

# AEROSSÓIS ATMOSFÉRICOS E A QUANTIFICAÇÃO DO RECURSO ENERGÉTICO SOLAR: EXPERIMENTOS EM MODELO DE TRANSFERÊNCIA RADIATIVA





Rodrigo S. Costa <sup>(1)</sup>, Fernando R. Martins <sup>(2)</sup> e Enio B. Pereira <sup>(1)</sup>

<sup>1</sup>Centro de Ciência do Sistema Terrestre e Centro de Previsão de Tempo e Estudos Climáticos / Instituto Nacional de Pesquisas Espaciais (CPTEC/INPE)

<sup>2</sup>Departamento de Ciências do Mar / Universidade Federal de São Paulo (UNIFESP)

rodrigo.costa@cptec.inpe.br

#### INTRODUÇÃO

Os cenários atuais exigem um planejamento voltado para o desenvolvimento e o uso de tecnologias limpas e sustentáveis e a quantificação da disponibilidade dos recursos energéticos é realizada, principalmente, através de modelos numéricos. Estes, por sua vez, têm sua acurácia aumentada à medida que eles representam os fenômenos físicos de maneira mais eficiente, o que exige parametrizações satisfatórias dos processos e no caso da energia solar, a atenuação da radiação que chega à superfície pelos aerossóis. Já é sabido que os aerossóis, independentemente da sua origem, afetam o clima em decorrência dos processos físicos os quais eles estão envolvidos.

O Grupo de Pesquisa em Recursos Renováveis e Bioenergia do CCST/INPE realiza estudos de quantificação de potencial energético solar utilizando o modelo de transferência radiativa BRASIL-SR, sendo os seus resultados validados no âmbito do SWERA e aplicados no Atlas Brasileiro de Energia Solar (Pereira *et al.*, 2006). O objetivo deste trabalho é avaliar o impacto da assimilação de diferentes bases de dados de visibilidade horizontal, utilizadas pelo modelo de transferência radiativa BRASIL-SR na estimativa dos aerossóis atmosféricos.

#### **METODOLOGIA**

#### MODELO BRASIL-SR

O modelo BRASIL-SR utiliza a aproximação de "Dois-fluxos" na solução da equação de transferência radiativa e faz uso de dados climatológicos (temperatura do ar, albedo de superfície, umidade relativa, visibilidade horizontal) para parametrização dos processos radiativos na atmosfera. Também estima a informação de cobertura de nuvens estatisticamente, a partir de imagens de satélite geoestacionário, assumindo que esta informação é o principal fator de modulação da transmitância atmosférica. Maiores detalhes podem ser obtidos em Martins (2001) e Costa (2012).

A concentração de aerossóis nas camadas atmosféricas é determinada a partir de perfis continentais desenvolvidos por McClatchey *et al.* (1972), sofrendo modificações em seus primeiros 5 km acima da superfície em função de valores de visibilidade horizontal (Leckner, 1978; Selby e McClatchey, 1975). A transmitância para a radiação solar direta dos aerossóis é baseada em Angström (1964):

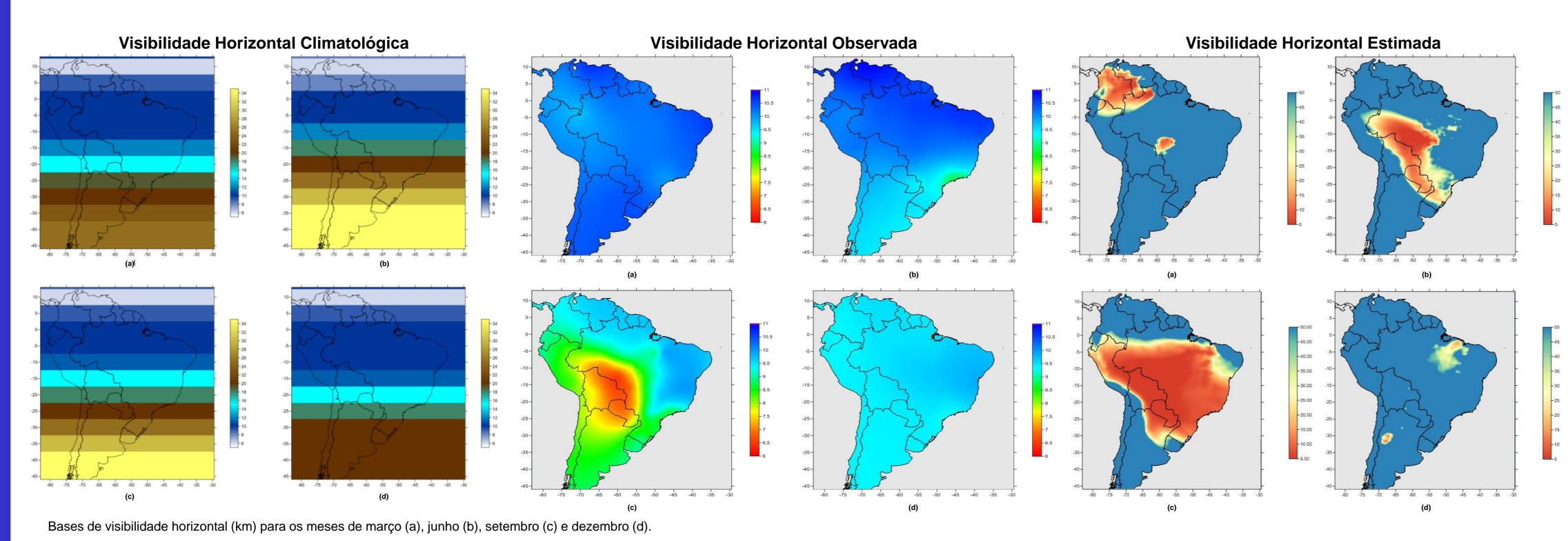
$$\tau_{a\lambda} = e^{(-k_{a\lambda}m)} = e^{(-\beta\lambda^{-\alpha}m)}$$

onde  $\beta$  é o coeficiente de turbidez de Angström,  $\alpha$  é o expoente de comprimento de onda,  $\lambda$  é o comprimento de onda da radiação solar e m é a espessura óptica dos aerossóis. Este produto é modelado em três intervalos de altitude: menor que 2 km, entre 2 km e 10 km e maior que 10 km, para 37 comprimentos de onda.

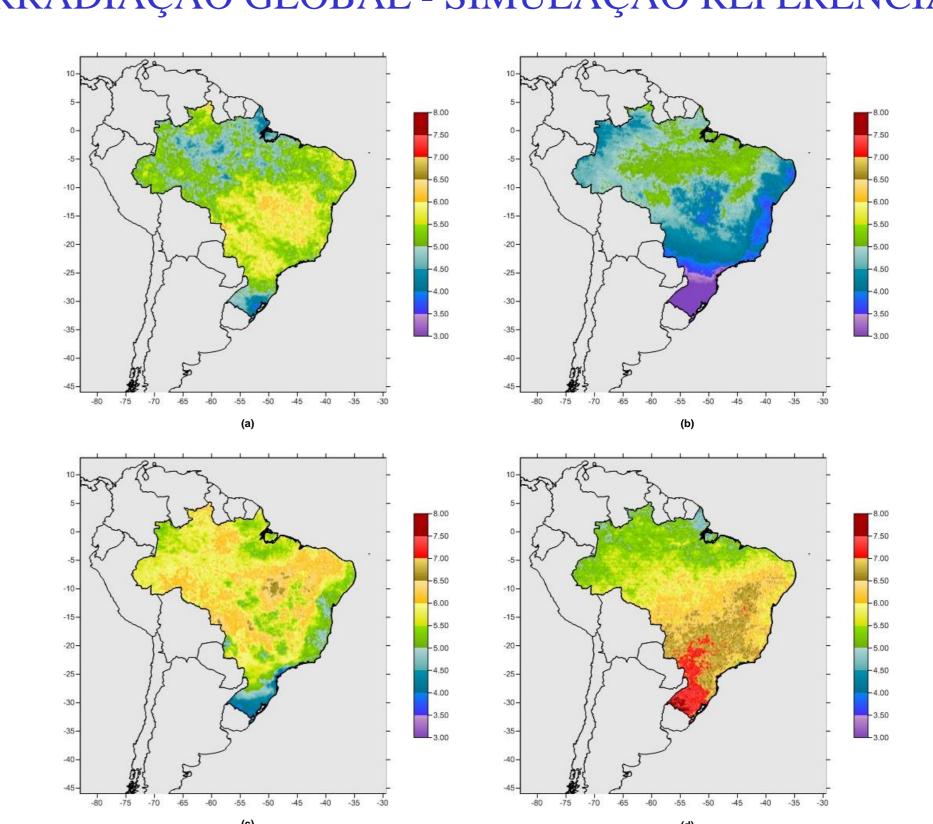
$$\beta = (0.55)^{\alpha} (3.912/VIS - 0.01162)[0.02472(VIS - 5) + 1.132]$$

## DADOS DE VISIBILIDADE HORIZONTAL

Para a adequação da base de visibilidade horizontal utilizada pelo modelo BRASIL-SR, foram utilizados dados diários e horários oriundos de mensagens METAR, observados nos meses de março, junho, setembro e dezembro de 2007, em 105 aeroportos na América do Sul. Mais detalhes sobre os dados, o processo de qualificação e a interpolação dos mesmos podem ser verificados em Costa (2012).

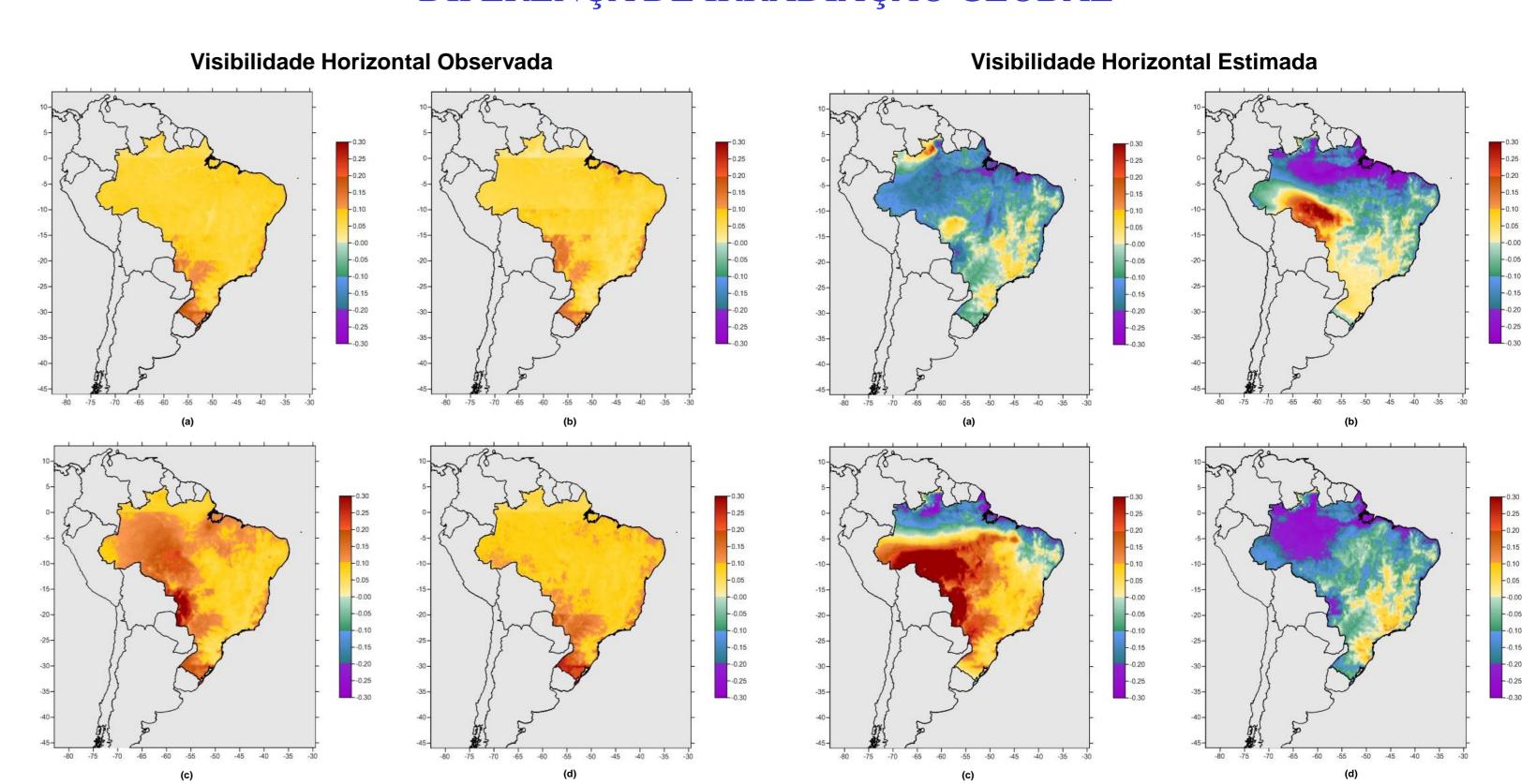

## ESTIMATIVA DA VISIBILIDADE HORIZONTAL A PARTIR DA ESPESSURA ÓPTICA DOS AEROSSÓIS

As análises diárias do modelo CATT-BRAMS, para os meses de março, junho, setembro e dezembro de 2007, foram utilizadas para se obter os valores médios mensais de espessura óptica dos aerossóis em 550 µm. A partir destes valores, foram gerados valores médios de visibilidade horizontal mensal, através da formulação proposta por Vermote *et al.* (2002):


$$V = \frac{3,9449}{\left(AOT_{550} - 0,08498\right)}$$

## RESULTADOS

## BASES DE VISIBILIDADE HORIZONTAL




# IRRADIAÇÃO GLOBAL - SIMULAÇÃO REFERÊNCIA



Mapas de irradiação global (kWh/m²) utilizando a base de visibilidade horizontal climatológica, para março (a), junho (b), setembro (c) e dezembro (d) de 2007.

# DIFERENÇA DE IRRADIAÇÃO GLOBAL



Mapas de diferença de irradiação global (kWh/m²) utilizando as bases de visibilidade horizontal observada e estimada, para março (a), junho (b), setembro (c) e dezembro (d) de 2007.

## CONCLUSÕES

De um modo geral, as simulações que utilizaram dados de visibilidade horizontal observada apresentaram melhorias nos valores das estimativas de irradiação global, com diminuições dos valores de viés que chegaram a ser da ordem de 4%. Os resultados das simulações com a base de visibilidade horizontal estimada pela espessura óptica dos aerossóis do modelo CATT-BRAMS apresentaram desempenho nos meses e nas regiões onde havia uma elevada carga de aerossóis, como por exemplo, a região Centro-Norte do país, no mês de setembro. Para estes casos, foram verificadas diminuições de viés e RMSE que chegaram a ser maiores que 11%. Isso demonstra a influência dos aerossóis na quantificação do recurso energético solar nestas condições extremas.

Os valores das estimativas de irradiação direta e difusa apresentaram melhorias, mas estas não foram tão efetivas quanto aquelas verificadas na irradiação global.

Valores de Viés e RMSE (em %) das estimativas de irradiação global das simulações referência e das melhores simulações para o ano de 2007.

| Irradiação Global        |          | Simulação  | Viés    | RMSE   | Visibilidade | Viés     | RMSE    |
|--------------------------|----------|------------|---------|--------|--------------|----------|---------|
| Alta Floresta            | Março    | Referência | 3,558   | 8,821  | Observada    | 1,899    | 8,288   |
|                          | Junho    | Referência | -13,202 | 15,656 | Estimada*    | -13,258* | 15,804* |
|                          | Setembro | Referência | 21,477  | 27,717 | Estimada     | 10,504   | 19,562  |
|                          | Dezembro | Referência | 26,512  | 33,330 | Observada    | 24,397   | 31,653  |
| Brasília                 | Março    | Referência | -14,224 | 20,007 | Estimada*    | -14,812* | 20,490* |
|                          | Junho    | Referência | -16,984 | 18,651 | Estimada*    | -17,434* | 19,083* |
|                          | Setembro | Referência | -10,258 | 15,772 | Observada*   | -11,324* | 16,493* |
| Campo<br>Grande          | Março    | Referência | -10,293 | 13,982 | Estimada     | -9,408   | 13,691  |
|                          | Junho    | Referência | -4,246  | 8,101  | Estimada*    | -4,343   | 8,240   |
|                          | Setembro | Referência | 5,619   | 10,924 | Estimada     | 1,835    | 9,312   |
|                          | Dezembro | Referência | 6,347   | 15,067 | Observada    | 4,143    | 14,202  |
| Cuiabá                   | Junho    | Referência | 4,676   | 6,910  | Observada    | 1,773    | 5,053   |
|                          | Setembro | Referência | 35,500  | 37,181 | Estimada     | 26,048   | 27,647  |
|                          | Dezembro | Referência | 11,281  | 14,224 | Observada    | 9,260    | 12,661  |
| Ji-Paraná                | Março    | Referência | 3,246   | 8,933  | Observada    | 1,548    | 8,433   |
|                          | Junho    | Referência | -15,897 | 18,016 | Observada*   | -17,611  | 19,505  |
| Natal                    | Setembro | Referência | 26,169  | 37,792 | Estimada     | 2,054    | 26,476  |
|                          | Dezembro | Referência | -15,552 | 20,544 | Estimada     | -12,384  | 18,830  |
| Ourinhos                 | Março    | Referência | -0,238  | 11,149 | Estimada     | 0,133    | 11,455  |
|                          | Junho    | Referência | 11,890  | 14,967 | Observada    | 9,979    | 13,427  |
|                          | Setembro | Referência | 3,675   | 9,218  | Estimada     | 1,886    | 8,596   |
|                          | Dezembro | Referência | 13,283  | 17,177 | Observada    | 11,371   | 15,712  |
| Palmas                   | Setembro | Referência | 11,631  | 12,700 | Estimada     | 9,385    | 10,647  |
|                          | Dezembro | Referência | 17,382  | 19,977 | Observada    | 15,667   | 18,492  |
| Petrolina                | Março    | Referência | -9,784  | 16,375 | Estimada     | -8,864   | 16,225  |
|                          | Junho    | Referência | 1,776   | 0,490  | Observada    | 8,462    | 8,210   |
|                          | Setembro | Referência | -2,082  | 10,929 | Estimada     | -1,880   | 11,167  |
| São Luiz                 | Março    | Referência | 4,946   | 19,339 | Observada    | 3,526    | 19,003  |
|                          | Junho    | Referência | -9,023  | 12,509 | Estimada     | -3,349   | 9,767   |
|                          | Dezembro | Referência | 13,124  | 16,704 | Observada    | 11,556   | 15,463  |
| São Martinho<br>da Serra | Março    | Referência | 1,269   | 7,621  | Observada    | -1,159   | 7,432   |
|                          | Junho    | Referência | 5,979   | 12,036 | Observada    | 2,801    | 11,380  |
|                          | Setembro | Referência | 14,911  | 20,242 | Observada    | 12,157   | 18,455  |
|                          | Dezembro | Referência | -1,866  | 5,649  | Estimada     | -1,367   | 5,473   |

# AGRADECIMENTOS: O primeiro autor agradece ao Cnpq e CAPES pelo apoio.

REFERÊNCIAS BIBLIOGRÁFICAS
ANGSTROM, A. The parameters of atmospheric turbidity. Tellus, 16, 64-75, 1964.

COSTA P S Influência dos Acrossóis Atmosféricos na Quantificação

COSTA, R. S., Influência dos Aerossóis Atmosféricos na Quantificação do Recurso Energético Solar – Experimentos em Modelo de Tranferência Radiativa. Tese de Doutorado - INPE, São José dos Campos, 2012.

LECKNER, B. The spectral distribution of solar radiation at the Earth's surface elements of model, Solar Energy 20, pp. 143–150, 1978.

MARTINS, F.R., Influência do processo de determinação da cobertura de nuvens e dos aerossóis de queimada no modelo físico de radiação BRASIL-SR. Tese de Doutorado - INPE, São José dos Campos, 2001.

MCCLATCHEY, R. A., W. FENN, J. E. A. SELBY, F. E. VOLZ, AND J. S. GARIN,: **Optical properties of the atmosphere**. AFGL-71-0279, Air Force Cambridge Research Laboratories, 85pp, 1972

PEREIRA, E. B., MARTINS, F. R., ABREU, S. L., RÜTHER, R. **Atlas Brasileiro de Energia Solar**. INPE, São José dos Campos, 2006.

SELBY I. E. A., MCCLATCHEY R. E. Atmospheric transmittance from 0.25–28.5 lm, computer code LOWTRAN 3, AFCLR-TR- 75–0255, 1975.

VERMOTE, E. F., VIBERT, S., KILCOYNE, H., HOYT, D., AND ZHAO, T.: Suspended Matter. Visible/Infrared Imager/Radiometer Suite algorithm theroretical basis document. SBRS Document # Y2390, Raytheon Systems Company, Information Technology and Scientific Services, Maryland, 2002.