) 4- 5= 27, 

ZLIN(11). Z(11), 
POINTER -1- 3 > 11, 

POINTER -1- 5 > 11, 

Step 2 	POINTER > 9 	stop. 

In figures 8, 9, 10 we schematize the previous steps. 
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As can be seen, there are economies in computation since only the 

relevant states to the optimal solution in each stage are visited. 

We can see that for this problem it was possible to follow a 

different sequence of states and stages to compute the objective values 

of interest. We conjecture that this might be true for other problems 

that are solved by dynamic programming. 

This different approach might lead to improved algorithms for such 

problems. 

4. 	FINAL COMMENTS  

We first presented here a "planar" solution procedure for solving 

an N-dimensional integer problem. The example shown is particular but 

perhaps it might be extended to other "planar" solution procedures for 

more general N.-dimensional integer problems. 

The second aspect we tried to show was the different enumeration 

scheme as compared with dynamic programming. This led to savingsin 

computation and memory requirements. 

We believe that these aspects discussed are interesting and 

potentially useful to other researchers in developing new and more 

efficient methods for solving some optimization problems by enumeration. 

It would be interestingif we could establish the general conditions 

under which one can follow a different order than the "serial" one, 

stage after atage, used in dynamic programming methods. This is a topic 

that still needs further research. 
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