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Abstract: Monitoring chlorophyll-a (chl-a) concentrations is important for the management 

of water quality, because it is a good indicator of the eutrophication level in an aquatic 

system. Thus, our main purpose was to develop an alternative technique to monitor chl-a in 

time and space through remote sensing techniques. However, one of the limitations of 

remote sensing is the resolution. To achieve a high temporal resolution and medium space 

resolution, we used the Moderate Resolution Imaging Spectroradiometer (MODIS) 500-m 

reflectance product, MOD09GA, and limnological parameters from the Itumbiara 

Reservoir. With these data, an empirical (O14a) and semi-empirical (O14b) algorithm were 

developed. Algorithms were cross-calibrated and validated using three datasets: one for 

each campaign and a third consisting of a combination of the two individual campaigns. 
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Algorithm O14a produced the best validation with a root mean square error (RMSE) of 

30.4%, whereas O14b produced an RMSE of 32.41% using the mixed dataset calibration. 

O14a was applied to MOD09GA to build a time series for the reservoir for the year of 

2009. The time-series analysis revealed that there were occurrences of algal blooms in the 

summer that were likely related to the additional input of nutrients caused by rainfall 

runoff. During the winter, however, the few observed algal blooms events were related to 

periods of atmospheric meteorological variations that represented an enhanced external 

influence on the processes of mixing and stratification of the water column. Finally, the use 

of remote sensing techniques can be an important tool for policy makers, environmental 

managers and the scientific community with which to monitor water quality.  

Keywords: chlorophyll-a; bio-optic modeling; time-series; MODIS 

 

1. Introduction 

Reservoirs in Brazil were built with several purposes, such as for hydroelectricity, recreation, 

navigation, irrigation and fisheries [1]. These multiple uses of water resources result in several 

environmental problems in which accelerated eutrophication is observed. When determining the trophic 

state of an aquatic system, one of the main indicators is the chlorophyll-a (chl-a) concentration [2]. 

Chl-a is also the primary component of almost all phytoplankton species, one of the main indicators of 

the presence of cyanobacteria in inland waters [3] and the primary optically active component in the 

study of water color [4]. All of these characteristics enhance the importance of monitoring chl-a 

concentration in aquatic systems, not only because of its consequences to environmental and public 

health, but also for its role as a bio-indicator of algal blooms. Algal blooms are very common in 

eutrophicated aquatic environments and are a global problem aggravated by contamination and other 

sources of pollution [5]. Brazilian hydroelectric reservoirs have been affected by accelerated eutrophication 

processes, because of climatic characteristics that favor the proliferation of algal blooms and the high 

input of nutrients from waste water. In general, local populations depend on reservoirs for multiple 

uses of water; thus, monitoring chl-a concentrations is a fundamental and strategic decision in the 

planning stages that enhances the value of a reservoir‘s services and benefit to human well-being [1]. 

Traditional chl-a monitoring methods include field sampling and laboratory analysis; however, 

these methods are expensive, time consuming [6] and their spatial and temporal heterogeneity 

characteristics are inadequate for monitoring large studies areas [7]. Remote sensing techniques have 

been extensively used for monitoring chl-a in aquatic systems [4,8–10]. The advantages of using 

remote sensing techniques to monitor chl-a are: (1) the geographical coverage of satellite images, 

which provide information about the entire aquatic system; (2) remote sensing, which allows us to 

obtain information from inaccessible places; and (3) historical satellite images, which allow the 

inference of water quality information from the past records [11]. Thus, remote sensing can provide a 

regional and constant tool to monitor the spatial and temporal variability of water quality parameters, 

which is supported by Gons [7], who observed that the use of remote sensing techniques was a time 

saving, cost-effective and scientifically rewarding alternative.  
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The use of remote sensing techniques was also enhanced by Mishra and Mishra [12], who 

determined that the remote estimation of biophysical parameters is essential for multi-temporal studies 

related to the primary production, carbon cycle, biogeochemical cycles and water quality. To estimate 

the biophysical parameters of aquatic systems, remote sensing techniques were applied to study water 

color. However, aquatic remote sensing studies are divided into two classes—Case 1 and  

Case 2—according to their study sites. Case 1 waters are those in which the absorption of chl-a plays a 

dominant role in determining the total absorption. Moreover, other components, such as detritus and 

dissolved organic matter, covary with chl-a. Case 2 waters contain inorganic particles and/or color 

dissolved organic matter (CDOM) from land drainage that contribute significantly to the total 

absorption and scattering. Thus, the absorption by chl-a is relatively less important in determining the 

total absorption [13]. Due to this difference, Case 2 waters are usually more complex than Case 1 

waters, and standard algorithms used for chl-a retrieval from Case 1 waters usually break down in 

Case 2 waters [14].  

Several methods for estimating chl-a concentration in different turbid waters (Case 2) with remote 

sensing have been investigated [4–12]. Many studies have suggested that remote spectroscopic 

measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) should be used to 

estimate chl-a concentrations in Case 2 waters through empirical and semi-empirical algorithms [4,15,16]. 

However, in most of these studies, the spatial resolution is compromised, because of the use of MODIS 

1-km products that have a better spectral resolution. Thus, the use of MODIS 500-m daily reflectance 

products can provide good temporal responses and a higher spatial resolution that is more suitable for 

studies of inland waters.  

The development of an empirical and semi-empirical algorithm for the 500-m products that are 

applied to a time series of MODIS images can improve the understanding of phytoplankton dynamics 

on the surface of an aquatic system. The use of remote sensing for monitoring aquatic systems can be 

an important tool for researchers, environmental managers and policy makers when developing predictive 

models, mitigation policies and management protocols to monitor algal blooms. In this paper, we 

analyzed the feasibility of applying MODIS 500-m daily surface reflectance products to achieve a 

common empirical and semi-empirical bio-optical model to retrieve the chl-a concentration in the 

Itumbiara Reservoir, Brazil. In the region of this reservoir, Oliveira [17] identified approximately  

109 species of phytoplankton, of which cyanobacteria species were predominant. Both models were 

calibrated and validated using data from two field campaigns in 2009. The models were then analyzed 

according to their applicability in a time series for the entire year of 2009.  

2. Materials and Methods 

2.1. Study Area 

The study was conducted in the Itumbiara Reservoir (18°25'S, 49°06'W), located in west-central 

Brazil between the states of Minas Gerais and Goiás (Figure 1). The climate in the region is classified 

as ―tropical savanna‖, according to the Köppen [18] climate classification system, and has two  

well-defined seasons: dry (May–October) and wet (December–April). Monthly precipitation ranges from 
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5 mm in the dry season to 250 mm in the wet season. The air temperature average is high during the 

wet season (24 °C to 26 °C) and a little lower in the dry season (approximately 20 °C).  

The region is typically a tropical grassland savanna, and the reservoir was formed by damming  

the Paranaíba River. Alcântara et al. [19] explained that the geomorphology of the basin was caused  

by its dendritic pattern, with the basin covering an area of approximately 814 km
2
 and a volume  

of 17.03 × 109 m
3
. 

Figure 1. Location and sampling sites in the Itumbiara Reservoir. 

 

2.2. Field Data 

Two field campaigns were undertaken in the Itumbiara Reservoir from 12 to 13 May 2009, and  

from 9–11 September 2009 [20]. Limnological variables, such as the concentration of chl-a, suspended 

organic and inorganic matter and dissolved organic and inorganic carbon, were obtained from a laboratory 

analysis of water samples that were kept at a cool temperature until delivery to the laboratory.  

For chl-a concentrations, water samples were collected from the surface of the water column and 

filtered through Whatman GF/F filters that were wrapped in aluminum foil and stored at freezing 

temperatures (−20 °C) until the analysis. Filters were analyzed according to Nush [21], which involved 

the extraction of chl-a pigment using 80% ethanol followed by a thermal shock of the substance before 

the absorbance reading in the spectrophotometer. Concentrations were calculated according to 

Lorezen‘s [22] equations. Total suspended solids (TSS) were determined based on Wetzel and  

Likens [23], and this approach also used a filtering procedure of a known volume of water using a 

GF/C filter that was pre-ashed at 480 °C and pre-weighed. Filters were stored in desiccators over silica 

gel. In the laboratory, each filter was dried at 60 °C for 24 h and weighed to determine the total 

suspended matter. The same filter was calcined at 480 °C for 1 h and reweighed to determine the 

inorganic particle concentration. Other physical parameters of the water samples, such as the temperature, 
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pH, dissolved oxygen (DO) and turbidity, were also measured using a YSI in situ multi-parameter 

sensor (Yellow Springs, OH, USA).  

Remote sensing reflectance spectra above the water surface (Rrs) were measured with an ASD field 

spectrometer (Analytical Spectral Devices, Inc., Boulder, CO, USA) following the method of  

Fougnie et al. [24] without a polarizer filter. 

2.3. MODIS Data 

The MODIS 500-m daily reflectance product from the Terra satellite was acquired via the National 

Aeronautics and Space Administration‘s (NASA) Land Processes Distributed Active Archive Center 

(LP DAAC) web interface using the Warehouse Inventory Search Tool (WIST). 

The MOD09GA is comprised of surface spectral reflectance from atmospheric correction, and the 

atmospheric correction algorithms used in the MODIS reflectance products replace the aerosol 

climatological data when an accurate climatological dataset of aerosol optical thickness (τa) is 

available [25]. This improves the algorithm‘s quality, because it is strongly driven by the τa [15]. 

In addition to the accurate atmospheric correction, MODIS products also provided high radiometric 

sensitivity (12 bit) in 36 spectral bands spanning from 0.4 μm to 14.4 μm. For MOD09GA, the spatial 

resolution is 250 m for Bands 1–2 (resampled to 500 m) and 500 m for Bands 3–7. These bands were 

originally designed as ‗‗sharpening‘‘ bands for land studies and cloud detection [26]. Thus, because of 

its poor spectral resolution, the use of MOD09GA for water studies is limited [4]. However, because of 

its spatial resolution, the tradeoff for inland water studies is positive, because when the spatial 

resolution is poor, the water spectral response is contaminated with the land spectral response (one of 

the paths of radiance influence) [27]. 

2.4. Algorithm Development 

An empirical and a semi-empirical algorithm were developed from the reflectance values of the 

seven spectral bands from MOD09GA. The empirical algorithm was developed using a forward 

stepwise regression analysis performed among reflectance that contains both a remotely-sensed sample 

point and an in situ chl-a concentration in situ measurement. The step-wise regression was used as an 

automatic procedure to derive the ―best‖ subset of bands to retrieve the chl-a concentration by adding 

the bands to the regression. The parameters used to set the subset of the best spectral bands were the 

variations of the coefficient of determination (R
2
). Thus, this subset was submitted to a multiple linear 

regression that was used to generate the empirical algorithm.  

The semi-empirical algorithm was developed by analyzing the in situ Rrs from each sample point 

and the bandwidth of MODIS. We used a band ratio between the band with the highest chl-a 

reflectance as the reference and the band closest to the phytoplankton absorption peak. The band ratio 

approach was also used for the MODIS chl-a products; however, they used the spectral bands  

with 1 km of spatial resolution. 
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2.5. Algorithm Calibration and Validation 

The calibration procedure for the empirical and semi-empirical algorithms and chl-a concentrations 

were obtained through a linear regression analysis. We conducted this procedure using three datasets; 

one from each field campaign (May and September) and a third from the mixing of the other two 

datasets to analyze a dataset with a large range of chl-a concentrations. For each dataset, model values 

were calibrated using a linear regression. Thus, for each dataset, one calibration (y = a + bx) for each 

dataset was determined. A cross-validation procedure was adopted by using each calibration in another 

dataset, i.e., the May dataset was calibrated with the September and mixed dataset calibrations. 

Validations were evaluated by calculating the error estimator, such as bias, mean square error (MSE), 

mean absolute error (MAE) and root mean square error (RMSE) (Table 1). 

Table 1. Error estimators used in this study. MAE, mean absolute error; MSE, mean square 

error; RMSE, root mean square error. 

Estimator Formulas 

Bias       
 

 
        

 

   

 

MAE      
 

 
        

 

   

 

MSE      
 

 
        

 

 

   

 

RMSE            

RMSE (%)         
    

             
 

Note: yi and xi are the measured and predicted chl-a concentrations, respectively. In the i-th sample; yi,max and 

yi,min are the maximum and minimum chl-a concentrations, respectively. 

2.6. Time Series of Estimated Chl-a 

A chl-a time series for 2009 was estimated by applying the algorithm with the best RMSE to  

all 365 images of the product, MOD09GA. However, several images had no data, because of the 

sensor‘s spatial coverage, which occasionally generates a gap in the image without any data. The daily 

MODIS reflectance data generated a time series of ―predicted chl-a‖ concentration for the entire year. 

The images were processed by implementing the best algorithm on an Interactive Data Language 

(IDL) and the Environment for Visualizing Images (ENVI) batch routine. This process not only 

retrieves the chl-a concentration for a specific point, but it also spatialized the data on the reservoir 

surface throughout 2009. 

2.7. HANTS Filtering Method 

A filtering method was used to minimize the occurrence of outliers that appeared because of the 

presence of clouds or cloud shadows. The reflectance values from these objects are discrepant when 

compared with neighbors (in space or time). In addition, MOD09GA does not cover the entire study 



Remote Sens. 2014, 6 1640 

 

 

area every day, so a filtering method is required to remove the invalid data. The harmonic analysis of 

time series (HANTS) was developed based on the fast Fourier transform (FFT) method to consider 

time series of irregularly spaced observations and identify and remove cloud-contaminated 

observations [28]. Roerink et al. [28] showed that HANTS offered greater flexibility in the choice of 

frequencies and the length of the time series than the FFT algorithm. Additionally, this filtering 

method can determine the range of valid data and remove invalid data.  

The HANTS was used to reconstruct the chl-a time series to a seven-day time resolution. These 

points were filtered through the HANTS processing, and then, the whole series was reconstructed  

via Equation (1): 

                          

 

   

 (1) 

where t is the Julian date, Chl-a(t) is the fitted chl-a value at time t, ai is the fitted coefficient, n is the 

number of frequencies used, φi is the fitted phase of the maximum chl-a of the time series and ωi was 

set according to the frequency. 

3. Results and Discussions  

3.1. Environmental Characteristics 

The datasets collected from the two field campaigns represent two different periods of the 

hydrological cycle in the Itumbiara Reservoir. The first period, called the May campaign, is 

characterized by a rising flow regime, whereas the second period, called the September campaign, is 

characterized by a low flow regime according to Alcantara et al. [29], who classified the flow regimes 

based on interannual climate variations. Moreover, we analyzed the annual precipitation over the 

Itumbiara Reservoir from 1993 to 2010 to classify the years into two groups: typical and atypical. The 

classification was based on thresholds established from the sum of the average plus or minus the 

standard deviation of the series. Thus, 2009 was classified as a typical year that had an annual 

precipitation of 1533.8 mm. Limnological variables varied during these two periods, and the 

comparisons between them are shown in Table 2. We observed that during the rising flow regime, the 

concentration of chl-a was low. However, during the low flow regime, there was an increase in the  

chl-a concentration. The same pattern could be observed in the DO concentrations that increased 

during the low flow period. However, the average pH value decreased during the low flow. These 

differences could be explained by the stratification and mixing processes in the reservoir. Alcântara [30] 

showed that for May 2009, the water column of the Itumbiara Reservoir was in the beginning of the 

mixed period. In September, however, it was in the beginning of the stratified period. These two 

processes of water column stability impact algal growth and vertical distribution and occur because 

variations in the temporal, vertical and horizontal structure of the physical processes promote changes 

in the pelagic zone [31]. These processes also promote several changes in the density structure of the 

water and in the distribution of chemical substances, which were observed by the pH variation. 
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Table 2. Summary statistics for chlorophyll-a (chl-a), total suspended solids (TSS), pH 

and dissolved oxygen (DO) for water samples collected in the Itumbiara Reservoir in 2009 

during the May and September field campaigns. 

 
May September 

Mean ± SD (Min–Max) Mean ± SD (Min–Max) 

Chl-a (μg/L) 1.54 ± 0.39 (0.68–2.70) 3.93 ± 3.03 (0.25–10.02) 

TSS (mg/L) 1.04 ± 0.25 (0.60–1.54) 1.12 ± 0.40 (0.25–1.81) 

pH 7.63 ± 0.13 (7.48–7.90) 6.99 ± 0.47 (6.29–7.90) 

DO (mg/L) 6.65 ± 0.41 (6.08–7.41) 8.66 ± 0.22 (8.19–8.99) 

3.2. Algorithm Development 

The empirical algorithm was developed using a forward step-wise regression of the values from the 

two field campaigns (n = 50). This procedure was conducted since significance F was low and one  

p-value was high, then the forward stepwise regression can be used to develop the best model. This 

procedure was followed by a multiple linear regression of the most correlated bands. The forward  

step-wise regression (Table 3) revealed that the spectral Bands 1, 4, 5 and 6 were the most important 

MODIS channels for the correlation with chl-a concentrations. Band 1 is located in the red channel 

related to the chl-a absorption features. Band 4 is located in the green channel related to the reflectance 

peak of chl-a (Figure 2). Band 5 is usually used for atmospheric correction, because of its proximity to 

the water absorption feature and also for the cirrus feature. Band 6 is generally used in inland water 

algorithms, because the water-surface-leaving radiance in this spectral band is insignificant, so this 

band is less affected by water types and depth. Bands 3 and 2 were excluded, because their inclusion in 

the analysis did not improve the R
2
 value. The reflectance from each of these bands for each sample 

point pixel were used in a multiple linear regression that retrieved a relationship among MODIS bands 

and chl-a concentration, as shown in Equation (2). 

Table 3. Step-wise regression analysis with the coefficient of determination (R
2
), degrees 

of freedom (DF), F coefficient (F), variation of R
2
 and p-value. 

 Included Band R
2
 DF F Variation of R

2
 p-Value 

Band: 4 4 0.18 1.45 1.519 3.27% 0.222 

Bands: 4, 1, 1 0.35 2.44 3.167 9.32% 0.051 

Bands: 4, 1, 6, 6 0.42 3.43 3.024 4.84% 0.039 

Bands: 4, 1, 6, 5, 5 0.47 4.42 3.019 4.91% 0.028 

Bands: 4, 1, 6, 5, 3, 3 0.47 5.41 2.358 0.00% 0.056 

Bands: 4, 1, 6, 5, 3, 2 2 0.48 6.40 2.016 0.88% 0.086 

For the semi-empirical model, we evaluated the Rrs and bandwidth of MODIS (Figure 2).  

Because the only spectral bands from MODIS sensor in the visible spectral range are Bands 1, 3 and 4, 

it was possible to plot them on the Rrs. Because chl-a absorbs the blue light peak at approximately  

440 nm, this range has been used for Case 1 water algorithms to estimate chl-a from space.  

A typical semi-empirical model used in Case 1 waters is the OC4v4 algorithm [32], which uses the 

band at 555 nm as the denominator and one of the three bands located near the green region (443, 490, 
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and 510 nm) as the numerator. This algorithm, which was developed for Case 1 waters, is based on the 

absorption of phytoplankton in the blue region and the reflectance of phytoplankton in the green 

region. For the Itumbiara Reservoir, the reflectance in the green region was higher than in the  

near-infrared (NIR). Thus, a typical chl-a red-NIR algorithm would not work for these waters, which is 

consistent with Nascimento [20], who found that in the Itumbiara Reservoir, the total absorption was 

dominated by the absorption of detritus (60%) and chl-a (40%). The band ratio between Bands 4  

(545–565 nm) in the green region and 3 (459–479 nm) in the blue region was shown to be the most 

accurate, because of their proximity to the reflectance and absorption peaks of phytoplankton, which is 

observed in Figure 2. 

Figure 2. Rrs with the limits of Moderate Resolution Imaging Spectroradiometer (MODIS) 

Bands 1, 3 and 4. 

 

The empirical (O14a) and semi-empirical (O14b) algorithms were defined as in Equations (2)  

and (3), respectively: 

                                                     

                 
(2) 

      
  

  
 (3) 

where B1, B2, B3, B4, B5 and B6 are the reflectance values from MODIS Bands 1, 2, 3, 4, 5 and 6, 

respectively, and Chla is the chl-a concentration. 

3.3. Calibration and Validation 

Calibration for both models was conducted as described in Section 2.5. Thus, we applied  

Equations (2) and (3) to the MOD09GA product. The model values for each sample point were then 

used in a linear regression with the measurements of chl-a concentrations. The first campaign 
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calibration showed that the best result was produced with O14a (R
2
 = 0.206). For the second campaign 

dataset, the best R
2
 was also found with O14a (R

2
 = 0.065). A mixed dataset combining the other two 

algorithms was also calibrated and showed the highest R
2
 values for both models: 0.223 for the O14a 

and 0.074 for the O14b. Calibration results are shown in Table 4, which not only includes R
2
 values, 

but also the adjusted R
2
 (Adj. R

2
) values, intercept and slope of each linear calibration. The Adj. R

2
 

presented similar results, confirming the consistency in their performance. Calibration also showed the 

intercept and slope for each model, and the mixed dataset presented almost perfect intercept and slope 

values, with an intercept near zero and the slope at almost one. For each separate campaign, the values 

for the intercept and slope did not have the best performance. 

Table 4. Calibration results for the two algorithms. 

Model R
2
 Adj. R

2
 Intercept Slope p-Value 

First Campaign (n = 25)  

O14a 0.206 0.171 1.105 0.216 >0.001 

O14b 0.157 0.121 2.767 −0.712 >0.001 

Second Campaign (n = 25)  

O14a 0.065 0.019 0.729 0.948 0.802 

O14b 0.004 −0.046 5.897 −1.209 0.882 

Mixed Dataset (n = 50)  

O14a 0.223 0.206 2E-05 1.000 >0.001 

O14b 0.074 0.053 7.439 −2.891 0.004 

These results were similar to the ones found by Wu et al. [15], who judged that the R
2
 of multiple 

linear regressions showed a better performance when compared to a simple linear regression of a 

single bands or band ratios. The authors attributed the improvement of the multiple linear regression to 

the fact that it used more bands, which reduced the model‘s degree of freedom.  

For accuracy assessment, models were validated by applying the calibrated equations from two 

datasets to the other dataset according to Equation (4). 

                           (4) 

Error estimators were calculated according to the equations in Table 2 and are shown in Table 5. 

Shaded areas enhanced the best error estimator for each campaign. For both cases, the use of a mixed 

calibration equation improved the accuracy of the algorithm. The use of a calibration with a smaller 

range of chl-a concentration showed better accuracy results than the one with a large range. Using the 

May calibration, the RMSE was 42.052 and 36.018% for O14a and O14b, respectively, while the use 

of the September calibration produced an RMSE of 47.973% and 72.998% for the same algorithms. 

The use of O14b instead of O14a was appropriated for the second campaign using the May calibration 

and showed that when the empirical algorithm for the study area was used without changes to the 

water‘s biogeochemical composition, then the empirical algorithm is useful. It was also observed that 

the use of algorithms with a higher R
2
 in the calibration produced the lowest RMSE values; however, 

the exception was the May calibration for the O14b model in the second campaign, which produced a 

lower RMSE (36.018%) and a lower R
2
 (0.157) compared to the 014a algorithm (R

2
 of 0.206 and 

RMSE of 42.052) for the same calibration. 
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Table 5. Error results for the two campaigns and three calibrations (shaded areas represent 

the lowest errors). 

  
O14a O14b O14a O14b 

September Calibration Mixed Calibration 

1st Campaign 

Bias 0.214 0.065 −0.480 −0.922 

MAE 0.800 0.370 0.715 0.993 

MSE 0.942 2.182 0.915 1.301 

RMSE 0.971 1.477 0.956 1.141 

RMSE 

(%) 
47.973 72.998 47.262 56.372 

  May Calibration Mixed Calibration 

2nd Campaign 

Bias 2.356 1.847 0.546 1.048 

MAE 3.183 2.694 2.380 2.466 

MSE 16.876 12.380 8.612 10.025 

RMSE 4.108 3.519 2.935 3.166 

RMSE 

(%) 
42.052 36.018 30.040 32.412 

The use of three different datasets showing different conditions of flow regimes and chl-a concentration 

allowed us to analyze the calibration that is more accurate for different environmental conditions. For a 

rising flow regime, in which the mixing process of the water column decreases the chl-a content, the 

use of a mixed calibration produced better accuracy. For the low flow regime in which the 

stratification process is dominant, increasing the chl-a concentration and the use of mixed calibration 

was also more accurate. 

Compared to other studies, our error estimators were lower than other studies that also used spectral 

bands that were inappropriate for water studies. Le et al. [33] tested various MODIS band combinations, 

and their best performance produced an RMSE (%) of 36.5% using bands with better spectral 

resolution for aquatic studies (Bands 11, 12, 14L and 14H). Because of the difficulties of bio-optical 

modeling of inland waters, the use of the MODIS 500-m product to estimate chl-a concentrations 

produced reasonable errors (Table 5). This assumption was based on the SeaWiFS program, which is 

attempting to estimate chl-a concentrations in open ocean waters that are within a 35% accuracy [34]. 

In the case of estuaries, Le et al. [33] noted that an RMSE of 39.6% for the red-green ratio algorithms 

was acceptable. Thus, the use of O14a and O14b with mixed calibrations is acceptable for tropical 

reservoirs with low chl-a (varying from zero to 50 μg/L). 

We also compared our studies to the chl-a algorithms implemented in the SeaWiFS Data Analysis 

System (SeaDAS); however, only two algorithms (OC2 and OC3) were able to retrieve the chl-a data 

from the Itumbiara Reservoir. The algorithms were implemented using MODIS 1-km products 

resampled for 500 m that were atmospherically corrected by the Management Unit of the North Sea 

Mathematical Models (MUMM) algorithm using its default settings [35]. This algorithm was chosen 

because of its application for turbid waters. Table 6 shows the results of the OC2 and OC3 algorithms 

for the Itumbiara Reservoir in the September campaign that produced the best results for our model.  
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Table 6. Statistics for OC2 and OC3 applied by SeaDAS for the Itumbiara Reservoir. 

OC2 (n = 25) OC3 (n = 25) 

R
2
 p-Value RMSE (%) R

2
 p-Value RMSE (%) 

0.10 0.19 37.03 0.19 0.09 44.02 

Comparing the results for the same campaign, a better performance was observed for both 

algorithms (O14a and O14b) when compared to the OC2 and OC3. The RMSE (%) for OC2 and OC3 

was approximately 37 and 44% respectively, whereas for the same campaign, O14a and O14b 

produced an RMSE (%) of approximately 30 and 32%. 

3.4. Time Series 

A time series of chl-a concentrations of the Itumbiara Reservoir was derived from the O14a algorithm 

and applied to MOD09GA. The time-series was filtered using HANTS to exclude the pixels with 

interference by clouds and shadows [36] and non-imagery days. Alcantara [37] analyzed the MODIS 

time series from 2003 to 2008 over the Itumbiara Reservoir and showed that from the 4,380 images, 

2,976 images were cloud-free, which means that approximately 68% of the time, the images were 

useful for the time-series analysis. Non-imagery images occurred every 16 days, and in 2009, there 

were 23 non-imagery days for MODIS. HANTS was also used to interpolate the remaining data to a 

daily frequency. Figure 3 shows the filtered estimated chl-a concentration for two points of the 

reservoir of the Itumbiara Reservoir for 2009. The first point is located near the reservoir‘s entrance, 

which is close to the Paranaíba and Corumbá Rivers, and the second point is located near the 

hydroelectric dam (Figure 1). 

Figure 3. Filtered O14a time-series for two regions of the reservoir. 
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Both points showed low chl-a concentrations during the dry season (from middle April to the end of 

August). However, during the dry season, a peak of the estimated chl-a concentration was observed  

on 11 May for both points. To evaluate this, we reviewed the meteorological analysis of frontal events 

in Brazil and observed that among Days 4, 5 and 6 of May, intense winds from the east transported 

humidity from the ocean to the continent and caused precipitation in several regions of Brazil. The 

wind disturbance on the surface of the aquatic system can provoke a mixing of the water column [38]. 

In the Southern Hemisphere, wind-induced mixing is common during the passage of cold fronts [39,40]. 

After these events, mixing and several stratification processes occur on the water column [41]. These 

stability processes provoke disturbances of the thermal stratification, chemical stratification and ecological 

succession. Ogashawara et al. [42] showed that these cold front events could cause mixing in the water 

column, and a sudden variability of weather types could provoke such a mixing. Tundisi et al. [40] 

proposed a relationship between the stability of the water column and phytoplankton response. Thus, 

during mixing processes, phytoplankton is not predominant, whereas during the stratification of the 

water column, it is possible to have pre-bloom conditions. 

Therefore, the low frequency of chl-a peaks during the winter period was also related to external 

forces, because there were a high number of cold front entrances. Alcântara [30] showed that during 

the spring and summer when the heat balance was positive (heat gain), the water column stratifies. 

However, when the heat balance was negative, the water column exhibits mixing. The main effect of 

this differential heat and cooling of the water in the reservoir is on its quality. Thus, the response of 

chl-a in a time series was affected by external variables, such as precipitation, wind intensity, wind 

direction and temperature. 

Figure 4 shows the meteorological variables during the first two weeks of May used to analyze the 

estimated chl-a peak on 11 May. Precipitation, maximum and minimum temperature, atmospheric 

pressure and wind speed were collected from a meteorological station located near the reservoir. There 

was a precipitation event on 5 May that occurred after a peak of wind speed on 4 May and with an 

increase of atmospheric pressure. This instability in the atmosphere occurred until 6 May, when the 

wind speed decreased along with the atmospheric pressure and the air temperature began to rise. 

During the high event of chl-a (showed on Figure 3), the atmospheric dynamics were stable, which 

could be related to a stratification process of the water column.  

Figure 4 shows that the rain event caused the mixing near the surface layer and reduced the chl-a 

concentration. However, after the atmospheric and water column instability, the stable and stratified 

period enhanced the chl-a concentration. This relationship was described by Tundisi et al. [40], who 

indicated that a precipitation event might drain the nutrients from an agricultural to aquatic 

environment. This action increased the pool of nutrients available for phytoplankton growth.  

These processes of mixing and stratification of the water column associated with phytoplankton 

proposed by Tundisi et al. [40] were used to analyze the coherence of the estimated chl-a time series. 

Thus, a heat balance analysis proposed by Alcântara [30] to identify the mixing and stratification 

periods was used to evaluate the estimated chl-a time-series. This analysis ascribed a positive heat 

balance (heat gain) to the stratification of the water column and a negative heat balance to a mixing in 

the water column. Figure 5 shows the heat balance analysis from March 2009, to February 2010, that 

was calculated from the data at the Integrated System for Environmental Monitoring (SIMA) installed 
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at the Itumbiara Reservoir [43,44] near the dam. In the figure, the estimated chl-a time series for the 

same pixels of the SIMA were plotted. 

Figure 4. Meteorological variables for the period from 1–14 May. 

 

Figure 5. Water column temperature and estimated chl-a time-series. 
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Figure 5 illustrates the importance of mixing and stratification processes on the phytoplankton 

succession changes of a tropical reservoir and the stability of the water column. During the austral 

winter, the cold front frequency and wind speed are the main parameters for the mixing processes in 

the Itumbiara Reservoir [41]. Because of the entrance of cold fronts, the relationship established by 

Tundisi et al. [40] could be observed, which showed that during cold front dissipation, pre-algal bloom 

conditions occur; therefore, the entrance of cold fronts could be related to a high concentration of  

chl-a. This relationship is observed in Figure 5, as well; during austral winter, when the frequency of 

cold fronts is higher, the dissipation of these cold fronts from the water column causes peaks of chl-a 

concentrations. Therefore, when the water column is cold and mixed, the peaks of chl-a could be 

related to meteorological events promoting the instability of the water column. This same relationship 

was observed in tropical aquatic systems in Africa, where the algal concentrations in an integrated 

column before and after strong winds were compared [45]. This study found that the concentration 

increased two- to three-fold after strong winds; however, during one particular event, the concentration 

increased more than five-fold. During stratified periods, it is possible to observe more chl-a peaks; 

however, during the maximum stratification at the end of November, chl-a peaks do not occur, which 

might be related to the lack of nutrients in the water column, because of the decantation resulting from 

the strong stratification process.  

In situ measurements of chl-a concentration from the Itumbiara Reservoir measured by the Federal 

University of Juiz de Fora showed that in a field campaign in November 2004, chl-a concentrations 

varied from 7.17 to 57.91 μg/L from different sampling points. In March of 2005, chl-a concentrations 

ranged from 1.33 to 143.55 μg/L. Another field campaign in August 2005, produced chl-a concentrations 

from 11.52 to 40.12 μg/L. Considering the same thermal structure of 2009, the smaller range was 

found in August, during the mixing period, while the larger range was found in March during the 

stratification period. 

The spatial variability of the estimated chl-a was analyzed by cropping the reservoir mask from the 

O14a product and performing a density slice among the chl-a concentrations in the image. The period 

analyzed occurred during the mixing period from 2–10 August (Figure 6), and the influence of cloud 

cover [36] on the image of August 10 can be noticed, because most of the reservoir was unclassified 

because of the negative values. The pixels near the borders were unclassified, which showed that the 

algorithm worked well in not incorporating the influence from the soil. High concentrations of chl-a 

were found in a linear stripe in various parts of the reservoir, because of a noise detector on the Band 5 

(1,230~1,250 nm) image of the Terra MODIS geolocated data, which has severe and typical strips 

throughout the whole image. Because it can detect cirrus clouds and retrieve water vapor amounts [46], 

this spectral band is important, and it is worthwhile to consider it in the algorithm. Thus, the values of 

this stripe should not be considered in the analysis. 

On 2 August, high chl-a concentration were observed if compared to others images, which is 

explained by a variation of the weather conditions on 30 July, when wind speed and atmospheric 

pressure increased and air temperature decreased. These meteorological characteristics showed an 

instability with a mixing process in the water column, followed by a stratification in the bottom of the 

reservoir (Figure 5). This sequence of events [40] was responsible for the high chl-a concentrations 

observed on 2 August. Therefore, these findings suggest that algal blooms have a rhythm that is  

cross-correlated to meteorological parameters. Time-series analysis (Figure 3) showed that during 
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spring (September) until mid-autumn (May to June), the monitoring of chl-a should be the concern of 

the reservoir management administration. However, because of the high frequency of winter cold front 

entrances promoting the mixing of the water column, the concentration of chl-a decreases along with 

its risks to human health. 

Figure 6. Estimated chl-a distribution in the Itumbiara Reservoir from O14a. 

 

4. Conclusions  

We developed an empirical (O14a) and a semi-empirical model (O14b) to retrieve chl-a 

concentrations from MODIS 500-m daily reflectance products for the Itumbiara Reservoir. Both 

models were cross-validated with three different calibrations (Table 4), and the results of the validation 

are shown on Table 5. The O14a produced an RMSE of 30.40%, and the O14b produced an RMSE of 

32.41% by using mixed calibration (Table 2). We also applied two algorithms that use MODIS 1-km 

products (OC2 and OC3) implemented at SeaDAS to compare our findings. This comparison showed 

that both models (O14a and O14b) produced better RMSE (%) using the mixed dataset calibration than 

the SeaDAS algorithms, which produced an RMSE (%) of 37.03% and 44.0%, respectively.  

We also applied the O14a for the all of 2009 and analyzed the filtered time-series of the estimated 

chl-a from two points located near the entrance of the reservoir and near the dam. The time-series of 

the estimated chl-a concentration of the Itumbiara Reservoir in 2009 showed that during the summer 

and spring, there was a high frequency of algal blooms. During winter, however, the algal blooms were 

not common, and the few blooms that did appear on the time-series analysis were related to the 

stratification of the water column after a mixing event caused by variations in atmospheric stability. 

An observed difference between the two time-series also suggested that there is a migration of the 

algal bloom in the flow direction on normal days and in the anti-flow direction during frontal events. 

Although the correlation and accuracy of our empirical and semi-empirical algorithms were satisfactory, 

we must remember that for most chl-a concentrations, the empirical algorithms use sensors that have 

adequate spectral bands for aquatic studies. Thus, MODIS 1-km products are still preferable, because 
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of their increased spectral resolution. However, for qualitative and rapid monitoring assessment of 

small to medium inland waters, the MODIS 500-m products are more appropriate than the 1-km 

products. Therefore, our two algorithms were essential to analyze the temporal and spatial distribution 

of algal blooms in the reservoir of the Itumbiara. To understand the dynamics of these algal blooms, 

the time series should be analyzed with other variables, such as bathymetry, meteorological variables 

and wind fields that affect the stability processes in the water column, as well as others water quality 

parameters. This integrated analysis will enable an understanding of the environmental factors 

contributing to the spatial and temporal variations in chl-a in an aquatic system. 

Compared to other medium spatial resolution sensors, MODIS is economical and potentially more 

viable for an environmental monitoring application, because of its high frequency of image acquisition. 

The use of algorithms to estimate chl-a concentration will help environmental managers, policy 

makers and the population to easily identity the areas of algal blooms. The use of MODIS 500-m 

products for the monitoring of inland waters is more spatially accurate when compared to high spatial 

resolution products from SeaWIFS and MODIS chl-a products. The time series analysis will allow 

environmental managers to produce information to predict the period of algal blooms that will be 

reflected in the costs of water treatment and availability, mainly for water supply reservoirs. 
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