Fechar

@PhDThesis{Neves:2021:HiMaBr,
               author = "Neves, Alana Kasahara",
                title = "Hierarchical mapping of Brazilian Savanna (Cerrado) physiognomies 
                         based on Deep Learning",
               school = "Instituto Nacional de Pesquisas Espaciais (INPE)",
                 year = "2021",
              address = "S{\~a}o Jos{\'e} dos Campos",
                month = "2021-03-22",
             keywords = "spatial context, high spatial resolution image, GEOBIA, semantic 
                         segmentation, convolutional neural network, contexto espacial, 
                         imagem de alta resolu{\c{c}}{\~a}o espacial, 
                         segmenta{\c{c}}{\~a}o sem{\^a}ntica, rede neural 
                         convolucional.",
             abstract = "The Brazilian Savanna, also known as Cerrado, is considered one of 
                         the global hotspots for biodiversity conservation and plays an 
                         important role as carbon stock, due to its above and below-ground 
                         biomass. The Cerrado vegetation is composed by a mosaic of 
                         ecosystems, which comprises since natural grasslands until dense 
                         forests. There is a vegetation gradient with a wide variation in 
                         structure, density and biomass, which generates several types of 
                         vegetation, known as physiognomies. According to the Ribeiro and 
                         Walter classification system, there are three major groups of 
                         ecosystems (Grassland, Savanna and Forest), which can be divided 
                         into 11 physiognomies and 14 additional sub-types of 
                         physiognomies, resulting in 25 physiognomic types. Monitoring the 
                         Cerrado vegetation cover in a large scale, using Remote Sensing 
                         imagery, is still a challenge due to the high spatial and temporal 
                         variability of the vegetation types and their spectral similarity. 
                         Two aspects of the Cerrado physiognomies are relevant to create a 
                         novel classification method: its classification system hierarchy 
                         and the relative context where each physiognomy occurs. Two 
                         classification techniques that considers the spatial context have 
                         been used in the Remote Sensing field: GEOBIA and Deep Learning. 
                         Thus, the general objective of this study is to develop and 
                         evaluate a novel method based on Deep Learning to hierarchically 
                         classify the Cerrado physiognomies, according to the 
                         classification system proposed by Ribeiro and Walter, in the 
                         Bras{\'{\i}}lia National Park, a federal environmental Protected 
                         Area. Several spectral channels were tested as input datasets to 
                         evaluate their importance and contribution in the classification 
                         task and all experiments used a WorldView-2 multispectral image (2 
                         meters spatial resolution). To demonstrate the potential of Deep 
                         Learning techniques in the Cerrado vegetation discrimination, 
                         hierarchical and non-hierarchical GEOBIA approaches were initially 
                         performed to classify seven physiognomies. In addition to the 
                         spectral bands, five vegetation indices, three fractions of the 
                         Linear Spectral Mixture Model, three components of the Tasseled 
                         Cap transformation and six texture features were used as features. 
                         Compared to a GEOBIA non-hierarchical approach, the GEOBIA 
                         hierarchical approach achieved an overall accuracy of 2.5 
                         percentage points higher (66.4% and 68.9%, respectively). In the 
                         Deep Learning approach, an adapted U-net architecture was used to 
                         hierarchically classify the physiognomies. The dataset composed of 
                         RGB bands plus the 2-band Enhanced Vegetation Index (EVI2) 
                         achieved the best performance and was used to perform the 
                         hierarchical classification. In the first level, which identified 
                         Forest, Savanna and Grassland, the overall accuracy was 92.8%. For 
                         detailed Savanna and Grassland physiognomies (second level of 
                         classification), the overall accuracies were 86.1% and 85.0%, 
                         respectively. The Bras{\'{\i}}lia National Park final map 
                         obtained in this study has ten physiognomies: Gallery Forest, 
                         Woodland Savanna, Typical Savanna, Shrub Savanna, Rupestrian 
                         Savanna, Vereda, Rupestrian Grassland, Shrub Grassland, Open 
                         Grassland and Humid Open Grassland. The misclassified areas are 
                         mainly related to transition regions between the physiognomies. 
                         Deep Learning techniques were able to understand and well 
                         represent the physiognomy patterns. To the best of our knowledge, 
                         this work was the first one that used Deep Learning to 
                         discriminate the Cerrado physiognomies in this level of detail. 
                         Besides, the accuracy rates obtained here outperformed other works 
                         that applied traditional Machine Learning algorithms and GEOBIA 
                         for this task. RESUMO: A Savana brasileira, conhecida como 
                         Cerrado, {\'e} considerada um hotspot global para a 
                         conserva{\c{c}}{\~a}o da biodiversidade, e exerce um importante 
                         papel como estoque de carbono, devido {\`a} sua biomassa acima e 
                         abaixo do solo. A vegeta{\c{c}}{\~a}o do Cerrado {\'e} composta 
                         por um mosaico de ecossistemas, que abrange desde campos naturais 
                         at{\'e} densas florestas. Existe um gradiente de 
                         vegeta{\c{c}}{\~a}o com ampla varia{\c{c}}{\~a}o em estrutura, 
                         densidade e biomassa, que geram diferentes tipos de 
                         vegeta{\c{c}}{\~a}o, chamados de fitofisionomias. De acordo com 
                         o sistema de classifica{\c{c}}{\~a}o proposto por Ribeiro e 
                         Walter, existem tr{\^e}s grupos principais de ecossistemas 
                         (Floresta, Savana e Campo), que podem ser divididos em 11 
                         fitofisionomias e 14 subtipos adicionais, resultando em 25 tipos 
                         de fitofisionomias. O monitoramento da vegeta{\c{c}}{\~a}o do 
                         Cerrado em larga escala, usando imagens de sensoriamento remoto, 
                         ainda {\'e} um desafio devido {\`a} alta variabilidade espacial 
                         e temporal e {\`a} similaridade espectral das fitofisionomias. 
                         Dois aspectos da vegeta{\c{c}}{\~a}o do Cerrado s{\~a}o 
                         relevantes para a cria{\c{c}}{\~a}o de um novo m{\'e}todo de 
                         classifica{\c{c}}{\~a}o: a hierarquia do sistema de 
                         classifica{\c{c}}{\~a}o e o contexto espacial em que cada 
                         fitofisionomia ocorre. Duas t{\'e}cnicas de 
                         classifica{\c{c}}{\~a}o que consideram o contexto espacial 
                         t{\^e}m sido utilizadas na {\'a}rea de Sensoriamento Remoto: 
                         GEOBIA e Deep Learning. Assim, o objetivo geral deste trabalho 
                         {\'e} desenvolver e avaliar um novo m{\'e}todo baseado em Deep 
                         Learning para classificar hierarquicamente as fitofisionomias do 
                         Cerrado, de acordo com o sistema de classifica{\c{c}}{\~a}o 
                         proposto por Ribeiro e Walter, existentes no Parque Nacional do 
                         Bras{\'{\i}}lia, uma Unidade de Conserva{\c{c}}{\~a}o federal. 
                         V{\'a}rias bandas e atributos espectrais foram testados como 
                         dados de entrada para avaliar suas contribui{\c{c}}{\~o}es na 
                         classifica{\c{c}}{\~a}o e todos os experimentos usaram uma 
                         imagem multiespectral WorldView-2 (resolu{\c{c}}{\~a}o espacial 
                         de 2 metros). Para demonstrar o potencial das t{\'e}cnicas de 
                         Deep Learning para discriminar a vegeta{\c{c}}{\~a}o do Cerrado, 
                         inicialmente uma abordagem usando GEOBIA para classificar sete 
                         fitofisionomias foi realizada. Al{\'e}m das bandas espectrais, 
                         cinco {\'{\i}}ndices de vegeta{\c{c}}{\~a}o, tr{\^e}s 
                         fra{\c{c}}{\~o}es do Modelo Linear de Mistura Espectral, 
                         tr{\^e}s componentes da transforma{\c{c}}{\~a}o Tasseled Cap e 
                         seis atributos de textura foram usados como atributos. Em 
                         compara{\c{c}}{\~a}o com uma abordagem n{\~a}o hier{\'a}rquica 
                         de GEOBIA, a abordagem hier{\'a}rquica de GEOBIA obteve uma 
                         acur{\'a}cia global 2,5 pontos percentuais maior (66,4% e 68,9%, 
                         respectivamente). Na abordagem com Deep Learning, uma arquitetura 
                         U-net adaptada foi usada para classificar hierarquicamente as 
                         fitofisionomias. O conjunto de dados composto pelas bandas RGB 
                         mais o 2-band Enhanced Vegetation Index (EVI2) obteve o melhor 
                         desempenho e foi usado para realizar a classifica{\c{c}}{\~a}o 
                         hier{\'a}rquica. No primeiro n{\'{\i}}vel, que identificou 
                         Floresta, Savana e Campo, a acur{\'a}cia global foi 92,8%. Para 
                         as fitofisionomias detalhadas de Savana e Campo (segundo 
                         n{\'{\i}}vel de classifica{\c{c}}{\~a}o), as acur{\'a}cias 
                         globais foram de 86,1% e 85,0 %, respectivamente. O mapa final do 
                         Parque Nacional de Bras{\'{\i}}lia obtido neste trabalho possui 
                         dez fitofisionomias: Mata de Galeria, Cerrado Denso, Cerrado 
                         T{\'{\i}}pico, Cerrado Ralo, Cerrado Rupestre, Vereda, Campo 
                         Rupestre, Campo Sujo, Campo Limpo e Campo Limpo {\'U}mido. As 
                         {\'a}reas classificadas incorretamente est{\~a}o relacionadas 
                         principalmente a regi{\~o}es de transi{\c{c}}{\~a}o entre as 
                         fitofisionomias. As t{\'e}cnicas de Deep Learning foram capazes 
                         de entender e representar bem os padr{\~o}es das fitofisionomias. 
                         At{\'e} onde sabemos, esse foi o primeiro trabalho que usou Deep 
                         Learning para discriminar as fitofisionomias do Cerrado nesse 
                         n{\'{\i}}vel de detalhamento. Al{\'e}m disso, as acur{\'a}cias 
                         aqui obtidas superaram as de outros trabalhos que aplicaram 
                         algoritmos tradicionais de aprendizado de m{\'a}quina e GEOBIA 
                         para essa tarefa.",
            committee = "Arag{\~a}o, Luiz Eduardo Oliveira e Cruz de (presidente) and 
                         K{\"o}rting, Thales Sehn (orientador) and Fonseca, Leila Maria 
                         Garcia (orientadora) and Sant'Anna, Sidnei Jo{\~a}o Siqueira and 
                         Oliveira, Cleber Gonzales de and Alencar, Ane Auxiliadora Costa",
         englishtitle = "Mapeamento hier{\'a}rquico das fitofisionomias da Savana 
                         brasileira (Cerrado) baseado em Deep Learning (aprendizagem 
                         profunda)",
             language = "en",
                pages = "96",
                  ibi = "8JMKD3MGP3W34R/44DTSUS",
                  url = "http://urlib.net/ibi/8JMKD3MGP3W34R/44DTSUS",
           targetfile = "publicacao.pdf",
        urlaccessdate = "05 maio 2024"
}


Fechar