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Abstract On 9 January 2002 and 14 November 2001, the São Luís 30 MHz coherent backscatter radar
observed unusual daytime echoes scattered from the equatorial electrojet. The electrojet echoing layers on
these days, as seen in the range time intensity maps, exhibited quasiperiodic oscillations. Time-frequency
decomposition of the magnetic field perturbations ΔH, measured simultaneously by the ground-based
magnetometers, also showed evidence of short-period waves. The ground-based observations were aided
by measurements of the brightness temperature in the water vapor and infrared bands made by the GOES 8
satellite. The GOES 8 satellite measurements indicated evidence of deep tropospheric convection activities,
which are favorable for the launch of atmospheric gravity waves (AGW) near São Luís. Our multitechnique
investigation, combined with an analysis of the equatorial electric field and current density, indicates that
AGW forcing could have been responsible, via coupling with E region electric fields, for the short-period
electrojet oscillations observed over São Luís.

1. Introduction

Experimental and modeling research have suggested the influences of gravity waves on the Earth’s iono-
sphere [Fritts and Lund, 2011]. Atmospheric general circulation modeling studies [Yiǧit et al., 2009; Yiǧit and
Medvedev, 2010; Yiǧit et al., 2012a] and numerical simulations [Vadas and Fritts, 2006] demonstrate that
gravity waves can propagate from the lower atmosphere into the thermosphere-ionosphere system. Radar
observations of short-period fluctuations of the phase velocities of electrojet waves and electric fields were
suggested to be caused by atmospheric waves [e.g., Reddy and Devasia, 1976; Hysell et al., 1997; Abdu et
al., 2002; Aveiro et al., 2009]. Gravity waves could modify ionospheric electric fields [Kelley, 2009], and they
are also proposed as seeds for equatorial spread F [Kelley et al., 1981; Fritts et al., 2009; Makela et al., 2010;
Tsunoda, 2010].

On 9 January 2002 and 14 November 2001 (geomagnetically quiet days as indicated by the AE index in
Figure 1), the São Luís (Brazil) 30 MHz radar observed unusual echoes characterized by temporal and/or
spatial quasi-oscillations of the electrojet scattering layers. Horizontal magnetic field perturbations ΔH
(a proxy for electrojet strength) measured over São Luís showed temporal oscillations.

In this study, we use time-frequency decomposition of the ΔH time series, analysis of brightness tempera-
ture in the water vapor and infrared bands from the GOES 8 satellite, and theoretical analysis about iono-
spheric electric field to investigate the physical mechanisms responsible for the quasiperiodic oscillations of
the electrojet scattering layers.

2. Data Presentation
2.1. The 9 January 2002 Data
2.1.1. Coherent Scatter Radar Data (30 MHz)
The São Luís radar has been semiroutinely observing daytime E region and nighttime F region irregularities
since 2000. Descriptions of the radar and examples of observations are given by de Paula and Hysell [2004],
Rodrigues et al. [2008], and Shume et al. [2011].

Figure 2a shows the range time intensity (RTI) graph of coherent scatter echoes from electrojet irregulari-
ties received by the São Luís radar on 9 January 2002. The RTI graph shows signal-to-noise ratio (S/N in dB)
of the radar echoes as a function of range and UT. The radar echoes in the fluctuating region are well above
the background noise level. The integration time was 3 min. The RTI graph shows unique radar echoes
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Figure 1. The auroral electrojet index (hourly) for 14 November 2001, 11 December 2001, 12 December 2001, and 9 January 2002.

exhibiting quasiperiodic oscillations (the fluctuations of the intensity (S/N) are not perfectly periodic) of the
electrojet echoing layer (∼12:00 to 16:00 UT). During quiet days, such oscillations are rare because the back-
ground electric field mostly overwhelms wind-driven perturbation electric fields. Figure 2a shows that the
strong radar echoes are confined to a relatively narrow altitude region (∼3 km). Note that the radar echo
strength is highly correlated with the strength of the convection electric field that drives the irregularities
[Hysell et al., 2008]. For comparison, Figures 2b and 2c present radar echoes scattered from the electro-
jet during quiet (11 December 2001) and disturbed (12 December 2001) conditions (Figure 1 shows the
AE index), respectively. The scattered power is disrupted from about 12:00 to 14:00 UT on 12 December
(Figure 2c) due to suppression of electrojet instability by storm-induced electric fields. Finally, Figure 2d
shows the RTI graph for observations made on 14 November 2001, when again quasiperiodic oscillations in
the electrojet layer were observed (between 17 and 18 UT). The radar echoes in Figures 2a, 2c, and 2d have
features different from what is typically observed (Figure 2b, which shows continuous echo intensities over
time). Figure 2c, on the other hand, show fluctuations and even suppression of the echo intensity caused
by perturbation electric fields generated during geomagnetic disturbances (see AE index in Figure 1).
Figures 2a and 2d, however, show echo intensities that abnormally vary with time in a quasiperiodic fashion,
despite geomagnetically quiet conditions.
2.1.2. Power Spectra of 𝚫H Data
Figure 3a plots ΔH for 9 January (red) and 1 January (black, quiet time). ΔH has 1 min resolution. The
strength of the equatorial electrojet is commonly measured by ground-based magnetometers located at
equatorial stations. ΔH, which is a measure of the strength of the equatorial electrojet, can be obtained by
calculating the difference in magnitude of the measured horizontal magnetic field component between a
magnetometer placed on the magnetic equator and one placed 6◦–9◦ away [Anderson et al., 2002; Shume
et al., 2010]. Accordingly, horizontal magnetic field residues ΔH at São Luís, Brazil, (2.3◦S; 44.2◦W; 0.5◦S
dip latitude) are obtained by subtracting from it magnetic field measurements at Eusébio (3.8◦S; 39.4◦W;
6.3◦S dip latitude). Eusébio is located outside the influence of the electrojet. Nighttime baseline magne-
tometer records for each station are subtracted first to obtain daytime values. The baseline record is an
average of midnight values of five geomagnetically quietest days in a month. Fluxgate magnetometers
have very good accuracy of about 0.25% to 0.50% (A manual of fluxgate magnetometer, FRG-601G,
Version 1.1, Tierra Tecnica Ltd, 2002, Tokyo). The vertical lines in Figure 3a bound the region of ΔH oscil-
lations which are accompanied by radar echo fluctuations (Figure 2a). Between the vertical lines, the
magnitude of ΔH for 9 January is depressed when compared to 1 January (quiet time example). We analyzed
the ΔH signal using wavelet decomposition whose results are shown in Figure 3b as a 2-D time-frequency
image. The 2-D spectra reveal the existence of ∼20 to 60 min period waves in the electrojet. The 95%
confidence levels are shown by the contour curves on the spectra in Figures 3b and 3d. The regions
on the edges of the spectra delineated by the black dotted line show the cone of influence (where the
edge effect is important). The nature of these fluctuations will be investigated next in terms of electric
field perturbations.
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(a)
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Figure 2. (a) Range time intensity (RTI) representation of coherent scatter from the equatorial electrojet irregularities received by the
30 MHz radar in São Luís on 9 January 2002. The RTI map shows signal-to-noise ratio (S/N dB) of the radar echoes (described by the
legend) as a function of range and UT. (b) Same as Figure 1a but for 11 December 2001. (c) Same as Figure 1a but for 12 December
2001. (d) Same as Figure 1a but for 14 November 2001.

2.1.3. GOES 8 Satellite Brightness Temperature Images
The connection between generation of gravity waves and active convection regions have been extensively
discussed in the literature [e.g., Fritts et al., 2009; Vadas et al., 2009]. Cold clouds near the tropopause region
are indicative of regions of active convection and a likely source of gravity waves [Vadas et al., 2009]. Cold
brightness temperature suggests deep convective plumes and convective overshoot which are a convenient
launching platform for gravity waves [Fritts et al., 2009; Vadas et al., 2009]. Gravity waves generated from
the convective sources can propagate into the higher altitude and penetrate deep into the upper atmo-
sphere [Yiǧit et al., 2008; Fritts et al., 2009; Vadas et al., 2009]. For cold cloud tops, the brightness temperature
in the water vapor (WV) band can be higher than the infrared (IR) band (WV − IR > 0◦C) [Schmetz
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Figure 3. (a) Ground-based magnetic field perturbation ΔH in São Luís for 1 January 2001 (black) and 9 January 2002 (red). (b)
Two-dimensional time-frequency power spectra of the ΔH signal for 9 January 2002. (c) Same as Figure 2a but for 14 November 2001
(red). (d) Same as Figure 2b but for 14 November 2001.

et al., 1997]. Figure 4 presents WV − IR observed by the GOES 8 satellite for selected hours on 9 January 2002
in the region of interest (São Luís is marked as a star) as a function of latitude and longitude.

In Figure 4, from about 6:15 to 12:15 UT, we observe intense convection activities (WV − IR > 0◦C) within the
500 km radius north-east of São Luís suggesting possible regions of deep convective plumes and convective
overshoots, a likely source of gravity waves. Example WV − IR images are shown in Figure 4. After about
12:15 UT, the figures show low convection activities (WV − IR < 0◦C) north-east of São Luís indicating con-
vection activities might have been subsided. There were, however, indicators of active convection in the
south-west of São Luís (∼1300 km).
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Figure 4. GOES 8 satellite data: The difference between the brightness temperature in the water vapor and infrared bands over part of
South America on 9 January 2002.

Using ray tracing analysis of gravity waves detected over Brasilia by an Airglow imager, Vadas et al. [2009]
showed that gravity waves could take ∼3 to 24 h to reach dissipation altitudes (lower thermosphere). Using
correlation between wind velocity measurements and convection activities over Indonesia, Venkateswara
Rao et al. [2011] suggested that the time delay between the peak of a deep convection and propagating
gravity waves in the lower thermosphere could be ∼1 to 15 h. Hence, we expect gravity waves generated
by the tropospheric convection (north-east and south-west of São Luís, Figure 4) to be able to modulate
electrojet irregularities until ∼16:00 UT (Figure 1a).

2.2. The 14 November 2001 Data
2.2.1. Coherent Scatter Radar Data (30 MHz)
This section presents additional quiet time radar data scattered from the daytime electrojet over São Luís.
Figure 2d presents radar echoes scattered from the electrojet on 14 November. After ∼17:00 UT, Figure 2d
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shows temporal variations in the scattered power. A closer look at Figure 2d shows temporal fluctuations of
the echoes from ∼14:00 to 16:00 UT. After ∼17:00 UT, the echo strength was lowered by ∼10 dB. During this
time the strongest echoes are limited to a narrow region indicating that the electric fields with the proper
orientation driving the instabilities were confined to that region.
2.2.2. Power Spectra of 𝚫H Data
Figure 3c plots ΔH for 14 November (red). It shows fluctuating ΔH (red) from ∼14:00 to 18:00 UT. Consis-
tently the magnitude of ΔH (red) is depressed (bounded by vertical lines) when compared to a quiet time
example ΔH (black). Figure 3d presents the time-frequency spectra of the ΔH signal. From ∼14:00 to
18:00 UT, the spectra contain short-period waves (20–40 mins) consistent with gravity wave periods
suggesting atmosphere-ionosphere coupling which could have been forced by tropospheric
convection activities.
2.2.3. GOES 8 Satellite Brightness Temperature Images
Figure 5 shows GOES 8 satellite WV − IR images on 14 November (data were available every 3 h). Within
1000 km south-west of São Luiś, the images show cold cloud top temperature WV− IR > 0◦C indicating deep
tropospheric convection, a likely source of gravity waves. Between ∼5:45 and 17:45 UT, strong convection
activity happened within ∼500 to 1000 km of São Luís. About 1 to 15 h would be sufficient for gravity waves
to reach the E region [Vadas et al., 2009; Venkateswara Rao et al., 2011]. Gravity waves generated from these
convection sources could have obliquely propagated to the E region to cause the radar echo fluctuations
(Figure 2d) and ΔH oscillations (Figure 3c).

3. Interpretation and Discussion

The spectra in Figures 2b and 2d show short-period gravity waves, possibly originating from tropospheric
convection could modulate electric fields in the electrojet. Previous general circulation modeling and
numerical studies demonstrated that gravity waves of lower atmospheric origin can penetrate into the
thermosphere-ionosphere system [Yiǧit et al., 2008, 2009; Vadas et al., 2009; Yiǧit et al., 2012a, 2012b]. The
thickness of the electrojet is typically ∼25 km. This feature means that gravity waves with vertical wave-
length less than 50 km are most likely interact with the background dynamo field in the electrojet and to
cause electric field variations with altitude. Gravity waves with vertical wavelength >50 km marginally cause
electric field variations. Ray tracing analysis has shown that gravity waves at the dissipation altitude (lower
thermosphere) can have periods of ∼10 to 90 min, and vertical wavelength of ∼5 to 30 km [Vadas et al.,
2009]. Gravity waves observed over Brasilia by an Airglow imager were ray traced and found to have prop-
agated obliquely and covered horizontal distance of ∼300 to 1500 km [Vadas et al., 2009]. Hence, the GOES
8 WV − IR data and the ray tracing suggest that the modulation of the radar echo strength and ΔH on
9 January and 14 November could have been potentially caused by gravity waves that propagated from tro-
pospheric convections located at horizontal distances of within about 500 km north-east of São Luís, and
within about 1500 km south-west of São Luís.

Low-frequency (long-period) gravity waves propagate nearly horizontally, and high-frequency
(short-period) waves propagate close to zenith [Vadas et al., 2009]. This is consistent with the spectra for
9 January (Figure 3b) and 14 November (Figure 3d). On 9 January, gravity waves which propagated from
∼250 km north-east of São Luís have caused the short-period waves (∼20 to 30 min, Figure 3b) from about
13 to 15 UT, and gravity waves which propagated from ∼1000 km south-west of São Luís have caused the 40
to 60 min waves (15 to 16 UT, Figure 3b). On 14 November (Figure 3d), gravity waves which propagated from
∼700 km south-west of São Luís caused 30 to 40 min fluctuations.

3.1. Modulation of Electric and Magnetic Fields by Winds
Assuming plasma quasi-neutrality and equipotential approximation, the vertical electric field E

𝛼
in the elec-

trojet can be described in terms of a zonal electric field E
𝜙

, a neutral wind field (u
𝜙

,u
𝛼
), and conductivities 𝜎P

(Pedersen) and 𝜎H (Hall) [Hysell et al., 2002].
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where (h
𝛼
, h

𝜙
, h

𝛽
) are geometric scale factors (coordinate transformation factors which keep distance

invariant) and B◦ is the geomagnetic field. (𝛼, 𝛽, 𝜙) are the orthogonal dipole coordinates which are
perpendicular-upward, parallel to the dipole field, and perpendicular-eastward [Shume et al., 2005].

SHUME ET AL. ©2014. American Geophysical Union. All Rights Reserved. 371

http://dx.doi.org/10.1002/2013JA019300


Journal of Geophysical Research: Space Physics 10.1002/2013JA019300

Figure 5. GOES 8 satellite data: The difference between the brightness temperature in the water vapor and infrared bands over part of
South America on 14 November 2001.

The strength and orientation of ΔH is a measure of the magnitude and direction of the vertical field E
𝛼

[Hysell et al., 2002]. The magnitude of ΔH for 9 January and 14 November (bounded by vertical lines) are
systematically reduced compared to a representative quite time ΔH (1 January) indicating that E

𝜙
has been

weak in those time intervals. This creates the scenario that the wind u
𝜙

driven dynamo (term 2, equation
(1)) would compete with E

𝜙
(term 1, equation (1)) for dominance. Note that the magnitude and direction of

the dynamo field generated by winds (u
𝜙
, u

𝛼
) (aggregate of the background winds and gravity wave winds

(which propagated from deep tropospheric convection sources)) determine the magnitude and direction of
E
𝛼
. Large wavelength electrojet waves are excited whenever E

𝛼
has positive component along positive den-

sity gradients. The strength of E
𝛼

(driving the electrojet irregularities) is strongly correlated with the radar
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echo strength. In this scenario, the various phases of wind fields of short vertical wavelength (< 50 km)
gravity waves (terms 2 and 3, equation (1)) interact with E

𝜙
(term 1, equation (1)) differently to cause a verti-

cally varying E
𝛼

and generate the quasiperiodic irregularities (oscillating radar echoes) shown in Figures 2a
and 1d.

Using equation (1), the horizontal current density (electrojet) J
𝜙
= 𝜎P(E𝜙

− u
𝛼

B◦) + 𝜎H(E𝛼
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expressed in terms of the background and dynamo fields:
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The phases of the short wavelength gravity wave (which could be polychromatic) wind fields generated by
the tropospheric convective activities (Figures 4 and 5) would have their phases varying along magnetic
field lines. In this case, gravity wave-induced winds (u

𝜙
, term 2, equation (2)) could influence the magnitude

and direction of J
𝜙

. For gravity waves with constant phases along magnetic field lines, however, horizontal
winds (term 2, equation (2)) would marginally influence the strength of the equatorial electrojet. In addition,
large vertical winds (term 3, equation (2)) are required to influence the magnitude and direction of J

𝜙
; that

is, the third term should compete with the first and second terms. Driven by active tropospheric convection
(Figures 4 and 5), gravity wave propagating from below could be coupled to the region and modulate the
background electric field and cause the quasiperiodic oscillations in the radar echoes and ΔH.

In addition, gravity wave momentum deposition can occur much higher in the upper atmosphere [Vadas
et al., 2009; Yiǧit et al., 2008; Yiǧit and Medvedev, 2010]. Various studies have suggested links between deep
convection, gravity waves, and their likely contributions to the excitation of Rayleigh Taylor instability and
plasma bubbles extending to much higher altitudes [Fritts et al., 2009; Vadas et al., 2009].

4. Summary and Conclusions

On 9 January 2002 and 14 November 2001, the São Luís 30 MHz radar observed unusual quasiperiodic
fluctuations in the intensity of equatorial electrojet irregularity echoes. Two-dimensional decomposition
of ΔH over São Luís, on these days, shows short-period waves, 20 to 60 min (9 January) and 20 to 40 min
(14 November), which are considered to be evidence of atmospheric gravity wave activity. We also notice
that ΔH values were lower than a quiet time example ΔH. Corresponding to those time intervals, the dif-
ference between the brightness temperature in the water vapor and infrared bands (WV − IR) observed by
the GOES 8 satellite have indicated tropospheric convection activities (a launching pad for gravity waves
into the upper atmosphere) in the north-east and south-west of São Luís. Driven by active tropospheric con-
vection, gravity waves could be coupled to the electrojet and modulate the E region electric field thereby
causing the fluctuating radar echoes and the ΔH oscillations observed on 9 January and 14 November.
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