
Simubox’s SMP2 Code Generator
under Enterprise Architect 9

Prepared by Leandro Toss Hoffmann

2014

Contents
1. Introduction... 2

2. Installation ... 2

2.1. Add-in installation .. 3

2.2. Reference Data ... 3

3. Components Modelling ... 3

3.1. Fields .. 4

Simple fields .. 4

Array fields .. 4

Input/Output fields ... 4

3.2. Exposed interfaces ... 5

3.3. References .. 5

3.4. Containers .. 5

3.5. Operations .. 6

3.6. Entry Points .. 6

3.7. Events ... 6

4. Assembly Definition .. 7

4.1. Field values for the instance .. 7

4.2. Composition ... 7

4.3. Field links .. 7

4.4. Interface Links .. 8

5. Code Generation ... 8

5.1. C++ Class definition file (.h) .. 9

5.2. C++ Class implementation file (.cpp) .. 9

5.3. SMP2 catalogue file (.cat) ... 9

5.4. Project for implementing the model library and SMP2 Package 9

6. Next version improvements .. 9

6.1. Fix current restrictions ... 9

6.2. Additional features ... 10

Appendix A. Description of Code Generator classes ... 10

1. Introduction

This document describes the Simubox’s code generation tool for SMP2 compliant components

as part of the thesis “THE ROLE OF COMPUTATIONAL STEERING IN SPACE ENGINEERING

ACTIVITIES ASSISTED BY SYSTEMS MODELLING AND SIMULATION” developed by Leandro Toss

Hoffmann in 2014, under supervision of Prof. Leonel Fernando Perondi, Ph.D. at Brazilian

Institute for Space Research (INPE).

The tool is implemented as an Enterprise Architect 9 add-in and currently supports the

following features:

 C++ header file generation for Models derived from

Smp::Management::IManagedModel;

 Corresponding C++ implementation file;

 Construction of projects for building the model libraries (.dll); and

 SMP2 Assembly artefact production.

These features can support a complete chain of simulation models development, based on a

component modelling process in UML. At the end, the auto-generated code (without

behavioural code) and the assemblies are ready to be run in a SMP2 compliant simulation

infrastructure. Still, in the future, the extension of the Add-in will support also SMP2 catalogue

generation and a broader number of SMP interfaces.

2. Installation
The Simubox’s SMP2 code generator runs under the Enterprise Architect (EA) environment. A

SMP2 code template is provided to the Code Template Framework, used during forward

engineering of definition files (i.e. header files). A Simubox add-in must be installed in order to

extend the base templates and to allow the production of the SMP2 artefacts and model

libraries.

The Add-in items to be installed comprise on:

 SMP2CodeGen.dll: implementation of add-in to be loaded by EA;

 SMP2_Template.xml: contains the SMP2 Code Template and the predefined

reference data (i.e. stereotypes and tagged values) to be used with the UML diagrams.

2.1. Add-in installation
The add-in is compiled as a .NET DLL (see SMP2CodeGen.csproj compatible with Microsoft

Visual Studio 2010) and its file must be registered as a COM assembly. The register is done

using the RegAsm command:

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\RegAsm.exe

"path/to/SMP2CodeGen.dll " /codebase

The second step is the registration of the add-in in the Windows Register. Insert the entry

"SMP2CodeGen.SMP2CodeGenClass" under the

[HKEY_CURRENT_USER\Software\Sparx Systems\EAAddins\SMP2CodeGen]

folder.

Optionally, use the deployed RegistryEntry.reg file to automatically edit the Windows

Register.

Note that both steps must be executed with administrator privileges.

After the EA initialisation, the new menu Simubox will appear under Add-in menu.

2.2. Reference Data
For each Enterprise Architect project that is going to make use of the SMP2 code generation

tool, the reference data must be imported.

Open the Import Reference Data Dialog from the menu:

Project / Model import/export / Import reference Data.

Select SMP2_Template.xml file and import all Datasets: SMP2_Code_Template,

Stereotypes, and Property types (for Tagged values).

To make the SMP2 template language available, create a new entry in the Programming

Languages Datatypes: Settings / Code datatype / Add Product. Use the name SMP2 and save

any new datatype (e.g. Smp::Int32).

3. Components Modelling
UML components would be a good metaphor to represent simulation models, but since the

Enterprise Architect engine facilitates the code generation for elements of class type, the class

diagrams was adopted.

For each simulation model, create a new class. Excepted by the interfaces, always define

classes stereotypes as SMP2Model.

Make sure to set the default language of the element as SMP2.

3.1. Fields
There are two different ways for representing Model’s fields. Based upon the fields type, a

proper modelling must be taken. If the field represents a regular model parameter, then it is

modelled as a class attribute. However, if the field is an input/output field, then a port element

should be used, as illustrated in the next Figure.

Figure 1. Simulation model representation and its fields.

The different aspects of fields modelling are detailed next.

Simple fields

Simple fields are defined as a regular class attribute (see CSSModel::nominalCurrent).

Additionally, set the following:

 Stereotype: SMP2field

 Type: any SMP2 type (e.g. Smp::Int32)

 Initial Value (optional): value, accordingly to Type.

 Tagged values:

o state (optional) = {True, False}, default = True;

o viewKind (optional) = {none,debug, expert, all}, default = none;

For fields, all the tagged values are optional. By default, the fields are persistent and all

operations are published with View Kind option equals to None (i.e. not be made visible to the

user). If a different configuration is desired, define the corresponding tagged value.

Array fields

Array fields are also defined as a regular class attribute (see CSSModel::normalVector).

The same configuration of Simple Fields applies to Array Fields, but in addition the dimension

information must also be filled:

 Upper bound [Detail/Multiplicity]: array dimension (e.g. 3)

 Attributed is a collection [Detail/Collection]: checked.

Input/Output fields

Input/Output fields are special attributes of classes, since they can be linked with other fields.

In this way, they are modelled as Port elements.

To add a Port to the simulation model, right click the class element and select Embbeded

Elements / Add Port.

 class Coarse Solar Sensor

CSS_U_SunVector CSS_Y_Current
«SMP2Model»

CSSModel

«SMP2field»

- nominalCurrent :Smp::Float64

- normalVector :Smp::Float32 [3] = {1,0,0}

CSS_U_SunVector CSS_Y_Current

This element doesn’t support the same types of properties as the class attributes, so the Type

and Value (optional) should be inserted as tagged values. Additionally, set a tag output=true or

input=true, accordingly to field’s direction.

3.2. Exposed interfaces
When a simulation model implements a certain interface it can directly derive the base class.

However, to facilitate the dependence definition among models, the implemented interfaces

shall be described as exposed interfaces of classes. For each exposed interface, add an

embedded port and then an embedded provided interface.

The port must have the SMP2interface stereotype.

Figure 2. IEclipse is a provided interface by EclipseModel.

3.3. References
References are represented as requested interfaces and, analogy to the exposed interfaces,

they are modelled as embedded interface of a port belonging to the class.

The port’s stereotype must be SMP2interface and its name will be used as the container of the

model (Smp::Reference). The name of the interface is the name of the referenced interface.

Figure 3. SunVectorModel requires a reference to the IEclipseModel interface.

3.4. Containers
Containers are defined as composite relations. The link’s properties carry the name of the

container (i.e. Source Role), the multiplicity and must be SMP2container stereotyped.

 class Env ironment

«SMP2interface»

«SMP2Mod...

EclipseModel «SMP2interface»

«interface»

IEclipse

+ IsEclipse(Smp::Float32, Smp::Float32, Smp::Float32) :Smp::bool

IEclipse

 class Env ironment

«SMP2interface»

Eclipse[0..1]
Sun_Y_Vector[3]

«SMP2Mod...

SunVectorModel
«SMP2interface»

Eclipse[0..1]
Sun_Y_Vector[3]

IEclipse

Figure 4. The AOCSModel is a composition of Coarse Solar Sensors, whose are held in the

Sensors container.

3.5. Operations
Operations are same as regular class methods.

By default, all operations are published with View Kind option equals to None, which means

that it will not be not made visible to the user. If a different configuration is desired, define a

tagged value: viewKind = {debug, expert, all}.

The direction attribute of operation’s parameters should be specified to achieve its correct

publication (e.g. In, InOut, etc..).

Figure 5. The AOCSModel has an operation to Turn On/Off all the sensors.

3.6. Entry Points
Entry Points are the same as a regular class method, but a void/void function with

SMP2entryPoint stereotype. They can have tagged values to associate input and output fields.

Figure 6. The AOCSModel has an Entry Point Update().

3.7. Events
TBD.

 class AOCS

«SMP2Mod...

AOCSModel

«interface»

CSS::ICSS+Sensors

0..*«SMP2container»

 class AOCS

«SMP2Model»

AOCSModel

+ TurnOnSensors(Smp::bool) :void

 class AOCS

«SMP2Model»

AOCSModel

+ TurnOnSensors(Smp::bool) :void

«SMP2entryPoint»

+ Update() :void

4. Assembly Definition
The assembly defines the SMP2 link among the model instances. These connections are

defined in an object diagram, where the model instances are placed as object of classes.

When an object is created its embedded elements are not shown by default. In order to show

then, right click the element and choose Embedded elements… / embedded elements… /

Show Inherited.

4.1. Field values for the instance
The default field values for a given model’s instance can be defined as a tagged value. The

name of the value must be the same as the field. This feature doesn’t apply to output and

input fields.

Figure 7. Definition of normalVector for the instance CSS1 as a tagged value of object.

4.2. Composition
The model hierarchy is defined by the composition connection with SMP2composite

stereotype and the name of the parent’s container.

Figure 8. The composition of AOCS instance and its two sensors CSS1 and CSS2.

4.3. Field links

 class Assembly

«SMP2Model»

CSS1 :CSSModel

tags

normalVector = {0.5, 0.5, 0.5}

 class Assembly

«SMP2Model»

AOCS :AOCSModel

«SMP2Model»

CSS1 :CSSModel

tags

normalVector = {0.5, 0.5, 0.5}

CSS_U_SunVector[3]

«SMP2Model»

CSS2 :CSSModel

CSS_U_SunVector[3]

+Sensors

«SMP2composite»

+Sensors

«SMP2composite»

The field links are defined as direct dependencies between the output fields and input fields.

Strictly speaking, the input field depends on output field, but in order to better visualise the

data flow, this association is meant to be inverted.

The type of the fields being linked is not checked. A type mismatch will result in error during

the simulation building.

Figure 9. The output field Sun_Y_Vector::SunVectorModel is linked to the input field

CSS_U_SunVector::CSS2.

4.4. Interface Links

References as linked using the assembly connector with SMP2interfaceLink stereotype.

Figure 10. A interface link among Sun model (consumer) and Eclipse (provider).

5. Code Generation
This section describes the step to generate the source code of simulation models. All the

commands are accessed from the Add-Ins context menu.

 class Assembly

CSS_U_SunVector[3]

«SMP2Model»

CSS2 :CSSModel

CSS_U_SunVector[3]

Sun_Y_Vector[3]

«SMP2interface»

«SMP2Model»

Sun :

SunVectorModel

Sun_Y_Vector[3]

«SMP2interface»

IEclipse

«SMP2fieldLink»

 class Assembly

«SMP2interface»

«SMP2Model»

Eclipse :

EclipseModel
«SMP2interface»

Sun_Y_Vector[3]

«SMP2interface»

«SMP2Model»

Sun :

SunVectorModel

Sun_Y_Vector[3]

«SMP2interface»

IEclipseIEclipse

«SMP2interfaceLink»

Figure 11. Simbux Add-in commands.

5.1. C++ Class definition file (.h)
Using the same code generation command from Enterprise Architect and choosing the SMP2

language.

5.2. C++ Class implementation file (.cpp)
Right click the package or the class in the tree view and choose Add-in / Simubox / Generate

C++ code...

5.3. SMP2 catalogue file (.cat)
Right click the package or the class in the tree view and choose Add-in / Simubox / Generate

SMP2 Catalogue...

TBD

5.4. Project for implementing the model library and SMP2 Package
Right click a package in the tree view and choose Add-in / Simubox / Generate Lib Code...

Input the target path for the project and the Simubox root path (i.e. the location of Simubox

project).

The following files will be generated for a given Package:

 Package.pro: Qt project definition;

 Package_Global.h: Defines for DLL export or import directives;

 PackageLib.h: Library’s function definitions;

 PackageLib.cpp: Library’s function implementations; and

 PackageLib.pck: SMP2 package for the library.

6. Next version improvements

6.1. Fix current restrictions
1. Events are not modelled.

2. Array fields must be one-dimensional.

3. Structures, properties are not generated.

4. Class doesn’t derive from Smp::IDynamicInvocation.

5. The Model package generation doesn’t include the type registration capability.

6. The generated code for implemented interfaces only works for interfaces in the same

package.

7. The model must be in a packaged path with level greater than 1 in order to properly

generate de namespace.

8. Assembly always has rootModel as Root model and its reference to catalogue is

undefined.

9. The input/output types of fields being linked in Assembly are not checked. The

verification could avoid error during the simulation building.

10. There is not limit checking for the length of field names. Some field links IDs are

created with more than 32 characters, which is not allowed by the SMP2 standard.

11. It is not possible to define the generation order of the instances in the assembly.

6.2. Additional features
1. Assembly validation against SMP2 catalogue.

2. Schedule definition.

Appendix A. Description of Code Generator classes

SMP2CodeGenClass.cs: entry point of the add-in. It defines the menu entries and the functions

invoke by the Code Template Framework’s macros, used for definition code (.h) generation.

CppGenClass.cs: Produces the implementation source code (.cpp) of SMP2 C++ models.

LibGenClass.cs: Produces the files for building a component library (DLL) and a SMP2 Package .

CodeGenDialog.cs: generic dialog for file system browsing.

UtilClass.cs: common functions.

The component also includes an Enterprise Environment project with the examples of this

manual and additional models used in the verification of the add-in.

Copyright (c) 2014, Leandro Toss Hoffmann (INPE)> <leandro.hoffmann@inpe.br >

Permission to use, copy, modify, and distribute this model for any purpose with or without fee

is hereby granted, provided that the above copyright notice and this permission notice appear

in all copies.

This component is provided “as is” and the author disclaims all warranties with regard to it.

