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1. Introduction

Morphological neural networks (MNNs) are a class
of artificial neural networks that perform one of the
elementary operations of mathematical morphology
at every node. Morphological associative memories
(MAMs) are among the types of MNNs that have
emerged in recent years. Unlike many other models
of neural associative memory, MAMs have been pro-
posed from the outset for the storage and recall of
real-valued patterns. Nevertheless, our focus in this
paper is on the binary case.

In this paper, we present a new two-layer MAM
model. The first layer executes fuzzy operations that
incorporate information on the kernel vectors corre-
sponding to the fundamental memories. The second
layer uses this information on the kernel vectors in
order to recall the desired output pattern. This ap-
proach can be applied to the auto-associative as well
as to the hetero-associative case. Our new MAM
model outperformed several well-known neural as-
sociative memory models in experiments concerning
the error correction capability.

2. Matrix operations in Minimax
Algebra

The theories of minimax algebra and mathematical
morphology are closely related although they were
developed for completely different purposes.

One of the basic algebraic structures occurring in
minimax algebra is called blog (bounded lattice or-
dered group). The set R±∞ = R ∪ {+∞,−∞} to-
gether with the operations ”maximum” (∨), ”mini-
mum” (∧), ”addition” (+), and ”dual addition” (+′),
provides the canonical example of a blog. For the
purposes of this paper, it often suffices to consider
R, the set of finite elements of R±∞. Two types of
matrix products exist in minimax algebra [1]. For
A ∈ Rm×p and B ∈ Rp×n

±∞ , the matrix C = A ∨� B,
also called the max product of A and B, and the ma-
trix D = A ∧� B, also called the min product of A

and B, are defined by

cij =
p∨

k=1

(aik + bkj) , dij =
p∧

k=1

(aik + bkj) . (1)

Let A ∈ Rm×n. Let εA and δA be such that
εA(x) = A ∧� x and δA(x) = A ∨� x for all x ∈ Rn

±∞.
Obviously, εA represents an erosion and δA repre-
sents a dilation from the complete lattice Rn

±∞ into
the complete lattice Rm

±∞.

3. Basic concepts of morphological
associative memorie

Suppose that we wish to record k vector pairs(
x1,y1

)
, . . . ,

(
xk,yk

)
using a morphological asso-

ciative memory (MAM). Let X = [x1, . . . ,xk] denote
the matrix whose columns are the input patterns
x1, . . . , xk. Similarly, let Y = [y1, . . . ,yk]. We in-
troduced two basic morphological memory models.
The first approach consists of constructing an m×n
matrix WXY as follows:

WXY = Y ∧� (−X)t =
k∧

ξ=1

yξ ∧� −(xξ)
t
. (2)

The second, dual approach consists of constructing
an m× n matrix MXY of the form

MXY = Y ∨� (−X)t =
k∨

ξ=1

yξ ∨� (−xξ)
t
. (3)

If the matrix WXY receives a vector x as input,
the product WXY ∨� x is formed. Dually, if the ma-
trix MXY receives a vector x as input, the product
MXY ∧� x is formed.

If X = Y , we obtain the autoassociative morpho-
logical memories (AMMs) WXX and MXX . The
properties of AMMs include an optimal absolute
storage capacity and one-step convergence.
Example.

We used the ten pattern vectors x1, . . . , x10 ∈
{0, 1}49 corresponding to the images in Figure 1 in
constructing the morphological memories WXX and
MXX . As expected each individual pattern vector xξ

was perfectly recalled in a single application of either
WXX or MXX and remains stable under renewed
applications of either WXX or MXX .
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Figure 1. Ten binary patterns.

4. A new MAM based on fuzzy
operations and the kernel method

The AMMs WXX e MXX suffer from a large number
of spurious memories and limited error correction ca-
pability [5]. Recently, some modified MAM models
have been proposed in order to overcome these diffi-
culties. For example, Sussner introduced a two-layer
binary MAM that yields a greatly reduced number of
spurious memories and an improved error correction
capability [5]. Another approach is based on either
one of the following input-output schemes [6]:

x −→ WXX ∨̃� x −→ Defuzz. −→ y , (4)
x −→ MXX ∧̃� x −→ Defuzz. −→ y . (5)

Equations 4 and 5 involve the fuzzy max product
∨̃� and the fuzzy min product ∧̃� [6].

The new two-layer MAM model that we introduce
in this paper is based on a combination of the two
approaches mentioned above [5, 6].

Let {(xξ,yξ) : ξ = 1, . . . , k} be the set of
fundamental memories, where xξ ∈ {0, 1}n and
yξ ∈ {0, 1}m. Let Z be a matrix of the form
[z1, z2, . . . , zk] ∈ {0, 1}p×k such that the columns zξ

satisfy the conditions zξ 6≤ zγ and zξ ∧zγ = 0 for all
γ 6= ξ.

The following equations determine the recording
phase of the proposed two-layer MAM. Recall that
the symbol MXZ

X denotes MXZ ∧� MXX [5].

w = h(MXZ
X ∧̃� x) (6)

y = WZY ∨� w . (7)

Here, we employed hi(x) = 1 ⇔ xi ≥
∨n

j=1 xj .

5. Experimental results

We used an experiment from the literature to
test our new model [3, 6]. Consider the ten

Figure 2. Percentage of Perfect Recall.

images x1, . . . ,x10 corresponding to the images
of Figure 1. We stored the five associations
(x1,x1), . . . , (x5,x5) using WXX , a discrete Hopfield
net, and a projection-recorded DAM [2]. Moreover,
we stored (x1,x6), . . . , (x5,x10) using a correlation-
recorded BAM [2], the morphological model given
by Equation 4 (FAMMT), and our new MAM model
given by Equations 6 and 7 for the special case where
Z = I ∈ {0, 1}k×k.

We introduced random noise into each of the up-
percase vowels by randomly reversing each pixel with
probability p. Figure 2 shows the mean percentage
of perfect recalls of xξ for each probability p in 1000
experiments for each ξ.
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