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1. Introduction

Fuzzy associative memories belong to the class of
fuzzy neural networks that employ fuzzy operators
such as fuzzy conjunctions, disjunctions, and impli-
cations in order to store associations of fuzzy pat-
terns. Fuzzy associative memories are generally used
to implement fuzzy rule-based systems. Applications
of FAMs include backing up a truck and trailer, tar-
get tracking, human-machine interfaces, robot con-
trol, and voice cell control in ATM networks [3].

Recently, we observed that many well-known
FAM models perform elementary operations of fuzzy
mathematical morphology at every node [5, 8].
Therefore, many FAM models can be viewed as
fuzzy morphological neural networks or - more pre-
cisely - as fuzzy morphological associative memories
(FMAMs).

Fuzzy morphological neural networks and
FMAMs, in particular, involve concepts from the
areas of mathematical morphology, fuzzy set theory,
and artificial neural networks. We intend to provide
a detailed analysis of FMAMs in the near future.
In particular, we plan to explore the mathematical
morphology aspects of FMAMs by developping a
more general recording strategy for FMAMs that is
based on the notion of adjunction.

2. Basic Concepts of Fuzzy
Morphological Associative
Memories

Morphological neural networks are equipped with
morphological neurons, i.e. neurons that perform
either a dilation, an erosion, a anti-dilation, or an
anti-erosion [2, 5, 6]. In the fuzzy case, we simply
speak of fuzzy morphological neurons.

Fuzzy morphological neurons can be defined in
terms of fuzzy conjunctions, fuzzy disjunctions, or
fuzzy implications [6]. Due to page constrainst, we
will only introduce max-C morphological neurons
since they represent the most important types of
fuzzy neurons that occur in FMAM models and since
other types of fuzzy morphological neurons can be

obtained by means of a duality relationship such as
adjunction or negation [8].

Recall that a fuzzy conjunction is an increasing
mapping C : [0, 1] × [0, 1] → [0, 1] that satisfies
C(0, 0) = C(0, 1) = C(1, 0) = 0 and C(1, 1) = 1.
Examples of fuzzy conjunctions include the following
operators: CM (x, y) = x∧ y (minimum), CP (x, y) =
xy (product), and CL(x, y) = 0 ∨ (x + y − 1)
(Lukasiewicz fuzzy conjunction). Note that CM , CP ,
and CL also represent continuous t-norms.

If x1, . . . , xn are the fuzzy inputs, w1, . . . , wn are
the fuzzy synaptic weights, and θ ∈ [0, 1] is the bias
of a max-C neuron then we compute the output y ∈
[0, 1] as follows:

y =

 n∨
j=1

C(wj , xj)

 ∨ θ . (1)

We may speak of a max-C morphological neuron if
and only if C(x, ·) is a dilation for every x ∈ [0, 1]
[2]. In this case, Equation 1 corresponds to a fuzzy
dilation [6].

A FMAM that consists of max-CL neurons is
called a Lukasiewicz FMAM. This FMAM model
can be trained using Lukasiewicz implicative learn-
ing and in this case the Lukasiewicz FMAM coincides
with the Lukasiewicz IFAM [7]. In general, the im-
plicative learning scheme can be described as follows.

Suppose that we want to record the fundamen-
tal memory set {

(
xξ,yξ

)
: ξ = 1, . . . , k}, where

xξ ∈ [0, 1]n and yξ ∈ [0, 1]m by means of a synaptic
weight matrix W = (wij) ∈ [0, 1]m×n. The implica-
tive fuzzy learning scheme consists in synthesizing
the weight matrix W as follows.

wij =
p∧

ξ=1

IR(xξ
j , y

ξ
i ) . (2)

Here, IR denotes the R-implication that corresponds
to a certain continuous t-norm.

3. An Application in Prediction

In this section, we applied the Lukasiewicz FMAM
to the problem of forecasting the average monthly
streamflow of a large hydroelectric plant [4].

The time series prediction problem considered can
be stated as follows: Given samples of the time se-
ries, sξ for ξ = 1, . . . , q−1, we would like to obtain an



Table 1. Mean Square, Mean Absolute, and Mean Rela-
tive Percentage Errors.

Methods MSE (×105) MAE (m3/s) MPE (%)
FMAM 1.38 221 21
PARMA 1.85 280 28
MLP 1.82 271 30
NFN 1.73 234 20
FPM-PRP 1.20 200 18

estimate ŝq for the correct streamflow sq based on a
subset of the past values s1, . . . , sq−1. The seasonal-
ity of the monthly streamflow suggests the use of 12
different models, one for each month of the year [4].
Furthermore, our FMAM based model only uses a
fixed number of three antecedents. For example, the
values of January, February, and March were taken
into account to predict the streamflow of April.

The predictor based on the Lukasiewicz FMAM
stores associations (xξ,yξ), for ξ = 1, . . . , k, where
xξ and yξ are fuzzy sets that comprise some relevant
information concerning the past values of the time
series. Given an input xq that takes into account
the last three samples of the time series, the FMAM
produces an output pattern yq. A defuzzification of
yq yields ŝq ≈ sq.

In this experiment, we employed the subtractive
clustering method [1] to determine fuzzy sets xξ and
yξ with Gaussian-type membership functions from
streamflow data from 1931 to 1990 [4]. For computa-
tional reasons, xq was modeled as a discrete Dirac-δ
function. A defuzzification of yq using the center of
mass yielded ŝq.

Figure 1 shows the forecasted streamflows esti-
mated by the prediction model based on the FMAM
for the Furnas reservoir from 1991 to 1998. The con-
tinuous line corresponds to the actual values and the
dashed line corresponds to the predicted values. Ta-
ble 1 compares the errors that were generated by the
FMAM model and several other models [4]. In con-
trast to the FMAM-based model, the MLP, NFN,
and FPM-PRP models were initialized by optimiz-
ing the number of the parameters for each monthly
prediction. For example, the MLP considers 4 an-
tecedents to predict the streamflow of January and
3 antecedents to predict the streamflow for Febru-
ary. Moreover, the FPM-PRP model also takes into
account slope information which requires some addi-
tional “fine tuning". We experimentally determined
a variable number of parameters (including slopes)
for the FMAM model such that MSE = 0.88× 105,
MAE = 157, and MPE = 15.

Figure 1. The streamflow prediction for the Furnas reser-
voir from 1991 to 1998.
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