
Design of robust pattern classi�ers based on

optimum-path forests

João P. Papa1, Alexandre X. Falcão1, Paulo A.V. Miranda∗, 1,
Celso T.N. Suzuki†, 1 and Nelson D.A. Mascarenhas2

1 Instituto de Computação (IC), Universidade Estadual de Campinas (Unicamp), SP,
Brazil {jpaulo,afalcao}@ic.unicamp.br
2Departamento de Computação, Universidade Federal de São Carlos (UFSCar), SP,
Brazil
nelson@dc.ufscar.br

Abstract We present a supervised pattern classi�er based on optimum path

forest. The samples in a training set are nodes of a complete graph,
whose arcs are weighted by the distances between sample feature
vectors. The training builds a classi�er from key samples (pro-
totypes) of all classes, where each prototype de�nes an optimum
path tree whose nodes are its strongest connected samples. The op-
timum paths are also considered to label unseen test samples with
the classes of their strongest connected prototypes. We show how
to �nd prototypes with none classi�cation errors in the training set
and propose a learning algorithm to improve accuracy over an eval-
uation set. The method is robust to outliers, handles non-separable
classes, and can outperform support vector machines.

Keywords: supervised classi�ers, image foresting transform, image analysis,
morphological pattern recognition.

1. Introduction

Pattern classi�cation methods are generally divided into supervised and
unsupervised according to their learning algorithms [9]. Unsupervised tech-
niques assume no knowledge about the classes (labels) of the samples in the
training set, while these labels are exploited in supervised techniques.

We propose a method to project supervised pattern classi�ers based on
optimum path forests (OPF). The design of an OPF classi�er is based on
labeled samples from training and evaluation sets. A test set with unseen
samples is used to assess the performance of the classi�er.

The training samples are nodes of a complete graph in the sample feature
space (all pairs of nodes are connected by one arc). See Figure 1(a). The arcs

∗pavmbr@yahoo.com.br
†celso.suzuki@gmail.com

are weighted by the distance between the feature vectors of their nodes. A
set of prototypes (key samples) is obtained from the training set. We de�ne
a path-cost function based on arc weights, which assigns to any path in the
graph the cost of considering all samples along the path as belonging to a
same class (e.g., function fmax which assigns the maximum arc weight along
the path). We then apply the IFT algorithm [10] to partition the graph into
an optimum path forest rooted at the prototypes (Figure 1(b)). That is,
the prototypes compete among themselves and each prototype de�nes an
optimum path tree, whose nodes are samples more strongly connected to
that prototype than to any other root, according to that path-cost function.
The training essentially consists of building this optimum path forest, where
the samples in a given optimum path tree are assumed to have the same
label of their root prototype.

0.5

0.8

0.7

0.6

0.8

0.7 0.8

0.2

0.3

0.1

(a)

(0.0,1)

(0.5,1)

(0.2,2)

(0.2,2)

(0.0,2)

(b)

(0.0,1)

(0.2,2)

(0.0,2)

(0.5,1)

(0.2,2)0.3
0.4

(?,?)

0.5

0.7
0.6

(c)

(0.0,1)

(0.2,2)

(0.0,2)

(0.5,1)
(0.2,2)

(0.4,2)

(d)

Figure 1. (a) Complete weighted graph for a simple training set. (b) Resulting
optimum-path forest from (a) for fmax and two given prototypes (circled nodes).
The entries (x, y) over the nodes are, respectively, cost and label of the samples.
(c) Test sample (gray square) and its connections (dashed lines) with the training
nodes. (d) The optimum path from the most strongly connected prototype, its
label 2, and classi�cation cost 0.4 are assigned to the test sample.

The classi�cation of a test sample evaluates the optimum paths from
the prototypes to this sample incrementally, as though it were part of the
graph (Figure 1(c)). The optimum path from the most strongly connected
prototype, its label and path cost (classi�cation cost) are assigned to the test
sample (Figure 1(d)). Note the di�erence between an OPF classi�er with
fmax and the nearest neighbor approach [9]. The test sample is assigned
to a given class, even when its closest labeled sample is from another class.
The same rule is used to classify evaluation samples.

Before testing, we propose a learning algorithm which replaces new sam-
ples of the evaluation set by irrelevant samples of the training set. Very
often real problems limit the training set size. The learning algorithm aims
to improve accuracy with this limitation. When an evaluation sample is
classi�ed, it is assigned to some optimum path in the graph. The train-
ing samples of this path have their numbers of right or wrong classi�cations
added by one, depending on the classi�cation result. The irrelevant samples
are those with the number of wrong classi�cations higher than the number
of right classi�cations. At each iteration, the learning algorithm creates
new evaluation and training sets and recomputes prototypes and optimum-
path forests. These prototypes guarantee none classi�cation errors in the
training set and usually improve the accuracy over the evaluation sets. The
presence of outliers (samples of a given class that fall inside the region of
another class) usually degrades the project of any classi�er. Outliers usu-
ally become irrelevant prototypes and are moved out from the training set.
The number of prototypes will not necessarily increase during learning and
the most representative are usually in the frontiers between classes. The
method handles non-separable classes by estimating key prototypes within
the intersection regions.

Section 2 discusses related works. The OPF classi�er is presented in
Section 3 and Section 4 presents its learning algorithm, which outputs the
last designed classi�er and a learning curve showing the accuracy values of
the designed classi�ers along its iterations. In Section 5, we compare the
OPF classi�er with support vector machines (SVM) [3]. This comparison
uses databases with outliers and non-separable multiple classes, being two
databases from image analysis. One contains voxels from white and gray
matters in magnetic resonance images of the human brain and the other
contains 2D shapes from binary images. Conclusions and future works are
discussed in Section 6.

2. Related works

Graph-based approaches for pattern classi�cation are usually unsupervised.
Zahn [19] proposed an approach that computes a minimum spanning tree
(MST) in the graph and removes inconsistent arcs to form clusters. Arc
removal in the MST can also produce hierarchical solutions for clustering,
such as the popular single-linkage approach [11]. Other clustering tech-
niques have been formulated as a graph-cut problem [17] with application
to image segmentation, where the graph does not need to be complete.
More recently, graph-cut techniques have also been used for learning [2].
Essentially, graph-based clustering methods aim to partition the graph into
components (clusters), such that each component contains only samples of
a same class. However, there is no guarantee that the samples in a given
cluster belong to the same class, and it is hard to assign these samples to
their correct class without any prior knowledge.

Supervised approaches usually exploit prior knowledge to teach the ma-
chine how to solve the problem. Arti�cial neural networks (ANN) [12] and
support vector machines (SVM) [3] are among the most actively pursued
approaches in the last years. An ANN multi-layer perceptron (ANN-MLP),
trained by backpropagation for example, is an unstable classi�er. Its ac-
curacy may be improved at the computational cost of using multiple clas-
si�ers and algorithms (e.g., bagging and boosting) for training classi�er
collections [12]. However, it seems that there is an unknown limit in the
number of classi�ers to avoid an undesirable degradation in accuracy [16].
ANN-MLP assumes that the classes can be separated by hyperplanes in
the feature space. Such assumption is unfortunately not valid in practice.
SVM was proposed to overcome the problem by assuming it is possible to
separate the classes in a higher dimensional space by optimum hyperplanes.
Although SVM usually provides reasonable accuracies, its computational
cost rapidly increases with the training set size and the number of support
vectors. [18] proposed a method to reduce the number of support vectors in
the multiple-classes problem. Their approach su�ers from slow convergence
and higher computational complexity, because they �rst minimize the num-
ber of support vectors in several binary SVMs, and then share these vectors
among the machines. [15] presented a method to reduce the training set
size before computing the SVM algorithm. Their approach aims to identify
and remove samples likely related to non-support vectors. However, in all
SVM approaches, the assumption of separability may also not be valid in
any space of �nite dimension [6].

The role of the prototypes for the OPF classi�er is very similar to the
importance of the support vectors for SVM. Considering this together with
the fact that SVM is among the best approaches for supervised pattern
classi�cation, we have chosen the SVM code in [4] with a Gaussian kernel
and parameters obtained by cross validation for comparison.

3. Optimum path classi�er

Let Z1, Z2, and Z3 be training, evaluation, and test sets with |Z1|, |Z2|, and
|Z3| samples such as points or image elements (e.g., pixels, voxels, shapes).
Let λ(s) be the function that assigns the correct label i, i = 1, 2, . . . , c, from
class i to any sample s ∈ Z1 ∪ Z2 ∪ Z3. Z1 and Z2 are labeled sets used to
the design of the classi�er. The applications usually impose an upper limit
in |Z1|, then the role of Z2 is to improve the accuracy of the classi�er by
interchanging samples with Z1. Z3 is used to assess the performance of the
classi�er and it is kept unseen during the project.

Let S ⊂ Z1 be a set of prototypes of all classes (i.e., key samples that best
represent the classes). Let v be an algorithm which extracts n attributes
(color, shape or texture properties) from any sample s ∈ Z1 ∪ Z2 ∪ Z3 and
returns a vector ~v(s) ∈ Ren. The distance d(s, t) between two samples, s
and t, is the one between their feature vectors ~v(s) and ~v(t). One can use any

valid metric (e.g., Euclidean) or a more elaborated distance algorithm [1].
Our problem consists of using S, (v, d), Z1 and Z2 to project an optimal

classi�er which can predict the correct label λ(s) of any sample s ∈ Z3.
We propose a classi�er which creates a discrete optimal partition of the
feature space such that any sample s ∈ Z3 can be classi�ed according to
this partition. This partition is an optimum path forest (OPF) computed
in <n by the image foresting transform (IFT) algorithm [10].

Let (Z1, A) be a complete graph whose the nodes are the samples in Z1

and any pair of samples de�nes an arc in A = Z1 × Z1 (Figure 1(a)). The
arcs do not need to be stored and so the graph does not need to be explicitly
represented. A path is a sequence of distinct samples π = 〈s1, s2, . . . , sk〉,
where (si, si+1) ∈ A for 1 ≤ i ≤ k − 1. A path is said trivial if π = 〈s1〉.
We assign to each path π a cost f(π) given by a path-cost function f . A
path π is said optimum if f(π) ≤ f(π′) for any other path π′, where π and
π′ end at a same sample sk. We also denote by π · 〈s, t〉 the concatenation
of a path π with terminus at s and an arc (s, t).

The OPF algorithm may be used with any smooth path-cost function
which can group samples with similar properties [10]. A function f is smooth
in (Z1, A) when for any sample t ∈ Z1, there exists an optimum path π
ending at t which either is trivial, or has the form τ · 〈s, t〉 where
• f(τ) ≤ f(π),

• τ is optimum,

• for any optimum path τ ′ ending at s, f(τ ′ · 〈s, t〉) = f(π).

We will address the path-cost function fmax, because of its theoretical
properties for estimating optimum prototypes:

fmax(〈s〉) =
{

0 if s ∈ S,
+∞ otherwise,

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)}, (1)

such that fmax(π) computes the maximum distance between adjacent sam-
ples in π, when π is not a trivial path.

The OPF algorithm assigns one optimum path P ∗(s) from S to every
sample s ∈ Z1, forming an optimum path forest P (a function with no cycles
which assigns to each s ∈ Z1\S its predecessor P (s) in P ∗(s) or a marker
nil when s ∈ S, as shown in Figure 1(b)). Let R(s) ∈ S be the root of
P ∗(s) which can be reached from P (s). The OPF algorithm computes for
each s ∈ Z1, the cost C(s) of P ∗(s), the label L(s) = λ(R(s)), and the
predecessor P (s), as follows.
Algorithm 1. OPF.

Input: A λ-labeled training set Z1, prototypes S ⊂ Z1 and the pair (v, d)
for feature vector and distance computations.

Output: Optimum path forest P , cost map C and label map L.
Auxiliary: Priority queue Q and cost variable cst.

1. For each s ∈ Z1\S, set C(s)← +∞.
2. For each s ∈ S, do
3. C(s)← 0, P (s)← nil, L(s)← λ(s), and insert s in Q.
4. While Q is not empty, do
5. Remove from Q a sample s such that C(s) is minimum.
6. For each t ∈ Z1 such that t 6= s and C(t) > C(s), do
7. Compute cst← max{C(s), d(s, t)}.
8. If cst < C(t), then
9. If C(t) 6= +∞, then remove t from Q.
10. P (t)← s, L(t)← L(s), C(t)← cst, and insert t in Q.

Lines 1�3 initialize maps and insert prototypes in Q. The main loop
computes an optimum path from S to every sample s in a non-decreasing
order of cost (Lines 4�10). At each iteration, a path of minimum cost C(s)
is obtained in P when we remove its last node s from Q (Line 5). Ties are
broken in Q using �rst-in-�rst-out policy. That is, when two optimum paths
reach an ambiguous sample s with the same minimum cost, s is assigned to
the �rst path that reached it. Note that C(t) > C(s) in Line 6 is false when
t has been removed from Q and, therefore, C(t) 6= +∞ in Line 9 is true only
when t ∈ Q. Lines 8�10 evaluate if the path that reaches an adjacent node
t through s is cheaper than the current path with terminus t and update
the position of t in Q, C(t), L(t) and P (t) accordingly.

The OPF algorithm for fmax is an �IFT-watershed transform� [13] com-
puted in the n-dimensional feature space. Apart from this extension, the
most signi�cant contributions are the training and learning processes which
�nd optimum prototypes (markers) in the frontier between classes and avoid
outliers (samples of a given class that fall inside the region of another class
in the feature space) in the training set, increasing the accuracy of the
classi�er.

The label L(s) may be di�erent from λ(s), leading to classi�cation errors
in Z1. The training �nds prototypes with none classi�cation errors in Z1.

3.1 Training

We say that S∗ is an optimum set of prototypes when Algorithm 1 propa-
gates the labels L(s) = λ(s) for every s ∈ Z1. Set S

∗ can be found by ex-
ploiting the theoretical relation betweenMinimum Spanning Tree (MST) [7]
and optimum path tree for fmax. The training essentially consists of �nding
S∗ and an OPF classi�er rooted at S∗.

By computing an MST in the complete graph (Z1, A), we obtain a con-
nected acyclic graph whose nodes are all samples in Z1 and the arcs are
undirected and weighted by the distance d between the adjacent sample
feature vectors (Figure 2(a)). This spanning tree is optimum in the sense
that the sum of its arc weights is minimum as compared to any other span-
ning tree in the complete graph. In the MST, every pair of samples is

connected by a single path which is optimum according to fmax. That is,
for any given sample s ∈ Z1, it is possible to direct the arcs of the MST
such that the result will be an optimum path tree P for fmax rooted at s.

0.5

0.6

0.2

0.1

(a)

S*

1
Z

s*

R(t)

P*(t)

t

(b)

Figure 2. (a) MST of the graph shown in Figure 1a where the optimum prototypes
share the arc of weight 0.6. (b) The classi�cation of the test sample (gray square)
t as in Figure 1c assigns the optimum path P ∗(t) from R(t) ∈ S∗ to t passing
through s∗.

The optimum prototypes are the closest elements in the MST with dif-
ferent labels in Z1. By removing the arcs between di�erent classes, their
adjacent samples become prototypes in S∗ and Algorithm 1 can compute
an optimum path forest with none classi�cation errors in Z1 (Figure 1(b)),
which can be explained by the theoretical relation between minimum span-
ning trees and the optimum path tree obtained by OPF with fmax [8]. Note
that, a given class may be represented by multiple prototypes (i.e., optimum
path trees) and there must exist at least one prototype per class.

3.2 Classi�cation

For any sample t ∈ Z3, we consider all arcs connecting t with samples
s ∈ Z1, as though t were part of the graph (Figure 1(c)). Considering all
possible paths from S∗ to t, we wish to �nd the optimum path P ∗(t) from S∗

and label t with the class λ(R(t)) of its most strongly connected prototype
R(t) ∈ S∗ (Figure 2(b)). This path can be identi�ed incrementally, by
evaluating the optimum cost C(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (2)

Let the node s∗ ∈ Z1 be the one that satis�es the above equation (i.e., the
predecessor P (t) in the optimum path P ∗(t)). Given that L(s∗) = λ(R(t)),
the classi�cation simply assigns L(s∗) as the class of t. An error occurs
when L(s∗) 6= λ(t).

Similar procedure is applied for samples in the evaluation set Z2. In this
case, however, we would like to use samples of Z2 to learn the distribution
of the classes in the feature space and improve the performance of the OPF
classi�er.

4. Learning Algorithm

The performance of the OPF classi�er improves when the closest samples
from di�erent classes are included in Z1, because the method �nds proto-
types that will work as sentinels in the frontier between classes. We propose
a learning algorithm to identify better prototypes from samples of Z2 that
have never been in Z1 (Algorithm 2).

Algorithm 2. Learning.

Input: Training and evaluation sets labeled by λ, Z1 and Z2, number T
of iterations, and the pair (v, d) for feature vector and distance

computations.

Output: Learning curve L and the last OPF classi�er, represented by the

predecessor map P , cost map C, and label map L.
Auxiliary: False positive and false negative arrays, FP and FN , of sizes c,

lists, LI and LE, of irrelevant samples and error samples for each

class, arrays for the number of right and wrong classi�cations,

NR and NW , of sizes |Z1|, variables r for sample, and set TR
to avoid samples of Z2 return to Z1.

1. TR← ∅.
2. For each iteration I = 1, 2, . . . , T , do
3. TR← TR ∪ Z1.
4. Compute S∗ ⊂ Z1 as in Section 3.1 and P , L, C by Algorithm 1.
5. For each sample s ∈ Z1, do NR(s)← 0 and NW (s)← 0.
6. For each class i = 1, 2, . . . , c, do
7. FP (i)← 0, FN(i)← 0, LI(i)← ∅ and LE(i)← ∅.
8. For each sample t ∈ Z2, do
9. Find s∗ ∈ Z1 that satis�es Equation 2 and set r ← s∗.
10. If L(s∗) 6= λ(t), then
11. FP (L(s∗))← FP (L(s∗)) + 1.
12. FN(λ(t))← FN(λ(t)) + 1.
13. if t 6∈ TR, then LE(λ(t))← LE(λ(t)) ∪ {t}.
14. While r 6= nil, do
15. NW (r)← NW (r) + 1 and r ← P (r).
16. Else
17. While r 6= nil, do
18. NR(r)← NR(r) + 1 and r ← P (r).
19. Compute L(I) by Equation 5.
20. For each s ∈ Z1, do
21. If NW (s) > NR(s), then
22. LI(λ(s))← LI(λ(s)) ∪ {s}.
23. For each class i = 1, 2, . . . , c, do
24. While |LI(i)| > 0 and |LE(i)| > 0, do
25. LI(i)← LI(i)\{s} and LE(i)← LE(i)\{t}.
26. Replace s ∈ Z1 by t ∈ Z2.
27. While |LI(i)| > 0, do
28. LI(i)← LI(i)\{s}.
29. Find t ∈ Z2\TR, with λ(t) = i, and replace it by s ∈ Z1.
30. Compute S∗ ⊂ Z1 as in Section 3.1 and P , L, C by Algorithm 1.

Firstly we give preference to replace irrelevant samples of Z1 by errors
in Z2, and secondly other samples of Z2 are replaced by irrelevant samples
of Z1. In both cases, we never let a sample of Z2 return to Z1. If the
application did not impose any limitation in |Z1|, the prototypes could be
found from Z1∪Z2 with none classi�cation errors in both sets. The learning
algorithm essentially tries to identify these prototypes from a few iterations
of classi�cation over Z2.

The algorithm outputs a learning curve over T iterations (Lines 2�29),
which reports the accuracy values of each instance of classi�er during learn-
ing, and the �nal OPF classi�er. Lines 4�7 execute training and initialize
the auxiliary arrays and lists. The classi�cation of each sample t ∈ Z2 is
performed in Lines 8�18, updating auxiliary arrays. The condition in Line
10 indicates that t is misclassi�ed.

In order to de�ne irrelevant samples, we consider all right and wrong
classi�cations in Z2. When t ∈ Z2 is correctly/incorrectly classi�ed, we
add one to the number of right/wrong classi�cations, NR(r) or NW (r), of
every sample r ∈ Z1 in the optimum path P ∗(t) from R(t) ∈ S∗ to s∗ (Lines
14�18). Additionally, Lines 11�13 update the number of false positive and
false negative arrays, FP and FN , for accuracy computation, and insert t
in the list LE(λ(t)) of errors if t has never been in Z1 (t 6∈ TR).

Line 19 computes the accuracy at iteration I and stores it in the learn-
ing curve L. The accuracy L(I) of a given iteration I, I = 1, 2, . . . , T , is
measured by taking into account that the classes may have di�erent sizes
in Z2 (similar de�nition is applied for Z3). Let NZ2(i), i = 1, 2, . . . , c, be
the number of samples in Z2 from each class i. We de�ne

ei,1 =
FP (i)

|Z2| − |NZ2(i)|
and ei,2 =

FN(i)
|NZ2(i)|

, i = 1, . . . , c (3)

where FP (i) and FN(i) are the false positives and false negatives, respec-
tively. That is, FP (i) is the number of samples from other classes that
were classi�ed as being from the class i in Z2, and FN(i) is the number of
samples from the class i that were incorrectly classi�ed as being from other
classes in Z2. The errors ei,1 and ei,2 are used to de�ne

E(i) = ei,1 + ei,2, (4)

where E(i) is the partial sum error of class i. Finally, the accuracy L(I) of
the classi�cation is written as

L(I) =
2c−

∑c
i=1E(i)

2c
= 1−

∑c
i=1E(i)

2c
. (5)

Lines 20�22 identify as irrelevant samples in Z1 those with number of
incorrect classi�cations higher than the number of correct classi�cations.

Lines 23�29 remove elements from the lists of irrelevant samples and errors,
LI and LE, for each class, and �rst replace errors by irrelevant samples
then replace the remaining irrelevant samples (if any) by other samples of
Z2 that have never been in Z1.

Outliers degrade the project of any classi�er. They will be usually iden-
ti�ed as irrelevant prototypes, being moved from Z1 to Z2. Finally, Line
30 performs the training over the last set Z1 to output the designed OPF
classi�er.

After learning, the classi�cation of any sample t ∈ Z3 is done by simply
�nding s∗ ∈ Z1 that satis�es Equation 2 and assigning label L(s∗) as the
class of t.

5. Results

We compare the OPF classi�er with support vector machines (SVM [3])
using four databases with outliers and non-separable classes: Cone-torus
from [12], Painted database (Figure 3(a)), MPEG-7 shape database [14],
and WM/GM (white matter/gray matter) database [5]. The cone-torus
database contains 400 samples and 3 non-separable classes while the painted
database contains 5,867 samples with outliers and 4 classes. In both cases,
the feature vectors are the sample (x, y) coordinates. The MPEG-7 database
contains 1,400 2D shapes and 70 classes. To increase overlap (di�culty)
between classes, we simply adopt the 126 most signi�cant coe�cients in the
Fourier transform of the shapes as feature vector. The WM/GM database
contains 1.5M voxels of WM and GM (2 classes) from MR-T1 images of
phantoms with various levels of noise and inhomogeneity to produce outliers.
The images and ground truth are available from [5], and the feature vector
is the lowest and highest values around the voxel, and its intensity value.
In all cases, function d is the Euclidean metric.

(a) (b)

Figure 3. (a) Painted database with outliers. (b) OPF learning curve on Z2.

For all databases, we ramdomly selected the same percentage of samples
from each class to create Z1, Z2 and Z3. These percentages were 30% for

Z1, 30% for Z2, and 40% for Z3 in the �rst three databases. Only the
WM/GM database used 0.1% for Z1, 19.9% for Z2 and 80% for Z3.

For Z1 and Z2, we runned 10 iterations of Algorithm 2 to output the
OPF classi�er for test on Z3. Figure 3(b) shows the learing curves for all
databases. Note the usually non-decreasing behavior of the curves after the
outliers be detected as irrelevant samples and moved to Z2.

In SVM, we used a Gaussian kernel and computed support vectors for 10
new instances of Z1 and Z2 by ramdomly replacing samples between them,
keeping the original proportions, and took the con�guration with highest
accuracy for test on Z3.

The above learning and testing processes of SVM and OPF were also
repeated for 10 distinct initial sets Z1, Z2, and Z3 to compute mean and
standard deviation of their accuracies over Z3 (Table 1). OPF was usually
more accurate and from 3 to 20 times faster than SVM.

Table 1. Mean and standard deviation of the accuracies for each database.

OPF accuracy SVM accuracy

Database mean std. dev. mean std. dev.

Cone-torus 0.8757 0.0218 0.8147 0.0145

Painted 0.9838 0.0144 0.8763 0.0030

MPEG-7 0.6925 0.0049 0.5869 0.0088

WM/GM 0.9088 0.0006 0.9072 0.0009

6. Conclusions and future work

We use the IFT algorithm in sample feature spaces and propose pattern
classi�ers based on optimum path forests rooted at prototypes of training
sets. The OPF classi�er �nds prototypes with none zero classi�cation errors
in the training sets and learns from errors in evaluation sets. Unseen test
sets are used to assess OPF in comparision with SVM. From the learning
curves of the OPF and its results on the test sets, we may conclude it is
a robust classi�er and usually more accurate than SVM for databases with
outliers and non-separable classes.

We are currently evaluating OPF with other databases and its accuracy
is usually higher than using SVM and ANN-MLP. Future works include to
report these results and the extension of OPF to unsupervised classi�cation.

References

[1] N. Arica and F. T. Y. Vural, BAS: A Perceptual Shape Descriptor based on the

Beam Angle Statistics, Pattern Recognition Letters 24 (2003), no. 9-10, 1627�1639.

[2] A. Blum and S. Chawla, Learning from Labeled and Unlabeled Data using Graph

Mincuts., ICML '01: Proceedings of the 18rd international conference on Machine
learning, 2001, pp. 19�26.

[3] B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal

margin classi�ers, Proc. 5th Workshop on Computational Learning Theory, 1992,
pp. 144�152.

[4] C. Chang and C. Lin, LIBSVM: a Library for Support Vector Machines, 2001. Soft-
ware available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[5] D. Collins, A. Zijdenbos, V. Kollokian, J. Sled, N. Kabani, C. Holmes, and A. Evans,
Design and Construction of a Realistic Digital Brain Phantom, IEEE Trans. on
Medical Imaging 17 (1998), no. 3, 463�468. Available from: <http://www.bic.mni.

mcgill.ca/brainweb>.

[6] R. Collobert and S. Bengio, Links between perceptrons, MLPs and SVMs, ICML '04:
Proceedings of the twenty-�rst international conference on Machine learning, 2004,
pp. 23.

[7] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, MIT, 1990.

[8] J. Cousty, G. Bertrand, L. Najman, and M. Couprie, Watersheds, minimum span-

ning forests, and the drop of water principle (2007), no. IGM 2007-01.

[9] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classi�cation, 2nd ed., Wiley-
Interscience, 2000.

[10] A. X. Falcão, J. Stol�, and R. A. Lotufo, The image foresting transform: theory,

algorithms, and applications, IEEE Trans. on PAMI 26 (2004), no. 1, 19�29.

[11] L. J. Hubert, Some applications of graph theory to clustering, Psychometrika 39

(1974), no. 3, 283�309.

[12] L. I. Kuncheva, Combining Pattern Classi�ers: Methods and Algorithms, Wiley-
Interscience, 2004.

[13] R. A. Lotufo and A. X. Falcão, The ordered queue and the optimality of the watershed
approaches, Mathematical Morphology and its Applications to Image and Signal
Processing, 2000, pp. 341�350.

[14] MPEG-7, MPEG-7: The Generic Multimedia Content Description Standard, Part

1, IEEE MultiMedia 09 (2002), no. 2, 78-87.

[15] N. Panda, E. Y. Chang, and G. Wu, Concept boundary detection for speeding up

SVMs, ICML '06: Proceedings of the 23rd international conference on Machine learn-
ing, 2006, pp. 681�688.

[16] L. Reyzin and R. E. Schapire, How boosting the margin can also boost classi�er

complexity, ICML '06: Proceedings of the 23rd international conference on Machine
learning, 2006, pp. 753�760.

[17] Jiambo Shi and Jitendra Malik, Normalized cuts and image segmentation, IEEE
Trans. on Pattern Analysis and Machine Intelligence 22 (2000), no. 8, 888�905.

[18] B. Tang and D. Mazzoni, Multiclass reduced-set support vector machines, ICML
'06: Proceedings of the 23rd international conference on Machine learning, 2006,
pp. 921�928.

[19] C. T. Zahn, Graph-Theoretical Methods for Detecting and Describing Gestalt Clus-

ters, IEEE Trans. on Computers C-20 (1971), no. 1, 68�86.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.bic.mni.mcgill.ca/brainweb
http://www.bic.mni.mcgill.ca/brainweb

	Design of robust pattern classifiers based on optimum-path forests
	Introduction
	Related works
	Optimum path classifier
	Training
	Classification

	Learning Algorithm
	Results
	Conclusions and future work

