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1. Introduction

The theory of morphological neural networks and its
applications have experienced a steady and consis-
tent growth in the last few years. In this setting,
computing the next state of a neuron or perform-
ing the next layer computation involves one of the
elementary operations of mathematical morpholgy.
In this paper, we present the lattice-theoretic
framework for morphological neural networks and we
compare the performance of several feedfoward mor-
phological neural networks in a classification prob-
lem that was drawn from B. Ripley’s database [1].

2. Lattice Background for
Morphological Neural Networks

Morphological neurons calculate either an erosion, a
dilation, an anti-erosion, or an anti-dilation [2] from
a complete lattice . to a complete lattice M. The
extended real numbers R and the unit interval [0, 1]
represent specific examples of complete lattices. Re-
call that an operator € : L — M represents an erosion
if and only if e(AY) = A\ ey e(y), VY C L. Dila-
tion, anti-erosion and anti-dilation are defined in a
similar way.

Banon and Barrera [3] showed that every map-
ping ¢ : L — M can be written as a supremum of
infimums of pairs of erosions and anti-dilations. In
other words, there exist erosions €?, anti-dilations §?,
and an index set I such that

b=\/(N5). (1)

el

Similarly, the mapping ¥ can be written as an in-
fimum of supremums of pairs of dilations and anti-
erosions. In the special case that v is increasing,
can be represented as a supremum of erosions or as
an infimum of dilations.

Some Types of Feedfoward
Morphological Neural Networks

Morphological Perceptrons (MP)

Given a vector of inputs x € R", a vector of
synaptic weights w € R'™*™ and an activation
function f, a neuron of the morphological per-
ceptron calculates a output y according to one
of the following rules:

y = few(x)), where ey (x)= Al (x;+ w;);
y = f(dw(x)), where dw(x)=Vi_q(z;+w;);
y = f(éw(x)), where é&w(x)= VI (—z;+w;);
g = FBu(x), where Bu(x)= AT, (~zi +wp).

Morphological Perceptrons with den-
drites (MPD)

Ritter and Urcid [5] developped a new paradigm
for computing with morphological neurons,
where the process is peformed in the dendrite.

The output of a MPD is defined by the following
equation:

/\/\ D (@ +wy),  (2)
i=11€eL

where f is a hard limiter function, L = {0,1}
and pr = {—1,1} denotes the excitatory or in-
hibitory response of the kth dentrite.

Fuzzy Lattice Neural Network (FLNN)

Let L. be a complete lattice. Given a vector of
inputs x € L and a vector of synaptic weights, a
neuron of an FLNN [6] computes p(x, w), where
the function p : L x L. — [0,1] is such that
p(x,y) =1 & x <y. Many times, L is given
by the complete lattice of the so called gener-
alized intervals. This complete lattice is gener-
ated by the family of the hyperboxes with ver-
tices in R or in [0,1]. For a fixed w € L, the
function p(.,w) : L — [0, 1] represents both an
anti-dilatation and an anti-erosion.

Hybrid morphological /rank/
linear neural network (MRL-NNs)

MRL-NNs [7] employ a linear combination
of a linear and a rank/morphological agrega-
tion function in each node followed by the



application of an activation function. The
rank /morphological agregation function gener-
alizes the morphological operators dy, and ey.
Given the list t = (x1 + w1, ..., 2, + wy,), we
sort its components in decreasing order which
yields t(1) = t2) = ... = t(,) and pick the rth
element of the sorted list. In this way, we define
the rth rank function of t by

Re(t)=tyy, r=1,...,n (3)
During the training phase, the derivatives of
rank functions are estimated according to Pes-
soa and Maragos’s methodology [7] that use
rank indicator vectors 7] which marks the lo-
cations in t where z = R,(t) occurs.

e Morphological Modular Neural Networks
(MMNNSs)

MMNNSss were introduced by R. Sousa et al. [3].
The arquitecture of an MMNN is based on one
of the decompostions of Barrera and Banon that
we mentioned in Section 2. MMNN training [8]
can be achieved by a simple genetic algorithm
(SGA) or by a modified backpropagation (BP)
algorithm [7].

4. Experiments Results

We applied our feedfoward morphological models to
the problem based on diabetes diagnosis in a popula-
tion of Indians Pima [1]. The training set contains a
randomly selected set of n = 200 patients each with
8 numeric variables, representing biological charac-
teristics, and the validation and test sets contain a
random selected set of 166 patients each.

Training an MP using Sussner’s supervised algo-
rithm automatically generated 52 and 26 neurons on
the first and the second hidden layer respectively [4].
In a similar vein, training an MPD using the Rit-
ter’s constructive algorithm [5] yielded 26 dendrites.
We also considered an MRL-NN with one hidden
layer consisting of 5 neurons and applied a modi-
fied backpropagation (BP) algorithm [7], using a step
size p = 0.01 and a smoothing parameter o = 0.05.
Apart from training the MMNN in a similar way,
we also used a simple genetic algorithm (SGA), con-
sidering a initial population of 50 elements (synap-
tic weights), maximum of 100 generations, crossover
weight w = 0.9 and mutation probability of 0.1.
The FLNN generated 72 neurons during the train-
ing phase. Finally, we compared the morphological
models with an MLP with ten hidden nodes that was
trained using the gradient descent with momentum

and adaptive step backpropagation rule ( learning
rate n = 1074, increase and decrease parameters 1.05
and 0.5 respectively, momentum factor o = 0.9).

The following table reveals that the FLNN out-
performed all the other models in this experiment.
The MLP and the MP exhibit similar percentages
of misclassified patterns, whereas the MRL and the
MMNN exhibit the worst performances among the
models we tested.

Table 1. Percentage of misclassified patterns for training,
validation, and testing.

Model Train. (%) Valid. (%) Test. (%)
MP 0 23.8 21.2
MPD 0 27.7 25.4
MRL 31.2 35.5 34.7
MMNN(BP) 31.9 39.7 37.5
MMNN(SGA) 23.1 37.4 30.7
FLNN 0 16.2 14.4
MLP 22.4 23 20.18

We applied these models in conjunction with early
stopping except for the MP and FLNN models which
we trained until a error rate of 0% for the training
set was achieved.
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