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Abstract

Aims. We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed
by several survey and follow-up collaborations conducting microlensing observations towards the Galactic Bulge.
Methods. Based on detailed modelling of the observed light curve, we find that the lens is composed of two masses with a mass
ratio q = 1.9× 10−3. Thanks to our detection of higher-order effects on the light curve due to the Earth’s orbital motion and the
finite size of source, we are able to measure the mass and distance to the lens unambiguously.
Results. We find that the lens is made up of a planet of mass 0.53 ± 0.21MJ orbiting an M dwarf host star with a mass of
0.26 ± 0.11M⊙. The planetary system is located at a distance of 2.57 ± 0.61 kpc towards the Galactic Centre. The projected
separation of the planet from its host star is d = 1.408 ± 0.019, in units of the Einstein radius, which corresponds to 2.72 ± 0.75
AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital
radius of 1.50 ± 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around
∼ 1− 1.5 AU.

Key words. gravitational lensing – extrasolar planets – modelling
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1. Introduction

Gravitational microlensing is one of the methods that al-
lows us to probe the populations of extrasolar planets
in the Milky Way, and has now led to the discoveries
of 16 planets1, several of which could not have been de-
tected with other techniques (e.g. Beaulieu et al. 2006,
Gaudi et al. 2008, Muraki et al. 2011). In particular, mi-
crolensing events can reveal cool, low-mass planets that
are difficult to detect with other methods. Although this
method presents several observational and technical chal-
lenges, it has recently led to several significant scientific
results. Sumi et al. (2011) analysed short time-scale mi-
crolensing events and concluded that these events were pro-
duced by a population of Jupiter-mass free-floating planets,
and were able to estimate the number of such objects in
the Milky Way. Cassan et al. (2012) used 6 years of ob-
servational data from the PLANET collaboration to build
on the work of Gould et al. (2010) and Sumi et al. (2011),
and derived a cool planet mass function, suggesting that,
on average, the number of planets per star is expected to
be more than 1.

Modelling gravitational microlensing events has been
and remains a significant challenge, due to a complex
parameter space and computationally demanding cal-
culations. Recent developments in modelling methods
(e.g. Cassan 2008; Kains et al. 2009, 2012; Bennett 2010;
Ryu et al. 2010; Bozza et al. 2012), however, have allowed
microlensing observing campaigns to optimise their strate-
gies and scientific output, thanks to real-time modelling
providing prompt feedback to observers as to the possible
nature of ongoing events.

In this paper we present an analysis of microlensing
event OGLE-2011-BLG-0251, an anomalous event discov-
ered during the 2011 season by the OGLE collaboration
and observed intensively by follow-up teams. In Sec. 2, we
briefly summarise the basics of relevant microlensing for-
malism, while we discuss our data and reduction in Sec. 3.
Our modelling approach and results are outlined in Sec. 4;
we translate this into physical parameters of the lens sys-
tem in Sec. 5 and discuss the properties of the planetary
system we infer.

2. Microlensing formalism

Microlensing can be observed when a source becomes suf-
ficiently aligned with a lens along the line of sight that the
deflection of the source light by the lens is significant. A
characteristic separation at which this occurs is the Einstein
ring radius. When a single point source approaches a sin-
gle point lens of mass M with a projected source-lens sep-
aration u, the source brightness is magnified following a
symmetric “point source-point lens” (PSPL) pattern which
can be parameterised with an impact parameter u0 and a
timescale tE, both expressed in units of the angular Einstein
radius (Einstein 1936),

θE =

√

4GM

c2

(

DS −DL

DSDL

)

, (1)
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whereG is the gravitational constant, c is the speed of light,
and DS and DL are the distances to the source and the
lens, respectively, from the observer. The timescale is then
tE = θE/µ, where µ is the lens-source relative proper mo-
tion. Therefore the observable tE is a degenerate function
of M,DL and the source’s transverse velocity v⊥, assuming
that DS is known. However, measuring certain second-order
effects in microlensing light curves such as the parallax due
to the Earth’s orbit allows us to break this degeneracy and
therefore measure the properties of the lensing system di-
rectly.

When the lens is made up of two components, the mag-
nification pattern can follow many different morphologies,
because of singularities in the lens equation. These lead
to source positions, along closed caustic curves, where the
lensing magnification is formally infinite for point sources,
although the finite size of sources means that, in prac-
tice, the magnification gradient is large rather than infi-
nite. A point-source binary-lens (PSBL) light curve is of-
ten described by 6 parameters: the time at which the source
passes closest to the center of mass of the binary lens, t0,
the Einstein radius crossing time, tE, the minimum impact
parameter u0, which are also used to describe PSPL light
curves, as well as the source’s trajectory angle α with re-
spect to the lens components, the separation between the
two mass components, d, and their mass ratio q. Finite
source size effects can be parameterised in a number of
ways, usually by defining the angular size of the source ρ∗
in units of θE:

ρ∗ =
θ∗
θE

, (2)

where θ∗ is the angular size of the source in standard units.

3. Observational data

The microlensing event OGLE-2011-BLG-0251 was
discovered by the OGLE (Optical Gravitational Lens
Experiment) collaboration’s Early Warning System
(Udalski 2003) as part of the release of the first 431
microlensing alerts following the OGLE-IV upgrade.
The source of the event has equatorial coordinates
α = 17h38m14.18s and δ = −27◦08′10.1′′ (J2000.0), or
Galactic coordinates of (l, b)=(0.670◦, 2.334◦). Anomalous
behaviour was first detected and alerted on August 9, 2011
(HJD∼2455782.5) thanks to real-time modelling efforts by
various follow-up teams that were observing the event, but
by that time a significant part of the anomaly had already
passed, with sub-optimal coverage due to unfavourable
weather conditions. The anomaly appears as a two-day
feature spanning HJD = 2455779.5 to 2455781.5, just
before the time of closest approach t0. Despite difficult
weather and moonlight conditions, the anomaly was
securely covered by data from five follow-up telescopes in
Brazil (µFUN Pico dos Dias), Chile (MiNDSTEp Danish
1.54m) New Zealand (µFUN Vintage Lane, and MOA Mt.
John B&C), and the Canary Islands (RoboNet Liverpool
Telescope).

The descending part of the light curve also suffered from
the bright Moon, with the source ∼ 5 degrees from the
Moon at ∼ 85% of full illumination, leading to high back-
ground counts in images and more scatter in the reduced
data. We opted not to include data from Mt. Canopus 1m

http://exoplanet.eu
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telescope in the modelling because of technical issues at the
telescope affecting the reliability of the images, and also ex-
cluded the I-band data from CTIO because they also suf-
fer from large scatter, probably due to the proximity of the
bright full Moon to the source.

The data set amounts to 3738 images from 13 sites, from
the OGLE survey team, the MiNDSTEp consortium, the
RoboNet team, as well as the µFUN, PLANET and MOA
collaborations in the I, V and R bands, as well as some
unfiltered data; data sets are summarised in Table 1 and
the light curve is shown in Fig. 1. We reduced all data us-
ing the difference imaging pipeline DanDIA (Bramich 2008;
Bramich et al. 2013), except for the OGLE data, which was
reduced by the OGLE team with their optimised offline
pipeline.

For each data set, we applied an error bar rescaling fac-
tors a and b to normalise error bars with respect to our
best-fit model (see Sec. 4), using the simple scaling relation

σ′
i = a

√

σ2
i + b2 where σ′

i is the rescaled error bar of the ith

data point and σi is the original error bar. The error bar
rescaling factors for each data set is given in Table 1. We
did not exclude outliers from our data sets, unless we had
reasons to believe that an outlier had its origin in a bad
observation, or in issues with the data reduction pipeline.

4. Modelling

We modelled the light curve of the event using a Markov
Chain Monte Carlo (MCMC) algorithm with adaptive step
size. We first used the “standard” PSBL parameterisation
in our modelling, whereby a binary-lens light curve can be
described by 6 parameters: those given in Sec. 2, ignoring
the second-order ρ∗ parameter described in that section.
For all models and configurations we searched the parame-
ter space for solutions with both a positive and a negative
impact parameter u0.

We started without including second-order effects of the
source having a finite size or parallax due to the orbital mo-
tion of Earth around the Sun, and then added these sep-
arately in subsequent modelling runs by fitting the source
size parameter ρ∗, as defined in Sec. 2, and the parallax
parameters described below. Both effects led to a large de-
crease in the χ2 statistic of the model (> 1000), which could
not be explained only by the extra number of parameters.

For the finite-source effect, we additionally considered
the limb-darkening variation of the source star surface
brightness by modelling the surface-brightness profile as

Iψ,λ = I0,λ[1 − cl (1 − cosψ)] , (3)

where I0,ψ is the brightness at the centre of the source, and
ψ is the angle between a normal to the surface and the line
of sight. We adopt the limb-darkening coefficients based
on the source type determined from the dereddened colour
and brightness (see Sec. 5.1). The values of the adopted
coefficients are cV = 0.073, cI = 0.624, cR = 0.542, based
on the catalogue of Claret (2000).

Finally, in a third round of modelling, we included both
the effects of parallax and finite source size (“ESBL + par-
allax”). Including these effects together led to a significant
improvement of the fit, with ∆χ2 > 500 compared to the
fits in which those effects were added separately. Computing
the f -statistic (see e.g. Lupton 1993) for this difference tells
us that the probability of this difference occurring solely

due to the number of degrees of freedom decreasing by 1 or
2 is highly unlikely. Our best-fit ESBL + parallax model is
shown in Fig. 1.

To model the effect of parallax, we used the geocen-
tric formalism (Dominik 1998; An et al. 2002; Gould 2004),
which has the advantage of allowing us to obtain a good
estimate of t0, tE and u0 from a fit that does not include
parallax. This formalism adds a further 2 parallax param-
eters, πE,E and πE,N , the components of the lens parallax
vector πE projected on the sky along the east and north
equatorial coordinates, respectively. The amplitude of πE

is then

πE =
√

π2

E,E + π2

E,N . (4)

Measuring πE in addition to the source size allows us to
break the degeneracy between the mass, distance and trans-
verse velocity of the lens system that is seen in Eq. (1). This
is because πE also relates to the lens and source parallaxes
πL and πS as

πE =
πL − πS
θE

=
D−1

L
−D−1

S

θE
. (5)

Using this in Eq. (1) allows us to solve for the mass of the
lens.

As an additional second-order effect, we also consider
the orbital motion of the binary lens. Under the approxima-
tion that the change rates of the binary separation and the
rotation of the binary axis are uniform during the event, the
orbital effect is taken into consideration with 2 additional
parameters of ḋ and α̇, which represent the rate of change of
the binary separation and the source trajectory angle with
respect to the binary axis, respectively. It is found that the
improvement of fits by the orbital effect is negligible and
thus our best-fit model is based on a static binary lens.

Below we outline our modelling efforts that resulted in
fits that were not competitive with our best-fit ESBL +
parallax models, and which we therefore excluded in our
light curve interpretation.

4.1. Excluded models

4.1.1. Xallarap

We attempted to model the effects of so-called xallarap, or-
bital motion of the source if it has companion (Griest & Hu
1992). Modelling this requires five additional parameters:
the components of the xallarap vector, ξE,N and ξE,E, the
orbital period P , inclination i and the phase angle ψ of
the source orbital motion. By definition, the magnitude of
the xallarap vector is the semi-major axis of the source’s
orbital motion with respect to the centre of mass, aS, nor-
malised by the projected Einstein radius onto the source
plane, r̂E = DSθE, i.e.

ξE = aS/r̂E . (6)

The value of aS is then related to the semi-major axis of
the binary by

aS =
aM2

M1 +M2

, (7)

where M1 and M2 are the masses of the source components.

3
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Figure 1. Light curve of OGLE-2011-BLG-0251. Data points are plotted with 1-σ error bars, and the upper panel shows
a zoom around the perturbation region near the peak

In Fig. 2, we show χ2 of the fit plotted as a function
of the orbital period of the source star. We compare this
to the χ2 statistic of the best parallax fit. We find that
xallarap models provide fits competitive with the parallax
planetary models for orbital periods P > 1 year. However,
the solutions in this range cannot meet the constraint pro-
vided by the source brightness. Combining Equations (6)
and (7) with Kepler’s third law, P 2 = a3/(M1 +M2) yields
(Dong et al. 2009)

P 2 =
(M1 +M2)2

M3
2

(

ξEr̂E
AU

)3

. (8)

Rearranging this equation for M2, and using the fact that
M2/(M1 + M2) < 1, we can derive an upper limit for the
mass of M2,

M2,min =
(ξEr̂E)3

P 2
. (9)

In the lower panel of Fig. 2, we show the minimum mass
of the source companion as a function of orbital period.
The blending constraint means that the source companion
cannot be arbitrarily massive, and we use a conservative

upper limit for its mass of 3 M⊙. With this constraint, we
find that xallarap models are not competitive with parallax
planetary models, and we therefore exclude the xallarap
interpretation of the light curve.

4.1.2. Binary source

We also attempted to model this event as a binary source
- point lens (BSPL) event. For this we introduced three
additional parameters: the impact parameter of the sec-
ondary source component, u0,2, and its time of closest ap-
proach, t0,2, as well the flux ratio between the source com-
ponents. We note that parallax is also considered in our
binary source modelling, for fair comparison to other mod-
els. We find that the best binary-source model provides a
poorer fit, with χ2 = 3809, which gives ∆χ2 ∼ 180 com-
pared to our best planetary model (including parallax, see
model D in the following section). Residuals for this model,
as well as all other models discussed in this section are
shown in Fig. 3.

4
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Team and telescope filter Aperture Location N a b
OGLE I 1.3m Las Campanas, Chile 1527 0.369 0.020
OGLE V 1.3m Las Campanas, Chile 27 0.937 0.010
MiNDSTEp Danish I 1.54m La Silla, Chile 454 1.085 0.020
LCOGT Liverpool Telescope I 2m La Palma, Canary Islands 191 2.434 0.001
LCOGT Faulkes North I 2m Haleakala, Hawai’i 41 1.806 0.005
LCOGT Faulkes South I 2m Siding Spring Observatory, Australia 31 1.119 0.005
µFUN CTIO V 1.3m Cerro Tololo, Chile 6 1.000 0.020
µFUN Auckland R 0.4m Auckland, New Zealand 60 1.027 0.010
µFUN Farm Cove − 0.36m Auckland, New Zealand 47 0.841 0.005
µFUN Possum R 0.36m Gisborne, New Zealand 5 1.000 0.020
µFUN Vintage Lane − 0.4m Blenheim, New Zealand 17 2.055 0.001
µFUN Pico dos Dias I 0.6m Minas Gerais, Brazil 572 3.095 0.001
MOA Mt John B&C I 0.6m South Island, New Zealand 621 5.175 0.001
MOA Mt John B&C V 0.6m South Island, New Zealand 5 1.000 0.020
PLANET SAAO I 1m SAAO, South Africa 134 1.931 0.010
Total 3738

Table 1. Data sets for OGLE-2011-BLG-0251, with the number of data points for each telescope/ filter combination.

The rescaling coefficients a and b are also given, with error bars rescaled as σ′ = a
√
σ2 + b2, where σ′ is the rescaled

error bar and σ is the original error bar.

Figure 2. Constraints from the xallarap fit as a function
of the orbital period P of the source star. The top panel
shows χ2 of the xallarap fit as a function of P , with a red
circle marking the location of the best parallax model. The
bottom panel shows the minimum mass of the source com-
panion as a function of P . The shaded area in both panels
indicates where models are excluded based on conservative
blending constraints on the source companion’s mass.

4.2. Best-fit models

We searched the parameter space using an MCMC algo-
rithm as well as a grid of (d, q, α) to locate good starting
points for the algorithm (see e.g. Kains et al. 2009), over
the range −4 < log q < 0 and −1.0 < log d < 2. This
encompasses both planetary and binary companions that
might cause the central perturbation. In Fig. 4 we present
the χ2 distribution in the d, q plane. We find four local so-
lutions, all of which have a mass ratio corresponding to a
planetary companion. We designate them as A, B, C and D;

the degeneracy among these local solutions is rather severe,
as can be seen from the residuals shown in Fig. 3.

For the identified local minima, we then further refine
the lensing parameters by conducting additional modelling,
considering higher-order effects of the finite source size and
the Earths orbital motion. It is found that the higher-order
effects are clearly detected with ∆χ2 > 500. Best-fit pa-
rameter for each of the local minima are given in Table 2,
while Fig. 5 shows the geometry of the source trajecto-
ries with respect to the caustics for all four minima. We
note that the pairs of solutions A and D, and B and C,
are degenerate under the well-known d ↔ d−1 degeneracy
(Griest & Safizadeh 1998; Dominik 1999); this is caused by
the symmetry of the lens mapping between binaries with d
and d−1. Comparing the pairs of solutions, we find that the
A-D pair is favoured, with ∆χ2 > 40 compared to the B-C
pair. On the other hand, the degeneracy between the A and
D solutions is very severe, with only ∆χ2 ∼ 7. In Fig. 6, we
also show parameter-parameter correlations plots for model
D, showing also the uncertainties in the measured lensing
parameters.

5. Lens Properties

In this section we determine the properties of the lens sys-
tem, using our best-fit model parameters, i.e. our wide-
configuration ESBL + parallax model. We also calculated
the lens properties for the competitive close-configuration
model, with both sets of parameter values listed in Table 3.

5.1. Source star and Einstein radius

We determined the Einstein radius by first calculating the
angular size of the source. This can be done by using the
magnitude and colour of the source (e.g. Yoo et al. 2004),
and empirical relations between these quantities and the
angular source size. We start by using the location of the
red giant clump (hereafter RC) on our colour-magnitude
diagram (Fig. 7) to estimate the reddening and extinction
along the line of sight. We use an I-band absolute magni-
tude for the RC of MI,RC,0 = −0.12 ± 0.09 (Nataf et al.
2012), as well as a colour (V − I)RC,0 = 1.06 ± 0.12

5
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Figure 3. Residual of data, with 1-σ error bars, for the various models considered.

Parameter Local A Local B Local C Local D
χ2 3636 3698 3675 3629

d.o.f. 3699 3699 3699 3699
t0 [MHJD] 5781.509 ± 0.004 5781.472 ± 0.004 5781.487 ± 0.004 5781.503 ± 0.004
tE [days] 63.74 ± 0.41 64.05 ± 0.46 64.24 ± 0.47 63.88 ± 0.46
α [rad] -1.855 ± 0.002 -1.845 ± 0.002 -1.849 ± 0.004 -1.855 ± 0.002
u0/10

−2 -5.66 ± 0.04 -5.63 ± 0.04 -5.64 ± 0.05 -5.63 ± 0.04
ρ∗/10

−2 1.44 ± 0.05 1.77 ± 0.04 1.87 ± 0.08 1.39 ± 0.05
d 0.775 ± 0.010 0.997 ± 0.009 1.066 ± 0.001 1.408 ± 0.019

q/10−3 (1.68 ± 0.11) (0.93 ± 0.03) (1.11 ± 0.06) (1.92 ± 0.12)
πE,N -0.33 ± 0.04 -0.37 ± 0.04 −0.40± 0.05 -0.34 ± 0.05
πE,E 0.09 ± 0.01 0.08 ± 0.01 0.08 ± 0.01 0.09 ± 0.01
πE 0.34 ± 0.04 0.38 ± 0.04 0.41 ± 0.05 0.35 ± 0.05

ag = FB/FS 0.387 ± 0.035 0.394 ± 0.001 0.394 ± 0.042 0.376 ± 0.017
aIS 15.99 ± 0.03 15.98 ± 0.01 15.98 ± 0.02 15.97 ± 0.01
aIaB 16.97 ± 0.07 16.99 ± 0.01 16.99 ± 0.06 17.04 ± 0.03

Table 2. Best-fit model parameters and 1-σ error bars for the four identified best binary-lens models including the effects
of the orbital motion of the Earth (parallax). MHJD≡HJD-2450000. afor the OGLE data set

(Bensby et al. 2011). We compare these values to those on
our colour-magnitude diagram (CMD), which we generated
using OGLE I− and V− band photometry. From Fig. 7,
the location of the RC on our CMD is

(I, V − I)RC = (17.19 ± 0.05, 3.45 ± 0.05) (10)

so, using a distance modulus of µ = 14.52 ± 0.09, i.e. a
distance to the Galactic bulge of 8.0± 0.3 kpc (Yelda et al.
2011), we find AI = 2.79±0.10 and E(V −I) = 2.39±0.13.

Using these values, the best-fit value for the magnitude
of the source IS = 15.97±0.01, a source colour (V −I)S,0 =
1.15, and the empirical relations of Kervella & Fouqué
(2008), we find an angular source radius θ∗ = 10.41 ±

1.18µas, or a source star radius of R∗ = 10.53 ± 1.19R⊙.
This, together with the best-fit value of the source size pa-
rameter ρ∗, allows us to calculate the size of the Einstein
radius, θE = θ∗/ρ∗. Using the relevant parameter val-
ues, we find θE = 0.749 ± 0.283 mas. This in turn al-
lows us to calculate the source-lens relative proper motion,
µrel = θE/tE = 4.28 ± 1.62 mas/yr.

5.2. Masses of the Lens Components

Combining Eq. (1) and Eq. (5) allows us to derive an ex-
pression for the mass as a function of the parallax vector
magnitude πE (defined by Eq. 4):

6
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Figure 4. χ2 map in the d, q plane, showing the location of the four local minima identified by our modelling runs. Out
of these, local minima A and D are competitive, with local minima B and C having ∆χ2 ∼ 50 and 70 respectively, for
the same number of parameters. Minima A and D correspond to the close and wide ESBL + parallax models discussed in
the text. Different colours correspond to ∆χ2 < 25 (red), 100 (yellow), 225 (green), and 400 (blue); we note that the χ2

map is based on the original data, before error-bar normalisation, and therefore the ∆χ2 levels are slightly different from
those given in Table 2. The top panel shows the breadth of our parameter space exploration, encompassing planetary
and non-planteray mass-ratio regimes, while the bottom panel shows a zoom on the region where our local minima are
located.

ML =
θEc

2

4GπE
(11)

Using values found in the previous section, and our best-
fit parallax parameter value πE = 0.35± 0.05 yields a total
lens mass ML = 0.26 ± 0.10M⊙. Using the best-fit mass
ratio parameter value of q = (1.92 ± 0.12) × 10−3 yields
component masses of 0.26 ± 0.11M⊙ and 0.53 ± 0.21MJ,
where MJ is the mass of Jupiter.

5.3. Distance to the Lens

We can also rearrange Eq. (1) to derive an expression for
the distance to the lens DL,

DL =

[

1

DS

+
θ2
E
c2

4GM

]−1

. (12)

Using our parameter values as well as the lens mass derived
thanks to our parallax measurement, we find a distance to
the lens of DL = 2.57±0.61 kpc. This distance allows us to
carry out a sanity check of the lens mass we derived in the
previous section. By assuming that the contribution from
the blended light comes from the lens, we can derive an
upper limit to the I−band lens magnitude MI using our
best-fit blending parameter:

MI,L = mI,b − 5 log10DL − 10 −AI,L , (13)

7
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Figure 5. Source trajectory geometry with respect to the caustics for all four local minima identified in Fig. 4; the source
size is marked as a red circle.

where mI,b is the apparent I−band magnitude of the blend,
AI,L is the extinction between the observer and the lens,
and DL is in kpc. In practice, AI,L ≤ AI since the lens
is in front of the source, so we use the extreme scenario
where AI,L = AI to derive an upper brightness limit (lower
limit on the magnitude) for the lens. We find this to be
MI,L = 2.19± 0.53 mag, which corresponds to a maximum
mass of the lens of ML,max = 1.65 ± 0.23M⊙, assuming a
main sequence star mass-luminosity relation, and assuming
that the secondary lens component (i.e. the planet) does not
contribute to the blended light. This is much larger than the
value we derived in Sec. 5.2 for the mass of the primary lens
component, which suggests that some blending comes from
stars near the source rather than from the lens, although it
is difficult to quantify this without an estimate of AI,L.

Finally, we can also use the distance to the lens and the
size of the Einstein ring radius to calculate the projected
separation r⊥ between the lens components in AU. Using
our best-fit projected angular separation d = 1.408±0.019,
we find a projected (i.e. minimum) orbital radius r⊥ =
2.72 ± 0.75 AU.

We can compare this to an estimate of the location
of the “snow line”, which is the location at which water
sublimated in the midplane of the protoplanetary disk, i.e.
the distance at which the midplane had a temperature of
Tmid = 170 K (although other studies have noted that this
temperature varies; see e.g. Podolak & Zucker 2004). The
core accretion model of planet formation predicts that gi-
ant planets form much more easily beyond the snow line,
thanks to easier condensation of icy material and there-
fore easier formation of large solid cores in the early stages
of the circumstellar disk’s evolution. Kennedy & Kenyon
(2008) modelled the evolution of the snow line’s location,
taking into account heating of the disk via accretion, as
well as the influence of pre-main sequence stellar evolution.
Using a rough extrapolation of their results, we estimate
that the snow line (at t = 1Myr) for the planetary host
star in OGLE-2011-BLG-0251 is located at around ∼ 1−1.5
AU. We therefore conclude that OGLE-2011-BLG-0251Lb
is a giant planet located beyond the snow line, with both of
our competitive best-fit models yielding projected orbital
radii larger than 1.5 AU.

close wide
θ∗ [µas] 10.29 ±1.17 10.41 ±1.18
θE [mas] 0.71 ±0.26 0.75 ±0.28

µrel [mas yr−1] 4.09 ±1.50 4.28 ±1.62
M1 [M⊙] 0.26 ±0.10 0.26 ±0.11
M2 [MJ] 0.45 ±0.18 0.53 ±0.21
ML,max 1.71 ±0.23 1.65 ±0.23
DL [kpc] 2.71 ±0.61 2.57 ±0.61
r⊥ [AU] 1.50 ±0.50 2.72 ±0.75

Table 3. Lens properties derived as detailed in Sec. 5, for
both competitive parallax models.

We list all the lens properties in Table 3, both for
the best-fit model parameters that we have used above,
and for the close-configuration model, for comparison. Lens
properties derived using the close-configuration model are
very similar to those we found using the wide-configuration
model, the only major difference being in the orbital radius.
For the close model, we find an orbital radius of 1.50±0.50
AU, which is close to the location of the snow line.

6. Conclusions

Our coverage and analysis of OGLE-2011-BLG-0251 has
allowed us to locate and constrain a best-fit binary-lens
model corresponding to an M star being orbited by a gi-
ant planet. This was possible through a broad exploration
of the parameters both in real time, thanks to the recent
developments in microlensing modelling algorithms, and
after the source had returned to its baseline magnitude.
Various second-order effects, as well as other possible, non-
planetary, interpretations for the anomaly were considered
during the modelling process. Based on the best-fit solu-
tion, we were able to constrain the masses and separation
of the lens components, as well as various other character-
istics, thanks to a strong detection of parallax effects due
to the Earth’s orbit around the Sun, in conjunction with
the detection of finite source size effects. We found a planet
of mass 0.53 ± 0.21MJ orbiting a lens of 0.26 ± 0.11M⊙

at a projected radius r⊥ = 2.72 ± 0.75 AU; the whole
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Figure 6. Parameter-parameter correlations for our 9 fitted parameters. Colours indicate the limits of the 1, 2, 3, 4 and
5-σ confidence limits for each pairwise distribution. A closer view of the correlation between parallax parameters is shown
on the top right inset.

system is located at a distance of 2.57 ± 0.61 kpc. Our
competitive second-best model leads to similar properties,
but a smaller projected orbital radius r⊥ = 1.50 ± 0.50.
The two best-fit models are competitive and therefore we
cannot make a strong claim about which orbital radius is
favoured. However, comparing both values of the projected
orbital radius to the approximate location of the snow line
for a typical star of the mass of the primary lens compo-
nent, we conclude that OGLE-2011-BLG-0251Lb is a gi-
ant planet located around or beyond the snow line. This
is in line with predictions from the core accretion model
of planet formation, from which we expect large planets to
be more numerous beyond the snow line; this is also where
microlensing detection sensitivity is at its highest, enabling
us to probe a region of planetary parameter space that is
difficult to reach for other methods.
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