
XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE
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Between Symbols of the Two Non-Orthogonal
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Abstract— Multicarrier communication systems have become
ubiquitous, mainly due to the popularization of orthogonal
frequency division multiplexing (OFDM), in which carriers are
separated in frequency by the inverse of the symbol duration.
Recently, more spectrally efficient modulations based on non-
orthogonal carriers (non-OFDM) have been put forward and
shown numerically to have the same performance as OFDM
employing up to 40% less bandwidth. This work addresses
the problem of analytically deriving the minimum frequency
separation which does not affect the minimum distance between
multicarrier symbols. In doing so, it shows that the probability
of error remains unaffected up to a certain degree of spectral
superposition of the carriers, so that the performance of non-
OFDM in terms of bit error rate (BER) remains the same
as OFDM. Simulations and comparisons to previous numerical
results are used to illustrate this conclusion.

Keywords— Mutlicarrier communication, OFDM, non-OFDM,
non-orthogonal multicarrier communication

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) [1]
has become the preferred method for communication over
wireless broadband channels. This multicarrier scheme is
adopted in a wide range of systems, such as 3GPP Long-
Term Evolution (LTE) [2], Worldwide Interoperability for
Microwave Access (WiMax) [3], and Digital Video Brod-
casting (DVB) [4]. In all these applications, the frequency
separation between carriers is the inverse of symbol duration
which is the necessary condition for the orthogonality of the
carriers [5].

Recently, non-orthogonal multicarrier communication sys-
tems (non-OFDM)—i.e., systems in which the carriers sepa-
ration is smaller than OFDM—have been proposed [6]–[8].
Numerical results have shown that their performance in terms
of bit error rate (BER) is the same as OFDM up to a certain
degree of spectral superposition, allowing spectral efficiency
gains of up to 40% [6], [7]. An analytical determination of
the relationship between the degree of spectral overlapping
and BER, however, remains an open problem.

This work will study the case of two non-orthogonal carriers
and rectangular pulse shape by
• deducing the spectral overlapping bound—valid for any

complex constellation—above which the carriers separa-
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tion does not interfere with the minimum distance between
symbols;

• using this bound to determine the conditions under which
the BER of non-OFDM is equivalent to that of OFDM;

• supporting these findings by means of numerical simu-
lations and comparisons to previous results in the litera-
ture [6], [7].

In the sequel, Section II formulates the problem and intro-
duces the symbol distance measure in non-OFDM systems.
Section III then derives the analytical bound for the minimum
distance, which is supported by numerical experiments in
Section IV. Finally, Section V states the conclusions and
perspectives of this work.

II. PROBLEM FORMULATION

An arbitrary constellation C over the signal space R2 is
a set of symbols xm ∈ C, m = 1, . . . ,M , represented by
the band pass signals sm(t) = Re{xmg(t)ej2πf0t}, where f0

is the carrier frequency, g(t) is a pulse shape function, and
Re{a + jb} = a is the real part of a complex number. For
instance, the Quadrature Amplitude Modulation (QAM) with
M = 4 and rectangular constellation has C = {1 + j, 1 −
j,−1 + j,−1− j}.

In multicarrier communication systems, N carriers spec-
trally separated by ∆f are used to transmit elements of C. In
this case, a symbol is a vector x` ∈ CN , ` = 1, . . . ,MN

that captures the information transmitted over each carrier.
The bandpass signal for a sequence of these symbols {x(k)},
k ∈ N, is s(t) =

∑
k Re{x(k)Tψ(t− kT )g(t− kT )}, where

ψ(t) = [ ej2πf0t · · · ej2π[f0+(N−1)∆f ]t ]T and T is the
transposition operator [5].

Assuming the pulse shape g(t) has length T—g(t) 6= 0
only for t ∈ [0, T )—, define ∆fT as the relative spectral
separation between carriers. The smaller the value of ∆fT , the
more overlapping there is between subchannels, and the more
spectrally efficient the modulation scheme is. As mentioned
before, OFDM uses ∆fT = 1, whereas non-OFDM systems
use ∆fT < 1 [6]–[8].

A. Probability of error over an AWGN channel

The received signal for an additive white Gaussian
noise (AWGN) channel is given by r(t) = s(t) + v(t), where
v(t) is a white Gaussian process with zero mean and power
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spectral density N0/2. The maximum likelihood receiver can
then be implemented by minimizing the distance

Dk[r(t), s`(t)] =

∫ T

0

|r(kT + τ)− s`(τ)|2 dτ (1)

over all possible s`(t) = Re{x`(k)Tψ(t)g(t)} [5].
The performance of this receiver is evaluated by the prob-

ability of error Pi(k), defined as the probability that the k-th
symbol xi is received as xj , ∀ j 6= i. Explicitly

Pi(k) = P

⋃
j 6=i

ej(k)

 ≤∑
j 6=i

P [ej(k)], (2)

where ej(k) represents the event of demodulating r(τ)—τ ∈
[kT, (k+ 1)T ]—as xj , P [x] is the probability of the event x,
and the last inequality yields from the union bound [5]. For
both single and multicarrier systems,

P [ej(k)] = Q

√Dk[si(t), sj(t)]

2N0

 , (3)

where Q(x) = 1−Φ(x) and Φ(x) is the cumulative distribu-
tion of the standard Gaussian random variable [6], [9]. In the
single carrier case, Dk reduces to the Euclidian distance

Dk[si(t), sj(t)] = d2
ij = |xj − xi|2 , (4)

with xi, xj ∈ C. Notice that (4) is independent of k.
The multicarrier case, however, is more intricate since the

distance (1) will be time variant in the general case. Indeed,
for a rectangular pulse shape of width T—i.e., g(t) is unitary
for t = [0, T ) and null otherwise—and xi,xj ∈ CN one has

Dk[si(t), sj(t)] = D2
ij(k) = [xj − xi]∗H(k)[xj − xi], (5)

where

H(k) =


1 h1(k) · · · hN−1(k)

h∗1(k) 1 · · · hN−2(k)
...

...
. . .

...
h∗N−1(k) h∗N−2(k) · · · 1

 ,

with hn(k) = sinc(n∆fT )e−jnφ(k), φ(k) = π∆fT (2k + 1),
and ∗ denoting the conjugate transpose operation [7].

Notice from (5) that, even though H(k) is time variant,
D2
ij(k) is a proper norm for ∆fT 6= 0 since H(k) is positive-

definite [10]. Also, for ∆fT = 1—the OFDM case—H(k) =
I , the identity matrix, and (5) reduces to the Euclidian norm.
Indeed, it is a well-established result that the probability
of error of OFDM is the same as that of a single carrier
system [5].

The performance of non-OFDM will be at least as good as
OFDM—and therefore single carrier modulation—if

min
i 6=j

D2
ij(k) ≥ min

i 6=j
d2
ij = d2

min, ∀ k, (6)

where dmin is the minimum distance between symbols in C.
The next section determines the minimum value of ∆fT for
which this condition holds.

III. SPECTRAL SEPARATION LOWER BOUND

Due to space constraints, the following derivations are
carried out for N = 2 carriers. However, no restriction is
imposed on the size—M—or form of C.

Define the difference vector δij = [ δij,1 δij,2 ]T = xj −
xi, with xi,xj ∈ C2. Then, (5) can be written as

D2
ij(k) = ‖δij‖2 + 2 sinc(∆fT )Re{δij,1δ∗ij,2e−jφ(k)},

which for δij,n = |δij,n| ejθij,n yields

D2
ij(k) = ‖δ‖2

+ 2 |δ1| |δ2| sinc(∆fT ) cos[θ1 − θ2 + φ(k)]. (7)

The symbol vectors indexes i, j were omitted for clarity’s sake.
The following theorem determines the minimum relative

spectral separation ∆fT for which condition (6) holds. As
shown in Section II-A, this is equivalent to guaranteeing
that the probability of error of non-OFDM is the same as
that of OFDM—and single carrier modulation—for a given
constellation.

Theorem 1: In a multicarrier system composed of N = 2
carriers spectrally separated by ∆f transmitting symbols from
a constellation C using rectangular-shaped pulse of length T ,

min
i6=j

D2
ij(k) = d2

min, ∀ k ⇔ sinc(∆fT ) ≤ 0.5, (8)

or using a Taylor series approximation, ∆fT > 0.6033.

Due to the different aspects involved in the proof of The-
orem 1, it has been divided in three parts. First, Lemma 1
studies a particular case of the problem.

Lemma 1: When the difference vector δ has a vanishing
element,

min
i 6=j

D2
ij(k) = d2

min, ∀ k.

Proof. For δ1 = 0 or δ2 = 0, D2
ij(k) = ‖δ‖2, ∀ k. Without

loss of generality, assume δ1 = 0, so that mini6=j D
2
ij(k) =

minδ2 6=0 ‖δ2‖2 = d2
min.

Now, assuming δn 6= 0, n = 1, 2, (6) is equivalent to

cos[θ1 − θ2 + φ(k)] ≥ K
sinc(∆fT )

K =
d2
min − ‖δ‖2

2 |δ1| |δ2|
.

(9)

It is straightforward to see that δn 6= 0 ⇔ ‖δ‖2 > d2
min ⇔

K < 0. Lemma 2 and 3 address the limit values of K and
the cosine in (9), which are used to prove the necessary and
sufficient condition of Theorem 1.

Lemma 2: For δn 6= 0, n = 1, 2, maxδ K = −1/2.

Proof. The partial derivatives of K

∂K
∂ |δ1|

=
|δ2|2 − d2

min − |δ1|
2

2 |δ1|2 |δ2|
∂K
∂ |δ2|

=
|δ1|2 − d2

min − |δ2|
2

2 |δ1| |δ2|2
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Fig. 1. Surface of K and its partial derivatives

vanish over the hyperbolae

∂K
∂ |δ1|

= 0⇔ |δ2|2 − |δ1|2 = d2
min

∂K
∂ |δ2|

= 0⇔ |δ1|2 − |δ2|2 = d2
min.

(10)

The surface of K and these delimiting hyperbolae are il-
lustrated in Figure 1 for d2

min = 4 (4-QAM with square
constellation).

Inside these boundaries (dark region in Fig. 1), both deriva-
tives are negative and K is a strictly decreasing function. On
the other hand, outside these boundaries (light region in Fig. 1)
K will increase (decrease) with relation to |δ1| and decrease
(increase) with relation |δ2|.

The derivations are, therefore, split in two cases:
(i) Outside the hyperbolae: Without loss of generality, as-

sume K is a decreasing function of |δ2|—and hence an
increasing function of |δ1|. Thus, it is maximized over
the hyperbolae |δ2|2 = d2

min + |δ1|2 and asymptotically
approaches

lim
|δ2|2=d2min+|δ1|2,|δ1|→∞

K =

lim
|δ1|→∞

− |δ1|√
|δ1|2 + d2

min

= −1.

The same result is obtained for |δ2| → ∞ over the
boundary |δ1|2 = d2

min + |δ2|2.

(ii) Inside the hyperbolae: In this case, K is a decreasing
function of both |δ1| and |δ2|, attaining its maximum at
min |δ1| , |δ2|. Given that δ1, δ2 6= 0 ⇒ |δ1|2 , |δ2|2 ≥
d2
min, one gets the minimum value

K
∣∣∣∣
|δ1|2=|δ2|2=d2min

= −1

2
.

Comparing (i) and (ii) yields, subject to δn 6= 0,

max
δ
K = −1

2
.

Lemma 3: Assuming ∆fT ∈ Q,

min
k

cos[θ1 − θ2 + π(∆fT + ε)(2k − 1)] = −1, (11)

for some ε→ 0.

Proof. This proof is conducted by constructing ε → 0 for
which (11) holds. For simplicity, the derivations are separated
in two cases:

(i) ∆fT = P
O , P,O ∈ Z and O an odd number: Choose

ε = −βπ + θ1 − θ2

(2α+ 1)Oπ
, α ∈ Z,

with β = 1 if P is even and β = 0 otherwise. For
2k−1 = (2α+1)O, (11) simplifies to cos[(2α+1)Nπ+
βπ] = −1. Notice that limα→∞ ε = 0.

(ii) ∆fT = P
E , P,E ∈ Z and E an even number: Choose

ε =
N

E(Eα− 1)
− βπ + θ1 − θ2

π(Eα− 1)
, α ∈ Z,

again with β = 1 if P is even and β = 0 otherwise. In
this case, (11) becomes

cos

[
θ1 − θ2 + π(2k − 1)

(
αN

Eα− 1
− βπ + θ1 − θ2

π(Eα− 1)

)]
,

where Eα− 1 is odd. Hence, for 2k− 1 = Eα− 1, (11)
yields cos(αNπ + βπ) = −1. Again, limα→∞ ε = 0.

Using the previous results, Theorem 1 is proved as follows.

Proof of Theorem 1. From Lemma 1, the equality in (6) holds
for all ∆fT whenever δ1 = 0 or δ2 = 0.

For δn 6= 0, n = 1, 2, condition (6) reduces to (9). Given
that cos(x) ≥ −1, it is necessary that

K
sinc(∆fT )

≤ −1

for (9) to hold. Moreover, the lower bound on ∆fT will occur
for the maximum value of K given that sinc is a decreasing
function in [0, 1]. Hence, from Lemma 2, sinc(∆fT ) ≤ 0.5.
The value of ∆fT can be approximated using the Taylor series
expansion of the sinc function yielding ∆fT > 0.6033.

Notice, however, that this condition is necessary (⇐) for
(8) but not sufficient (⇒), since the cosine on the left-hand
side of (9) can be strictly larger than −1 for the value of
∆fT found above. Nevertheless, Lemma 3 guarantees that
infinitesimally close to any ∆fT there exists a ∆fT ′ for
which mink cos[θ1 − θ2 + φ(k)] = −1. Since both cos and
sinc are smooth function [11]—in the sense that they have
derivatives of all orders—, (8) is an infinitesimally tight bound
for sufficiency.

IV. SIMULATIONS

This section starts with simulations to illustrate Theorem 1.
So as to show the validity of the derivations for any C, the
results are presented for a square 16-QAM constellation, a
hexagonal 16-QAM constellation, and a constellation com-
posed of 8 randomly chosen symbols (Fig. 2). In Fig. 3,
the minimum distance between the transmitted multicarrier
symbols—relative to the minimum distance in the respective
constellations, d2

min—is presented for N = 2 and different
∆fT . Notice that there is a clear threshold above which
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Fig. 3. Minimum relative distance for different ∆fT

minD2
ij = d2

min. The detail in Fig. 3 confirms that this
threshold is the one provided by Theorem 1. Similar figures
can be found in [6], [7], [9] for square 4-QAM and 36-QAM
constellations.

Notice that below the deduced lower bound the minimum
distance decreases with the relative spectral separation. This
decay, however, is not monotonic. This is a result of the fact
that for some ∆fT , there exist directions—(θ1 − θ2)—for
which the cosine in (9) is strictly larger that −1. Thus, non-
OFDM has preferential orientations in the signal space that
can be exploited to further improve spectral efficiency.

Finally, Fig. 4 shows the BER as a function of SNR for
a 4-QAM signal transmitted over two carriers with different
spectral separations. Notice that for a wide range of ∆fT the
non-orthogonal communication scheme performs as well as
an OFDM, but with higher spectral efficiency—up to almost
40%. Only when ∆fT drops below the spectral separation
bound from Theorem 1 does the BER start to increase.
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Fig. 4. BER of 4-QAM with square constellation for different ∆fT

V. CONCLUSIONS

This work derived the lower bound for spectral separation
above which the BER of a non-OFDM system with two
carriers is the same as that of an OFDM. This analytical bound
is valid for any complex constellation and shows that non-
OFDM communication can be almost 40% more spectrally
efficient than OFDM with no change in the probability of error.
Although this phenomenon was observed empirically in [6]–
[8], it remained an open theoretical issue. Future development
of this work include the analysis of non-OFDM systems with
an arbitrary number of carriers, the design of constellations
that further improve spectral efficiency, and the development
of equalization and demodulation techniques.
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