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“Assim como você não conhece o caminho do vento, nem como o corpo é 

formado no ventre de uma mulher, também não pode compreender as obras de 

Deus, o Criador de todas as coisas.”  

Eclesiastes 11:5, A Bíblia 
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ABSTRACT 

Human activity and natural climate trends constitute a major threat to coral reefs 

worldwide. Models predict a significant reduction in reef spatial extension together with 

a decline in biodiversity in the relatively near future. In this context, monitoring 

programs to detect changes in reef ecosystems are essential. In recent years, coral reef 

mapping using remote sensing data has benefited from instruments with better 

resolutions and computational advances in storage and processing capabilities. 

However, the water column represents an additional complexity when extracting 

information from submerged substrates by remote sensing, which demands a correction 

of its effect. Another limitation arises when focusing in complex benthic substrates, 

with a mixture of different taxonomic and/or functional types with the aim to detect 

alterations. In the first part of this work a deep study about water column correction 

methods was proposed, showing some inter-comparisons of different algorithms and 

evaluating the uncertainties associated with the determination of bottom reflectance 

from above water radiometry. An inter-comparison of three methods was carried out 

using simulated spectra and remote sensing data of the Worldview-2 (WV02) sensor 

over the Abrolhos Coral Reef Bank (ACRB), Brazil. The results showed that the 

available methods were not able to completely eliminate the water column effect, but 

they minimized its influence. Uncertainties in retrieving the bottom reflectance from 

above-water spectra increase with depths and the concentration of optically water 

constituents. In clear waters with low colored dissolved organic matter (CDOM) 

concentration, uncertainties augmented towards the red spectral bands. While in 

environments with high CDOM concentration, uncertainties increased both towards the 

blue and the red spectral ends. Choosing the best method depends on the marine 

environment, available input data and desired outcome for the scientific application. In 

the second part of this study, hyperspectral above-water radiometry sampled over 

natural benthic communities in the ACRB were analyzed to: (i) evaluate the ability of a 

water column algorithm to retrieve accurate bottom reflectance spectra from above-

water radiometric measurements; and (ii) assess the separability of submerged benthic 

communities with subtle differences based on their reflectance spectra. Despite of the 

good performance to retrieve bottom reflectance from above-water radiometric 

measurements, benthic communities in the ACRB, whose waters were characterized as 

Case-2, were not spectrally separable. This implies that effective monitoring programs 

in the ACRB able to detect insightful alterations in the benthic coverage, necessarily 

have to include both complementary approaches:  remote sensing and field campaigns. 

In the last part of this work, an area belonging to the ACRB was mapped for the first 

time into benthic classes using high spatial resolution orbital imagery of the 

WorldView-2 (WV02) sensor. This sensor has 6 bands in the visible region, but only 

one band at 478 nm was used because of the low performance to correct the water 

column effect, which represented one of the main challenges in this work. The produced 

map had an accuracy of 88.2% and a Kappa index of 0.81 using four classes (Reef, 

Sand, Macroalgae, Inter-reef areas), however new validation points are required to 

validate the entire scene. The isolated reefs covered an area of approximately 22 km
2
 

that correspond to 12.4% of the total area. Chapeirões were distributed almost in all the 

studied area, formed by patches with different sizes. Macroalgae were the most 
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abundant class in the scene and was concentrated around the Archipelago and inter-reef 

areas. Further works regarding extensive in situ data collection to properly describe the 

benthic communities and their spectral behavior, as well as the water column 

constituents and depths surveys are recommended to improve satellite mapping of the 

bottoms types in the Abrolhos Coral Reef Bank.  
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ANÁLISE DO POTENCIAL DE DADOS HIPERESPECTRAIS ÓPTICOS 

OBTIDOS IN SITU E DE IMAGENS DE SATÉLITE DE ALTA RESOLUÇÃO 

ESPACIAL PARA MAPEAR TIPOS DE FUNDO DOS RECIFES DE CORAIS 

DO BANCO DOS ABROLHOS (BRASIL) 

 

RESUMO 

Atividades antrópicas e mudanças climáticas são as maiores ameaças aos recifes de 

corais no mundo inteiro. Modelos preveem uma redução significativa na extensão 

espacial dos recifes acompanhado por um declínio na biodiversidade num futuro 

relativamente próximo. Neste contexto, programas de monitoramento de detecção de 

mudanças em ecossistemas de recifes de corais são essenciais. Nos anos recentes, o 

mapeamento de recifes de corais usando dados de sensoriamento remoto tem se 

beneficiado com o advento de instrumentos com melhores resoluções e avanços 

computacionais em termos de capacidade de armazenamento e processamento de dados. 

No entanto, a coluna de água representa uma complexidade adicional quando se quer 

extrair informação dos substratos submersos por sensoriamento remoto, o que demanda 

a correção deste efeito. Outra limitação advém quando se tratam de substratos 

bentônicos complexos, com mistura de diferentes grupos taxonômicos e/ou tipos 

funcionais, quando o objetivo é detectar alterações. Na primeira parte deste trabalho foi 

proposto um estudo aprofundado sobre métodos de correção da coluna de água, com a 

comparação de diferentes algoritmos e a avaliação das incertezas associadas à 

determinação da reflectância de fundo da radiometria acima da água. A inter-

comparação de três métodos foi realizada usando espectros simulados e dados de 

sensoriamento remoto do sensor Worldview-2 (WV02) sobre os Recifes de Corais do 

Banco de Abrolhos (RCBA), Brasil. Os resultados mostram que os métodos disponíveis 

não foram capazes de eliminar totalmente o efeito da coluna de água, mas minimizaram 

a sua influência. As incertezas na determinação da reflectância de fundo de espectros 

obtidos acima da água aumentam com a profundidade e concentração dos constituintes 

opticamente ativos. Em águas claras com baixas concentrações de matéria orgânica 

dissolvida colorida (MODC), as incertezas foram maiores para as bandas espectrais do 

vermelho. Enquanto que em águas com alta concentração de CDOM, as incertezas 

aumentaram tanto para as bandas do azul como do vermelho. A escolha do melhor 

método vai depender do ambiente marinho, da disponibilidade dos dados de entrada e 

da saída desejada para a aplicação científica. Na segunda parte deste estudo, dados 

radiométricos hyperespectrais medidos acima da água, sobre comunidades bentônicas 

naturais do RCBA, foram analisados para: (i) avaliar a habilidade de um algoritmo de 
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correção da coluna de água em obter espectros de reflectância de fundo acurados, das 

medidas radiométricas acima da água; e (ii) verificar a separabilidade de comunidades 

bentônicas submersas com diferenças sutis, com base nos espectros de reflectância de 

fundo. Apesar do bom desempenho para a obtenção da reflectância de fundo das 

medidas radiométricas acima da água, as comunidades bentônicas do RCBA, com águas 

caracterizadas do tipo Caso-2, não foram espectralmente separáveis. Isso implica que 

programas de monitoramento no RCBA, eficientes para detectar alterações importantes 

na cobertura bentônica, necessariamente têm que incluir técnicas complementares com 

coleta de dados in situ e de satélite. Na última parte deste trabalho, uma área pertencente 

ao RCBA foi mapeada pela primeira vez em classes bentônicas, usando uma imagem de 

alta resolução espacial do sensor WorldView-2 (WV02). O sensor possui 6 bandas 

espectrais na região do visível, mas somente a banda centrada em 478 nm foi usada 

devido ao baixo desempenho da correção da coluna de água, que foi um dos maiores 

desafios encontrados no presente trabalho. O mapa resultante apresentou uma acurácia 

de 88,2% e um índice Kappa de 0,81 com 4 classes (Recifes, Areia, Macroalga, Áreas 

inter-recifais), no entanto, novos pontos de validação são necessários para cobrir a cena 

inteira. Os recifes isolados cobriram uma área de aproximadamente 22 km
2
 que 

corresponderam a 12,4% da área total. Os chapeirões foram distribuídos em quase toda 

a área de estudo, formando manchas (ou agregados) de diferentes tamanhos. A classe 

mais abundante em toda a cena foi de Macroalgas, concentrada no entorno no 

Arquipélago e das áreas inter-recifais. Trabalhos futuros com coletas intensivas de 

dados in situ para descrever melhor as comunidades bentônicas e seu comportamento 

espectral, bem como os constituintes da coluna de água e mapeamentos batimétricos, 

são recomendados para melhorar o mapeamento dos tipos de fundo dos Recifes de 

Corais do Banco de Abrolhos, por meio de imagens de satélite 
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1 INTRODUCTION 

Coral reefs are the most biodiverse and productive ecosystems in marine environments 

(CONNELL, 1978). Several studies have shown that these ecosystems appear to be the 

first to respond to global climate changes, such as increasing sea surface temperature 

(SST) and ultraviolet radiation, and the acidification of seawater that results from higher 

levels of atmospheric CO2 concentration (HOLDEN; LEDREW, 1998; HOEGH-

GULDBERG, 1999). SST increases can lead to the loss of symbiotic relationships 

between corals and zooxanthells and cause coral bleaching events. In response to ocean 

acidification, a decrease in the biodiversity of these ecosystems can be expected 

(HOEGH-GULDBERG et al., 2007). Additionally, variation in sedimentation rates 

caused especially by deforestation can also result in negative feedbacks for these 

ecosystems. Because of its sensitivity, coral reefs are considered biological indicators of 

global climate change (HOLDEN; LEDREW, 1998). In this context, monitoring 

programs to detect changes in coral reef biodiversity and coral bleaching are essential.  

As in other environments, remote sensing approaches for acquiring data in coral reef 

ecosystems are the most cost-effective, allowing for the synoptic monitoring of large 

areas, including places with difficult access (MUMBY et al., 1999). In recent years, 

remote sensing studies on coral ecosystems have increased considerably because of the 

greater availability of orbital sensors with better spatial and spectral resolutions, as well 

as the development of different techniques for digital classification processes. Orbital 

high spatial resolution sensors, such as IKONOS and Quickbird (4 and 2.4 m, 

respectively), as well as high spectral resolution sensors (e.g., Airborne Visible/Infrared 

Imaging Spectrometer –AVIRIS) and other airborne sensors with both high spatial and 

spectral resolutions (e.g., Compact Airborne Spectrographic Imager - CASI, Portable 

Hyperspectral Imager For Low Light Spectroscopy - PHILLS, Advanced Airborne 

Hyperspectral Imaging Sensors -AAHIS) have been successfully used in coral reef 

studies (ANDRÉFOUËT et al., 2003; LOUCHARD et al., 2003; HOCHBERG; 

ATKINSON, 2003; PHINN et al., 2012, among many others). These technologies have 

improved mapping accuracy compared to other multispectral sensors traditionally used.   

Even though remote sensing has the potential to map pure bottom types in submerged 

reef environments, the next challenge would be to monitor biodiversity to detect 
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changes in the benthic communities along time. Literature shows that most of the works 

using this technology in coral reefs were conducted in the Caribbean Sea, in Polynesia 

and the Great Barrier Reef in Australia, where water is very clear, the biological 

communities show high diversity and geomorphology presents distinctive zones. Some 

limitations arise when focusing in complex benthic substrates, with a mixture of 

different taxonomic and/or functional types, with the aim to detect alterations. The 

water column above these targets introduces additional complexity and the performance 

in removing its effect needs to be known to obtain adequate conclusions about the 

environmental shifts. 

In the present work, some of these constraints are addressed for the Abrolhos Coral 

Reef Bank (ACRB), Brazil, which is an unexplored geographic area from the remote 

sensing of the bottom point of view. Chapter 3 includes a theoretical background and a 

revision of the proposed methods correct the water column effect. Chapter 4 describes 

main characteristics of the ACRB, in situ and remote sensing data used in this work. In 

chapter 5, a deep study about water column correction methods was performed, 

showing some inter-comparisons of different methods and evaluating the uncertainties 

associated with the determination of bottom reflectance from above water radiometry. 

In chapter 6, the spectral separability of hyperspectral above water radiometry sampled 

over natural benthic communities was analyzed for the ACRB. The water column effect 

was not neglected for the radiometric measurements and demanded a correction of its 

distortion. In chapter 7, an area belonging to the ACRB was mapped into benthic 

classes using high spatial resolution orbital imagery of the WorldView-2 (WV02) 

sensor. Finally, in chapter 8, some recommendations for future works and concluding 

remarks are addressed.  
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2 OBJECTIVES 

General 

The general objective of this work was to evaluate the potential of remote sensing to 

map coral reef areas and monitor changes in submerged benthic communities in coastal 

waters of the Abrolhos Coral Reef Bank, Brazil. 

Specific 

As specific objectives the following were proposed:  

 To evaluate the evaluate the performance of the algorithms in the retrieval of 

bottom reflectance associated with (i) different optical active constituents 

(OAC) concentrations in the water, (ii) bathymetry gradient, and (iii) types of 

bottom substrate, using simulated spectra, multispectral remote sensing data 

and in situ above-water radiometric hyperspectral measurements collected at 

the ACRB;  

 To analyze the spatial variability of OAC in waters of the ACRB, collected 

during two summer campaigns; 

 To assess the potential to detect subtle changes in the submerged benthic 

community composition by above water radiometry and detect possible 

diagnostic spectral features of these changes;  

 Finally, to achieve the first bottom type map of the external arc of the ACRB 

using remote sensing data collected with the WV02 orbital sensor. 
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3 THEORETICAL BACKGROUND 

3.1. Some concepts in ocean color remote sensing  

3.1.1. Top-of-atmosphere signal components  

Although remote technologies have a great potential in studies of the sea bottom, 

extracting the reflectance spectrum from the data of orbital optical sensors is complex. 

Several processes affect satellite signals which include four main contributions that 

should be properly treated: (i) photons that interact with the atmosphere but do not 

reach the water surface. This is an inherent problem for any type of terrestrial target 

studied by remote sensing. Nevertheless, in oceanic environments, atmospheric 

interference should be carefully considered because Rayleigh scattering caused by gas 

molecules that constitute the atmosphere is higher in shorter wavelengths where light 

has a higher penetration in the water; (ii) photons directly or diffusely reflected by the 

air-sea interface according to Fresnel laws. The specular reflection of direct sunlight is 

commonly referred to as the sunglint effect. The amount of energy reflected by the 

surface depends on the sea state, wind speed and observation geometry (solar and view 

angles), and in images with very high spatial resolution (lower than 10 m), it causes a 

texture effect that introduces bottom confusion and distortions in reflectance spectrum 

(HOCHBERG et al., 2004; HEDLEY et al., 2005; LYZENGA et al., 2006; KAY et al., 

2009); (iii) photons that penetrate the ocean and interact with water molecules and other 

constituents of the water column, but do not reach the bottom; and (iv) photons that 

have interacted with the bottom and contains information about its reflectance 

properties. Removing the interference of the atmosphere and surface, the first two 

contributions, to arrive at the signal backscattered by the water body and bottom 

requires applying specific procedures (atmospheric correction schemes) to the satellite 

imagery. 

A passive optical sensor in space measures the top-of-atmosphere reflectance (𝜌𝑇𝑂𝐴) 

(adimensional) (Figure 3.1), defined as: 

𝜌𝑇𝑂𝐴 =
𝜋𝐿𝑇𝑂𝐴

𝐸𝑆𝑈𝑁 (
𝑑
𝑑0

)
2 (3.1)  
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where 𝐿𝑇𝑂𝐴 corresponds to the radiance (in W m
-2

 sr
-1

 m
-1

) received by an orbital 

optical sensor, 𝐸𝑆𝑈𝑁 is the solar downward irradiance at TOA (in W m
-2

 m
-1

), 𝑑 is the 

distance between the Sun and Earth at the day the image was captured and 𝑑0 is the 

mean distance between the Sun and Earth. Various processes affect the TOA signal, 

namely scattering and absorption by the atmosphere (Figure 3.1, Number 1), Fresnel 

reflection (Figure 3.1, Number 2), backscattering by the water body (Figure 3.1, 

Number 3), and bottom reflection (Figure 3.1, Number 4). 

 

 
Figure 3.1 – Diagram representing main processes that contribute to signal measured by a 

passive remote sensor above shallow waters 

 

After crossing the atmosphere to the surface, two distinctions can be made between 

optically deep water that correspond to water that does not have an influence of the 

bottom and optically shallow water that is where the remote sensing signal integrates 

the contribution of the bottom and water column. Analogously, we can define water 
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reflectance (or surface reflectance) of the optically deep (𝜌∞) and shallow water (𝜌𝑤), 

which are both adimensional, according to equations 3.2 and 3.3: 

 

𝜌∞ =
𝜋𝐿∞

𝐸𝑆𝑈𝑁 (
𝑑
𝑑0

)
2

𝑡(𝜃𝑠)

=
𝜋𝐿∞

𝐸𝑑0
 (3.2)  

  

𝜌𝑤 =
𝜋𝐿𝑤

𝐸𝑆𝑈𝑁 (
𝑑
𝑑0

)
2

𝑡(𝜃𝑠)

=
𝜋𝐿𝑤

𝐸𝑑0
 (3.3)  

  

where 𝐿∞ and 𝐿𝑤 correspond to water-leaving radiance (in W m
-2

 sr
-1

 m
-1

) in water 

without and with bottom influence, respectively, 𝑡(θs) is the atmospheric transmittance 

for the solar zenith angle θs and 𝐸𝑑0 is the downward solar irradiance at the water 

surface (in W m
-2

 m
-1

). These reflectances correspond to the signal from the ocean 

after atmospheric correction. The differences between equation 3.2 and 3.3 are that 𝐿∞ 

only corresponds to the interaction between photons and water constituents in the water 

column, and 𝐿𝑤 includes, in addition, the effects of bottom reflectance (𝜌𝑏). Note that 

the definitions of 𝜌𝑤 and 𝜌∞(e.g., Equations 3.2 and 3.3) assume that the water body is 

Lambertian, e.g., they represent true reflectances only in this case. 𝜌𝑏 can be formally 

defined as:  

 

𝜌𝑏 =
𝜋𝐿𝑏

𝐸𝑑𝑧
 (3.4)  

  

where 𝐿𝑏 is the radiance from the bottom and 𝐸𝑑𝑧 is the irradiance at the bottom depth 

𝑧, and it is also considered as Lambertian. Note that to avoid considering anisotropy of 

the reflected light field, a commonly used quantity is the remote sensing reflectance 

(𝜌𝑅𝑆), expressed in sr
-1

. It is defined as:  
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𝜌𝑅𝑆 =
𝐿𝑤

𝐸𝑑0
 (3.5)  

  

𝜌𝑅𝑆 is not strict sensu a reflectance because it has units of sr
-1

. If the water body is 

Lambertian, then 𝜌𝑤 and 𝜌𝑅𝑆 differ by a factor of π.  

Reflectance may also be expressed in terms of irradiance. In this case, it is called the 

irradiance ratio or irradiance reflectance (𝑅) (adimensional) and is formally defined as: 

 

𝑅 =
𝐸𝑢

𝐸𝑑
 (3.6)  

  

where 𝐸𝑢 and 𝐸𝑑 are upward and downward irradiances, respectively. Depending on the 

atmospheric correction model applied, results will be in terms of radiance (e.g., water-

leaving radiance) or reflectance (e.g., surface reflectance or remote sensing reflectance). 

3.1.2. Physical processes in water column  

In the path between the water surface and marine bottom, electromagnetic radiation 

interacts with optically active constituents (OAC) by absorption and scattering 

processes. Both processes occur simultaneously in the water column and can be 

expressed by the beam attenuation coefficient (𝑐, m−1) as the sum of the absorption 

(𝑎, m−1) and the scattering (𝑏, m−1) coefficients. The 𝑐 value can be easily obtained; 

however, it is difficult to obtain the relative contribution of absorption and scattering to 

the total attenuation (KIRK, 2003). The coefficients 𝑎, 𝑏 and 𝑐 are Inherent Optical 

Properties (IOP) that depend on the water column characteristics and do not depend on 

the geometric structure of light field (MOBLEY, 1999). 

In natural environments, other OAC are present in addition to water molecules and 

cause the attenuation of light throughout the water column. The OAC can be classified 

as: (i) colored dissolved organic matter (CDOM), that is a fraction of the dissolved 

organic matter (<0.2 µm); (ii) total suspended matter (TSM), defined for ocean color 

purposes as the material retained in a 0.7 µm (nominal) pore-sized filter; and (iii) 
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phytoplankton pigments, in which chlorophyll-a (chl-a) is the most studied (KIRK, 

1983).  

Each OAC has typical and different spectral behavior (Figure 3.2). Water molecules 

absorb little quantity of radiation in the blue and green regions, but its absorption 

increases towards wavelengths in the red. CDOM strongly absorbs energy in the UV 

and blue regions, showing an exponential behavior that results in low or null absorption 

in the red (BRICAUD et al., 1981). In comparison with CDOM and water molecules, 

TSM do not show strong absorption, however, it presents significative contribution to 

scattering processes (MUMBY; EDWARDS, 2000). Absorption by phytoplankton 

depends on their pigments presence and concentration, as well as size and shape of 

phytoplanktonic cells or colonies. The spectrum of chl-a, which is present in all vegetal 

cells, shows absorption peaks in the blue and red regions.  

 

 

 

Figure 3.2 – (a) Absorption coefficients spectra (m
-1

) measured in a productive oceanic 

environment (1 mg m
-3

 chl-a): Total absorption (black), TSM absorption (red), 

water molecules (blue), phytoplankton (green), and CDOM (yellow). (b) 

Absorption spectra of phytoplankton (green) and TSM (red) are plotted, for a 

better visualization.  

                       

                       Source: Kirk (2011) 
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In a simplified manner and through conservation of energy, transmitted light that 

reaches the benthic community is the incident light in the surface water minus the 

absorbed and scattered energy within the water column minus the reflected energy of 

the water surface: 

 

𝛷𝑡(𝜆) = 𝛷𝑖(𝜆) − 𝛷𝑎(𝜆) − 𝛷𝑠(𝜆) −  𝛷𝑟(𝜆) + 𝛷𝐹∗𝑝ℎ𝑦𝑡𝑜(𝜆)

+ 𝛷𝐹∗𝐶𝐷𝑂𝑀(𝜆) + 𝛷𝑠𝑅𝑎𝑚𝑎𝑛
(𝜆) 

(3.7)  

 

where Φ𝑡(𝜆),  Φ𝑖(𝜆), Φ𝑠(𝜆) and Φ𝑟(𝜆) (W) correspond to transmitted, incident, elastic 

scattered and reflected by water sea radiant flux, respectively. Inelastic scattering 

implies changes in the wavelength and/or polarization of scattered photons (MOBLEY, 

1994). F𝑎() accounts for OAC absorption and photons lost in inelastic scattering in . 

F𝐹∗𝑝ℎ𝑦𝑡𝑜() and F𝐹∗𝐶𝐷𝑂𝑀() refer to the fluorescence by phytoplankton pigments and 

CDOM, respectively, and F𝑠𝑅𝑎𝑚𝑎𝑛
() refers to Raman scattering by water molecules. In 

these terms, lost in wavelength ’ (excitation wavelength) acts as source of  (emission 

wavelength in cases of inelastic scattering). Chlorophyll-a fluorescence emission band 

is approximately 685 nm, CDOM fluorescence emission is within a broad range, and 

Raman scattering by water molecules influences the underwater light between 550 and 

650 nm (HUOT et al., 2007; ZIMMERMAN; DEKKER, 2006). 

3.1.3. Light penetration in the water column  

Once solar irradiance reaches the water surface, the simplest model that describes the 

light attenuation in the water column considers that 𝐸𝑑0 decays exponentially with depth 

(𝑧) as the Beer-Lambert Law and is a function of wavelength (λ):  

𝐸𝑑𝑧 = 𝐸𝑑0𝑒−𝐾𝑑𝑧 (3.8)  

  

where 𝐸𝑑𝑧 and 𝐸𝑑0 are the downwelling irradiance at depth 𝑧 and the water surface, 

respectively. 𝐾𝑑  (m−1) is the diffuse attenuation coefficient of the downward irradiance 

defined in terms of the decrease of the ambient downwelling irradiance (𝐸𝑑) with depth 
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that comprises photons heading in all downward directions (MOBLEY et al., 1994); 

𝐾𝑑()  varies vertically with depth, but in ocean color remote sensing it is generally 

used as an average over the first attenuation depth, that is referred to in this work. 

Unlike 𝑎, 𝑏 and 𝑐, 𝐾𝑑 is an Apparent Optical Property (AOP) that depends on water 

column characteristics (scattering and absorption properties) and the geometric structure 

of light fields.  

 

𝐾𝑑 = −
𝑑 𝑙𝑛 𝐸𝑑

𝑑𝑧
= −

1

𝐸𝑑

𝑑𝐸𝑑

𝑑𝑧
 (3.9)  

  

From in situ measurements of the vertical profile of 𝐸𝑑, 𝐾𝑑 also can be estimated as the 

slope of the linear regression in a plot of (ln 𝐸𝑑) 𝑣𝑒𝑟𝑠𝑢𝑠 𝑧 over the depth range of 

interest. Other approaches that more accurately obtain 𝐾𝑑 values may be encountered in 

Kirk (2003). Nevertheless, some approximation of 𝐾𝑑 can be estimated from remote 

sensing data. For example, Lee et al. (2005) provide an algorithm for its estimation that 

performed well even in Case-2 waters (those waters influenced not just by 

phytoplankton and related particles, but also by other substances that vary 

independently of phytoplankton, notably inorganic particles in suspension and yellow 

substances (MOREL; PRIEUR, 1977; GORDON; MOREL, 1983; IOCCG, 2000). The 

algorithm is based in estimates of certain IOP, 𝑎 and backscattering (𝑏𝑏) coefficients 

obtained from remote sensing from the Quasi-Analytical Algorithm (QAAv5) (LEE et 

al., 2002). 

The depth of light penetration is compromised when the concentration of OAC in the 

water column is high. Because of the 𝐸𝑑 that reaches the water column, bottom 

detection decreases as the water constituent concentration increases, and, 𝐾𝑑 increases 

as OAC increase.  

As a result of light in the water column interacting with OAC, 𝐾𝑑 is also affected by the 

OAC concentration. Figure 3.3a shows the light attenuation in Case-1 waters with very 

low chl-a concentration (0.01 mg m
-3

) for different wavelengths: 450 nm (a) 500 nm (b) 

550 nm (c) 600 nm (d) and 650 nm (e). Attenuation increases with  such that light in 
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the red region has a low penetration in which, only 1% of the surface radiance 

penetrates to 20 and 13 m for the 600 and 650 nm wavelengths, respectively. As a result 

of the low light penetration for wavelengths greater than 700 nm, in submerged 

substrate mapping by remote sensing, only the sensors that operate in the visible region 

are used. Figure 3.3b compares the curves of light penetration in different environments 

at 400 nm: Case-1 waters with a chl-a concentration of 0.1 mg m
-3

 (a); coral reef 

environments using the 𝐾𝑑 value of 0.14 m
-1

 found in French Polynesia 

(MARITORENA, 1996) (b); Abrolhos Coral Reef Bank (ACRB), Brazil with a 𝐾𝑑 of 

0.18 m
-1

 (c); Case-1 waters with a chl-a concentration of 1 mg m
-3

 (d); and Case-2 

waters with a chl-a concentration of 0.5 mg m
-3

,
 
CDOM absorption

 
at 400 nm of 0.3 m

-1
  

and mineral concentration of 0.5 g m
-3

 (e). In these natural coral reef ecosystems, 

particulate and dissolved matter occurs along with phytoplankton biomass. In low chl-a 

concentration waters (0.1 mg m
-3

) at 100 m depths, 3.8% of the water surface irradiance 

penetrates. If chl-a concentrations experience rise a 10 fold, attenuation increases 

disproportionally and this light percentage reaches only the first 14 m in depth. It is 

known that total pigments concentration increases at low irradiance levels as result of 

ontogenetic chromatic acclimation processes (WAALAND et al., 1974; ROSENBERG; 

RAMUS, 1982; HANNACH, 1989; DAWES, 1998). It means that if for example a 

macroalgae specie occurs in two different depths, it is expected to be found higher 

pigments content in the deepest one.  

In optically deep waters, the effective penetration depth of imagery (commonly called 

𝑧90) is the layer thickness from which 90% of the total radiance originates; this depth is 

approximately: 

𝑧90 ≅
2.3

𝐾𝑑
 

(3.10)  

 

Therefore, if the target of interest is located below 𝑧90, the water column correction 

would be severely compromised or not able to correct the water column effect. This 

would be caused by not enough photons reaching to the bottom and returning to the 

surface. If 𝐾𝑑 decays, the maximum depth in which a substrate can be detected 

increases. If the objective is to map a substrate, for example, at 10 m depth, 𝐾𝑑 should 
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be equal or lower than 0.10 m
-1

. To map deeper areas, the water should be clearer. In 

clear waters, the maximum depth in which reef bottoms can be mapped by optic remote 

sensing varies between 20 m (ISOUN et al., 2003) to 25 m (GREEN et al., 2000). These 

depths are further reduced in turbid Waters. 

 

 

Figure 3.3 – Light decay modeled along water column expressed as percentage of incident light 

as function of depth (m). (a) Curves represent different wavelengths (nm) in an 

environment considered as Case-1 water, where chl-a concentration is 0.01 mg 

m
-3

. (b) All curves represent light at 400 nm but in different kind of 

environment: Case-1 waters (chl-a=0.1mg m
-3

); French Polynesia Case-1 waters 

(𝐾𝑑=0.14 m
-1

); Case-2 waters in ACRB, Brazil (𝐾𝑑=0.18 m
-1

); Case-1 waters 

(chl-a=1 mg m
-3

); Case-2 waters (chl-a=0.5 mg m
-3

, 𝑎𝐶𝐷𝑂𝑀(400)=0.3 m
-1

, 

minerals concentration=0.5 g m
-3

).  

 

 

3.1.4. Surface and bottom reflectance relation  

The reflectance (𝜌𝑤) measured at surface with 𝜌𝑏 may be related to the water column 

reflectance following expression 3.11 (BIERWIRTH et al., 1993): 
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𝜌𝑤 = 𝜌∞(1 − 𝑒−2𝐾𝑑𝑧) + 𝜌𝑏𝑒−2𝐾𝑑𝑧 (3.11)  

 

where 𝜌∞ refers to the remote sensing reflectance from optically deep water that does 

not  influence the bottom and can be used as a proxy of water columns above shallow 

substrates, assuming that its characteristics are depth independent. The influence of 

different water columns in the above water reflectance of shallow bottom types are 

illustrated below. Different substrates (e.g., coral sand, brown algae and green algae) 

can be easily distinguishable from each other by their spectral behavior when they are at 

the surface (Figure 3.4a). Coral sand has a high reflectance in the visible spectra, which 

increases with wavelength. Both algae types have a lower reflectance with an absorption 

band at approximately 680 nm that responds to accessory pigments and increments 

towards the infrared region, where reflectance is high and caused by high scattering 

within the vegetal tissue. These two curves are also easily differentiated by their 

reflectance peak, at approximately 550 nm in the case of green algae and displaced to 

the red region (at approximately 600 nm) in brown algae. 

Different simulations were performed using WASI v.4 software (GEGE, 2012) to assess 

the impact caused by the above water reflectance as a result of different water columns 

upon the substrate. In all simulations, the same environmental conditions were 

considered. In the first simulations, the set depth was altered using Case-1 water models 

at low chl-a concentrations (0.05 mg m
-3

), that covaried with the CDOM (aCDOM (440) = 

0.004787 m
-1

) according to Morel and Gentili (2009) (Figure 3.4b-d). When the 

substrate was placed under a water column of 1 m thickness, the reflectance decreased 

across the spectra and was even high at longer wavelengths. This situation was 

exacerbated with the bottom depth increment. At 20 m, it was possible to differentiate 

the substrate type at wavelengths smaller than 570 nm. In the second set of modeled 

bottoms, the water column characteristics were changed to Case-2 waters (chl-a: 1 mg 

m
-3

; aCDOM (440) = 0.3 m
-1

; minerals: 1 g m
-3

). In this case, at a 1 m depth, the three 

spectra showed lower reflectance than in Case-1 waters; however the substrate types 

were easily separable (Figure 3.4e).  
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Figure 3.4 – (a) Reflectance of different substrates at 0 m depth, as function of wavelength (in 

nm): coral sand (blue), brown algae (red) and green algae (green) (Maritorena et 

al. 1994). (b-d) Reflectance above water versus wavelength (nm) simulated for 

the same substrates in clear Case-1 waters (chl-a = 0.05 mg m
-3

) at different 

depths: 1, 5 and 20 m, respectively. (e-g) Reflectance above water versus 

wavelength (nm) simulated for the same substrates in Case-2 waters (chl-a: 1 

mg m
-3

; aCDOM (440) = 0.3 m
-1

; minerals: 1 g m
-3

) at different depths: 1, 5 and 20 

m, respectively.  

 

In contrast to the same depth for clear waters, it was possible to see a decrease in 

reflectance in the blue region in the coral sand spectrum (400-500 nm), which was 

related to the presence of CDOM that strongly absorbs in this region. When substrates 

were situated at 5 m or deeper, if differentiation was possible, it was in the green region. 
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If the three bottoms were at 20 m depth, they showed exactly the same curve, which 

indicate that this water constitution prevented the bottom detection and can be 

considered optically deep (Figures 3.4f-g). Curves at 20 m did not have the higher 

above water reflectance in the blue region; however, they do have a reflectance at 

approximately 550 nm because of the chl-a present in the water and CDOM absorption 

at 400-500 nm. A higher reflectance can be detected at approximately 600 nm compared 

to clear water be caused of the TSM scatterings. Therefore, the remote sensing 

reflectance should be corrected for the column water effect to minimize the confusion 

between bottom types. 

3.2. Water column correction algorithms 

All the water correction algorithms reviewed in the following require data that have 

been radiometrically corrected/calibrated and masked for land and clouds. Most of them 

also require previous atmospheric corrections. The algorithms consider the bottom as a 

Lambertian reflector and the terms of reflectance and albedo of the bottom are used 

interchangeably. They also consider that the signal measured at the surface (being 𝐿, 𝑅, 

𝑅𝑆) can be separate into two additive components: the water column and the bottom.  

Algorithms differ in their ways of estimating partial contributions to the surface signal 

and we propose grouping them according to their methodological approach. The models 

are summarized in Table 3.1, including the approach, characteristics, input data, main 

equations and output. 

3.2.1. Band combination algorithms 

Algorithms in this group can be applied to multispectral data and assume that bottom 

radiance (𝐿𝑏) is a linear function of bottom reflectance and an exponential function of 

its depth. Therefore, these algorithms attempt to linearize the relation between radiance 

and water depth (LYZENGA, 1978). The first algorithm was proposed by Lyzenga 

(1978) and other derivations have been made and are presented here. Some of these 

algorithms use 𝐾𝑑, and although the best estimations of this parameter are obtained 

from in situ data, different approaches to estimate 𝐾𝑑 from satellite data have been made 

(Figure 3.5). 
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These algorithms start with 𝐿𝑇𝑂𝐴 in shallow areas and the subtraction of the term 𝐿∞ 

accounts for the influence of the atmosphere based on the dark pixel correction method. 

Validity of this procedure for atmospheric correction is limited and sometimes the 

image to be corrected does not include optically deep waters. For some methods, an 

alternative to this restriction could be performing an atmospheric correction 

independently and replace terms (𝐿𝑇𝑂𝐴 − 𝐿∞) by 𝐿𝑤. 

3.2.1.1. Lyzenga’s algorithm 

Lyzenga’s algorithm (LYZENGA, 1978; 1981) is currently one of the most popular 

approaches (e.g., ANDREFOUËT et al., 2003, MUMBY et al., 1997; MUMBY; 

EDWARDS, 2002; VANDERSTRAETE et al., 2006; BENFIELD et al., 2007; 

GAGNON et al., 2007; CALL et al., 2003; CIRAOLO et al., 2006; VALESINI et al., 

2010; PU et al., 2010; ZHANG et al., 2013, among others) and the use of this 

methodology for water column correction has resulted in increased mapping accuracy 

(MUMBY et al., 1998; GREEN et al., 2000; ACLKESON; KLEMAS, 1987; ZAINAL 

et al., 1994). This is a relatively simple algorithm in which the local depth of the entire 

scene is not required. The main assumptions of this model are that: (i) differences in 

radiances between different pixels for the same substrate are due to differences in depth, 

and (ii) 𝐾𝑑 is constant for each band. The first step is to select pixel samples for the 

same bottom at different depths and plot (ln 𝐿𝑤,𝑖) 𝑣𝑒𝑟𝑠𝑢𝑠 (ln 𝐿𝑤,𝑗), where Lw,i and Lw,j 

are water-leaving radiances in each band i and j, respectively. Depths of these samples 

must be known, accurate and corrected for the tidal height. The slope of the regression 

corresponds to a proxy of the attenuation coefficient ratio 𝐾𝑑,𝑖 𝐾𝑑,𝑗⁄  that is a constant 

value for any substrate because it only depends on the band wavelength. As result, a 

new image composition of depth-independent bands i and j (pseudo-color band) is 

generated. Figure 3.5a shows an adaptation of Mumby and Edwards’ scheme (2000) 

and Yamano’s diagram (2013) that represents the method proposed by Lyzenga (1978). 

This algorithm does not retrieve substrate reflectance, instead, and the results are a 

relation between radiances in two spectral bands without a depth effect. The result will 

be in (𝑁 − 1) bands. The algorithm assumes vertical and horizontally homogeneous 

optical properties and a small variability in the bottom reflectance considering the same 

type of substrate. This method is applicable only in waters with high transparency, and 
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its performance depends on the wavelength. Into the entire visible region, this algorithm 

produces accurate results until 5 m depth and may be suitable until 15 m depth for 

bands in the blue and green wavelengths (LYZENGA, 1981). Lyzenga (1981) applied 

his algorithm to airborne multispectral data and spaceborne Multispectral Scanner 

(MSS)/LANDSAT data. The validation did not include comparisons with measured 

reflectance using a radiometer but with percentage of reflectance estimated from color 

intensity, in pictures registered in 9 homogeneous areas between 3 and 5 m in depths. 

The author found that the remote sensing data corrected with his algorithm estimates 

reflectances with a standard error between 0.018 and 0.036 for the airborne data and 

MSS/LANDSAT data, respectively. 

Mumby et al. (1998) applied the Lyzenga model in CASI data and in Thematic Mapper 

(TM)/LANDSAT, MSS/LANDSAT and Multi- /Satellite Pour l'Observation de la Terre 

sensors (XS/SPOT) images and then classified the images with and without water 

column corrections. They recognized that in the CASI image, the water column 

correction improved the accuracy of the bottom map by 13% in the detailed habitat 

discrimination, but not in the coarse discrimination. For TM/LANDSAT images the 

map accuracy was significantly increased in both, the coarse and fine discriminations. 

Nevertheless, for MSS/LANDSAT and XS/SPOT, the method produced only a single 

band index using both bands in the visible. The loss of one dimension could not 

improve the accuracy, even when it was corrected for the deep effect. In contrast, Zhang 

et al. (2013) tested the effect of application of Lyzenga’s algorithm in an orbital 

hyperspectral image of AVIRIS sensor but no accuracy improvement was observed in 

the map of habitat types. The authors suggested that the low performance of the 

procedure is because their study area does not present the same substrate in a wide 

range of depth, which is necessary to obtain accurate values of 𝐾𝑑,𝑖 𝐾𝑑,𝑗⁄ . Therefore, this 

technique could not be adequate for application in any kind of reef environment. In 

cases like this, where the same type of substrate only occurs in a narrow range of depths 

another possibility could be the estimation of 𝐾𝑑,𝑖 𝐾𝑑,𝑗⁄  using downward irradiance 

profiles registered in situ (CALL et al., 2003). 
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Figure 3.5 – Different strategies proposed to obtain diffuse attenuation coefficient (𝐾𝑑) from a 

remote sensing image. These methodologies work with samples of radiance in 

pixels where depth is known. (a) Lyzenga (1978). (b) Tassan (1996). (c) 

Sagawa et al. (2010). (d) Conger et al. (2006). 

 

 

Hamylton (2011) applied Lyzenga’s algorithm to a CASI image with 15 spectral bands. 

She used 28 different band combinations, and even though the optimal band 

combination depended on depths and characteristics of each area, she suggested to:  

- Maximize the distance between spectral bands used to obtain the 𝐼𝑛𝑑𝑒𝑥 𝑖𝑗 (for 

description of this index see Table 3.1); 

- Use bands where the light penetrates in all depths range and avoid using bands beyond 

600 nm as a result of the low light penetration in this region; 
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- Use bands with a certain degree of attenuation in the considered depths range to obtain 

an accurate 𝐾𝑑,𝑖 𝐾𝑑,𝑗⁄  

3.2.1.2. Spitzer and Dirks’s algorithm  

Spitzer and Dirks (1987) developed three algorithms analogous to Lyzenga’s (1981) 

specifically for MSS-TM/LANDSAT and High Resolution Visible/SPOT (HRV/SPOT) 

data. The bands in the visible region of these satellites were renamed as: 

(i) Band 1 (Blue region): Band 1/TM (450-520 nm) 

(ii) Band 2 (Green region): Band 4/MSS (500-600 nm), Band 2/TM (520-600 nm), and 

Band 1/HRV (500-590 nm) 

(iii) Band 3 (Red region): Band 5/MSS (600-700 nm), Band 3/TM (630-690 nm), and 

Band 2/HRV (610-680 nm) 

The sensitivity of the algorithm to the water column composition, bottom depth and 

bottom composition was tested. The 𝑖𝑛𝑑𝑒𝑥𝑏1 which relates Bands 2 and 3 was limited 

to shallow waters because bands in the green and red bands in this algorithm have 

smaller penetration in water. Both  𝑖𝑛𝑑𝑒𝑥𝑏2 (that consider Bands 1, 2 and 3) and 

𝑖𝑛𝑑𝑒𝑥𝑏3 (which uses Bands 1 and 2) can be used in deeper regions because they 

consider the blue band. While both 𝑖𝑛𝑑𝑒𝑥𝑏1 and 𝑖𝑛𝑑𝑒𝑥𝑏2 can be applied in substrates 

composed of sandy mud, the 𝑖𝑛𝑑𝑒𝑥𝑏3 can be used in substrates composed of vegetation 

and sand. In the three cases, the main limiting factor was water turbidity (MUMBY et 

al., 1998). Similar to Lyzenga’s algorithm, they do not retrieve substrate reflectance, but 

the results relate the radiances in two or three spectral bands without a depth effect. 

3.2.1.3. Tassan’s algorithm  

Tassan (1996) modified Lyzenga’s method through numerical simulations for 

application in environments with important gradients in turbidity between shallow and 

deep waters. Its sequential application can be described according to the following 

steps: 

- Estimate 𝑋´𝑖 = ln[𝐿𝑇𝑂𝐴,𝑖 − 𝐿𝑇𝑂𝐴,∞,𝑖], for two bands 𝑖, 𝑗 in pixels from two different 

substrates (e.g., sand and seagrass or high and low albedo, respectively). 𝐿𝑇𝑂𝐴,∞,𝑖 
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corresponds to optically deep TOA radiance, with low turbidity, and 𝐿𝑇𝑂𝐴,𝑖 corresponds 

to shallow TOA radiance, with high turbidity;  

- Plot 𝑋´𝑖 versus 𝑋 �́� for the two substrates and estimate the slope of the linear 

regressions. Because the slopes of the two lines are different, they did not express a 

ratio (𝐾𝑑,𝑖 𝐾𝑑,𝑗⁄ ) (Figure 3.5b); 

- Perform statistical analysis 𝑋´𝑖𝑗 = 𝑋´𝑖 − [(𝐾𝑑,𝑖 𝐾𝑑,𝑗⁄ )(𝑙𝑜𝑤 𝑎𝑙𝑏𝑒𝑑𝑜)]𝑋 �́� to separate the 

sand pixels in the shallow waters of seagrass and deep waters pixels; 

- Perform statistical analysis 𝑋´𝑖𝑗 = 𝑋´𝑖 − [(𝐾𝑑,𝑖 𝐾𝑑,𝑗⁄ )(ℎ𝑖𝑔ℎ 𝑎𝑙𝑏𝑒𝑑𝑜)]𝑋 �́� to separate 

the seagrass pixels.  

The result of the algorithm is a relation between two bands; however the real reflectance 

spectrum is not retrieved. In this work, the author did not apply his algorithm to real 

data, so no quantification of its performance was provided. 

3.2.1.4. Sagawa et al.’s algorithm  

Sagawa et al. (2010) developed an index to estimate bottom reflectance based on 

Lyzenga’s method (1978; 1981) that could be applied in environments with low water 

transparency. For its application, the depth and attenuation coefficient are required. 

Depth data of various pixels on a homogeneous substrate (sand) allowed estimation of 

the attenuation. The regression between the radiance and depth of these pixels was 

calculated (Figure 3.5c) and the slope of the linear equation corresponded to [𝐾𝑑𝑞 ], 

where 𝑞 is a geometric factor that considers the path length in the water column. 

Because 𝑞 can be geometrically estimated from the view and zenithal angles, it is 

possible to obtain the attenuation coefficient.  

The reliability of this algorithm depends directly on the reliability of Lyzenga’s 

algorithm (SAGAWA et al., 2010) in which the attenuation coefficient is constant over 

the entire scene and independent of the substrate type, which may be valid only within 

small areas. The authors emphasize that the accuracy of the bathymetric map is 

important for obtaining reliable results. The algorithm application in Case II and III 

waters (JERLOV, 1951) increased the accuracy of the classification from 54-61.7 % to 

83.3-90 %. However, the work of Sagawa et al. (2010) does not produce an estimation 

of algorithm efficiency for retrieving bottom reflectance. 



22 
 

3.2.1.5. Conger et al.’s algorithm  

Although Lyzenga’s algorithm allows for the removal of the depth effect, after its 

application, it is difficult to interpret the physics of the generated pseudo-color images. 

Conger et al. (2006) proposed linearizing the spectral bands with depth using principal 

component analysis (PCA) to estimate the coefficient that allows each spectral band to 

be rotated (Figure 3.5d). The first component explains the higher variability and in this 

case, represents the signal attenuation that results from increasing depth. The second 

component provides a coefficient that allows the logarithm of spectral band i to be 

rotated. This procedure generates depth independent data while maintaining the 

variability caused by small bottom differences. 

The algorithm was applied to a multispectral Quickbird image. As result, depth 

independent pseudo-color bands were obtained that can be calibrated to obtain the 

bottom albedo, which was done by Hochberg and Atkinson (2008). Since the 

application was individually performed for all bands, there was no limitation on their 

number or width. However, as a result of the low penetration in water of the red 

wavelengths, this method was not effective for long visible wavelength bands. This 

algorithm assumes vertical and horizontal homogeneity in the water column optical 

properties and small albedo variability between samples of the same substrate. Only a 

visual inspection of the three visible bands of the scene before and after application of 

the method was performed to evaluate the technique’s performance. 

3.2.2. Model-based algebraic algorithms 

Algorithms in this group require measurements of different water body parameters (e.g., 

absorption and scattering coefficients) which determine the behavior of light within a 

water column. Most of the models in this group were not developed to estimate bottom 

reflectance from surface reflectance measurements, and in general, no such validations 

are provided. Nevertheless, they could be inverted if all other parameters are known.  

These algorithms propose distinctive characteristics of the water column, and 

parameters used in each method are represented in Figure 3.6. In the equations of these 

models, the parameters are wavelength dependent; for brevity, argument λ was omitted. 
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For the water column correction of multi-spectral satellite images, in situ hyperspectral 

data used to estimate the parameters required by any model (e.g., 𝐾𝑑, 𝑎, 𝑏𝑏, etc.) must 

be transformed to correspond to the spectral bands of the sensors (MARITORENA, 

1996). In most cases, the bottom depth is also required. Passive remote sensing in 

visible bands can be useful when deriving a bathymetric map in shallow clear waters 

(LYZENGA et al., 2006; STUMPF et al., 2003; KANNO; TANAKA, 2012, among 

others]. Also, estimations of the bathymetry using airborne LIght Detection And 

Ranging (LIDAR) in the blue-green wavelengths can provide highly resolved 

bathymetric surfaces and offer much greater depth penetration than passive technologies 

(BROCK; PURKIS, 2009). 

3.2.2.1. Gordon and Brown’s algorithm 

Gordon and Brown (1974) proposed an empirical algorithm based in the path of photon. 

The algorithm uses three main parameters: 𝑅1, that corresponds to photons that do not 

reach the bottom; 𝑅2 is the contribution of photons to 𝑅𝑖 that strike the bottom once for 

𝜌𝑏 = 1; and 𝑠 was the ratio of the number of photons that strike the bottom twice by the 

number that strike once for 𝜌𝑏 = 1 (Figure 3.6a). They depended on the optical depth 

(𝜏𝐵 = ∫ 𝑐(𝑧)𝑑𝑧
𝑧𝐵

0
), single scattering albedo (𝜔0 = 𝑏 𝑐⁄ ) and scattering phase functions 

𝛽𝐴, 𝛽𝐵 or 𝛽𝐶 and were provided in Gordon and Brown’s work (1973). Phase functions 

were defined according to the photon path in a water body using Monte Carlo 

simulations. This algorithm requires some knowledge of the medium characteristics, 

such as 𝑐 and 𝑏, however, it was not tested to retrieve the bottom reflectance and its 

performance was not provided.  

3.2.2.2. Maritorena et al.’s algorithm  

Maritorena et al. (1994) developed an algorithm to model the water surface reflectance 

in shallow waters (𝑅𝑤) that can be inverted to derivate substrate albedo (𝜌𝑏) from 

surface measurements. Unlike Gordon and Brown’s model (1974) that is based on the 

photon life history, Maritorena et al. (1994)  proposed a more convenient method based 

on measurable properties of the water column (Figure 3.6b). In their algorithm, the 

irradiance reflectance of shallow waters (𝑅𝑤) below the surface is equal to the deep 

water reflectance (𝑅∞) plus substrate contrast (𝜌𝑏 − 𝑅∞) after correction for the depth 

effect (using the term 𝑒[−2𝐾𝑑𝑧]). The algorithm’s ability to model 𝑅𝑤 was satisfactorily 
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validated with both Monte Carlo simulations and in situ measurements. Nevertheless, it 

was not tested in an inverse manner to obtain the 𝜌𝑏. 

 

 

 

Figure 3.6 – Starting from a remote sensing image above shallow waters, several algorithms can 

be applied to obtain bottom reflectance. Note that each approach uses distinct 

inputs. Different boxes represent different algorithms (a) Gordon and Brown 

(1974). (b) Maritorena et al. (1994). (c) Bierwirth et al. (1993) (d) Purkis and 

Pasterkamp (2004) (e) Lee et al. (1999). (f) Yang et al. (2010). 
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3.2.2.3. Bierwirth et al.’s algorithm 

In contrast with other methods in this group, Bierwirth et al.’s algorithm (1993) does 

not require 𝑧 as input, but only needs 𝜌𝑅𝑆(0−) and 𝐾𝑑. The results of the model are 

𝜌𝐵
𝑅𝑆and 𝑍, that correspond to derivations of the real bottom reflectance and depth, 

respectively. Therefore, this methodology corrects for the depth effect in each pixel; 

however, it does not retrieve the real bottom reflectance. Derived and real bottom 

reflectances (𝜌𝐵
𝑅𝑆and 𝜌𝑏

𝑅𝑆) can be related by a factor (𝑒∆𝑧), where ∆𝑧 corresponds to an 

intrinsic methodological depth error. This error is different between pixels but constant 

between different bands of the same pixel. This means that the properties of the real 

reflectance can be staggered by the same constant for each band, which varies between 

pixels. 

Thus, the spectral hue for each pixel will be preserved, regardless of variations in depth. 

The authors estimated 𝜌𝐵
𝑅𝑆 for the visible bands of a TM/LANDSAT image. For 

visualization, the 𝜌𝐵
𝑅𝑆 values were resampled between 0 and 255. In a composition red-

green-blue (RGB) system of 𝜌𝐵,3
𝑅𝑆 : 𝜌𝐵,2

𝑅𝑆 : 𝜌𝐵,1
𝑅𝑆 , the observed colors are depth independent. 

The algorithm was tested successfully and represents a valuable tool for management 

and analysis of coastal regions and submerged substrates. The authors note that accurate 

estimates of water column parameters are required and that the model assumes 

horizontal homogeneity, which may not be valid for certain regions. 

If a bathymetric map of the reef is available, this methodology offers an additional 

utility by producing a fusion to both images. The 𝜌𝐵,3
𝑅𝑆 : 𝜌𝐵,2

𝑅𝑆 : 𝜌𝐵,1
𝑅𝑆  composition can be 

transformed to an intensity-hue-saturation (IHS) color system. The intensity can be 

replaced by the bathymetric map, and the layers composition must be transformed again 

to the RGB system. As result, a fusion image is produced where the bottom reflectance 

color is preserved and the intensity shows the depth structure of the image (Figure 3.6c). 

The orbital image and bathymetric map should be of the same spatial resolution.  

3.2.2.4. Purkis and Pasterkamp’s algorithm  

Unlike the other models discussed here, Purkis and Pasterkamp's algorithm considers 

the direct effect of the water surface (corrected by the multiplicative factor 1/0.54). 

Hence, the remote sensing data is evaluated above the surface (0+) (Figure 3.6d). The 
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algorithm validation was performed with the radiometric data measured above and 

below the water over a sand seafloor. The model was able to reproduce in situ data with 

a root mean square error (RMSE) equal to 0.017. The water column model was applied 

to a TM/LANDSAT sensor image with different processing levels: homogeneous depth 

for the entire reef assuming a flat topography (i), with a modeled topographic profile 

(ii), and depths measured in field (iii). The digital classification showed a higher 

accuracy for the third case, because of the higher quality of the depth data. Thus, the 

authors concluded that a bathymetric survey with the spatial resolution compatible with 

the image spatial resolution is required to produce a map of benthic habitats with 

sufficient accuracy to be used in quantitative analyses, management or time series 

studies.  

3.2.2.5. Lee et al.’s algorithm 

Maritorena et al. (1994) proposed a simplification where different attenuations could be 

reduced to a unique factor 𝐾𝑑. Lee et al., however, considered that the attenuation 

coefficients for the upward and downward direction were different and suggested a 

simple method of estimating them as a function of their inherent optical properties. In 

this algorithm, which was developed for hyperspectral data, Lee and colleagues (LEE et 

al., 1998; LEE et al., 1999) proposed a model to estimate ρRS in shallow waters with 

bottom influence in the surface signal. This model was based on the quasi-single 

scattering theory (GORDON, 1976). Therefore, it considers that the forward scattering 

is negligible and water attenuation is only dependent on total absorption (𝑎) and 

backscattering (𝑏𝑏) (Figure 3.6e). If hyperspectral data are available, the method 

proposes an inversion scheme to retrieve some information of water column and bottom 

from spectral data: absorption coefficients at 440 nm of phytoplankton 

(𝑎𝑝ℎ𝑦𝑡𝑜(440)),  and gelbstoff and detritus (𝑎𝑔(400)), particle backscattering 

coefficient at 400 nm (𝑏𝑏𝑝(400)), bottom reflectance at 550 nm (𝐵) and 𝑧. However, 

in this work the authors did not compare in situ bottom reflectance with those retrieved 

by the algorithm, but they only used in situ values to validate the model for coefficients 

𝑎𝑝ℎ𝑦𝑡𝑜(440), 𝑎𝑔(440) and 𝑧. 

Some studies have applied an inversion scheme of Lee et al.’s algorithm to obtain the 

bottom reflectance, depth and water column properties simultaneously (LEE et al.,  
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2001; LEE et al., 2007; GOODMAN et al., 2008). In this scheme, the bottom 

reflectance (𝜌𝑏) is defined as 𝜌𝑏 = 𝐵𝜌𝑠ℎ, where 𝜌𝑠ℎ is the albedo shape normalized at 

550 nm. In their works, Lee et al. (2007) only considered the shape of the sand albedo; 

Lee et al. (2001) also considered the spectral shape of seagrass; whereas Goodman et al. 

(2008) used four types of bottom: sand, coral, algae and a flat spectrum. Nevertheless, 

validations of bottom reflectance included in these studies were limited. Lee et al. 

(2001; 2007) only showed the retrieved bottom reflectances at 550 nm in the form of a 

histogram or map without comparing them with the ground truth. Goodman et al. (2008) 

Goodman and Ustin (2007) combined inversion and the forward schemes of Lee’s 

model. First, they used an inversion of the model to obtain the bathymetry and water 

constituents for all of the pixels from an AVIRIS image. In this step, the bottom 

reflectance was only the sand spectrum. Nevertheless, they found that the results were 

similar, regardless of the bottom reflectance spectra considered as the input. Once the 

water constituents and bathymetry were obtained, the authors used this information in a 

second step as input for the Lee model in the forward method together with the 

reflectance curves of the coral, sand and algae to create endmembers to apply an 

unmixing model. The unmixing model results were evaluated from depths of 0-3 m and 

the map accuracy was 80%. The bottom reflectance was also validated at 550 nm for 16 

homogeneous sites, and the offset was +10%. 

Mishra et al. (2005) applied Lee et al.’s model (1999) to correct a multi-spectral 

IKONOS image. Because of the limited number of spectral bands of this sensor, the 

original algorithm was simplified. The algorithm application was effective and showed 

that the differences in radiance between deeper and shallow areas were minimized. The 

corrected image showed all areas dominated by sand with approximately the same 

albedo. Only a visual examination of the image after the water column correction was 

performed. After classification of the corrected image, the map accuracy was 80.7 %. 

3.2.2.6. Mumby et al.’s algorithm  

Mumby et al. (2004) applied a simple model to correct a CASI image of the French 

Polynesian values. Their model only considered the reflectance at the surface (𝑅𝑤), 𝐾𝑑 

and depth for each point of the image, and was obtained as 𝜌𝑏 = 𝑅𝑤𝑒−𝐾𝑑𝑧. The 𝐾𝑑 was 

obtained by same approach as Lyzenga’s, by using the slope of the natural logarithm of 
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reflectance for a uniform substratum (sand) against the depth from ground-truth maps. 

Derivative analyses were applied to 𝜌𝑏 spectra, but a validation of the model 

performance to correct the water column was not provided in their work. 

3.2.2.7. Yang et al.’s algorithm   

Yang et al. (2010) recently developed an algorithm in which the water column is 

considered as a multi-layered. This algorithm can be applied to hyperspectral data and 

considers water column attenuation and scattering components, both of the water 

molecules and other OAC (e.g., phytoplankton and CDOM). In their work, the authors 

applied the algorithm to radiometric data collected in situ. To be applied to orbital or 

airborne images, a bathymetric map is required. Modeled values by this algorithm were 

consistent with in situ measured data (fit between modeled and measured data of R
2
 = 

0.9395). Thus, the algorithm proved to be a robust tool applicable for natural 

heterogeneous environments that can properly remove the water column influence. 

However, its application is not simple because thorough knowledge of the environment 

under study is required to determine the attenuation and scattering coefficients of the 

OAC and volume scattering functions in each layer of the water column. In addition, it 

can be a computationally expensive method depending on the number of layers used. 

This methodology is suggested for application in environments with strong water 

column stratification, as for example in places affected by coastal upwelling events, 

which frequently leaves a chlorophyll peak associated with a thermocline (Figure 3.6f).  
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Table 3.1 – Summary of models reviewed in this paper considering methodological approach, data spectral resolution, data required, model 

results and other observations 
Model Methodical 

approach 

Spectral 

resolution 

Required input and main equations Assumptions/applicability Algorithm 

output 
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𝐿w in at least, in two bands. Pixels samples of the same substrate (homogeneous) 

depth known, occurring in a wide range of depths. 

𝐼𝑛𝑑𝑒𝑥𝑖𝑗 = ln(𝐿𝑇𝑂𝐴,𝑖 − 𝐿𝑇𝑂𝐴,∞,𝑖) − [(
𝐾𝑑,𝑖

𝐾𝑑,𝑗

) ln(𝐿𝑇𝑂𝐴,𝑗 − 𝐿𝑇𝑂𝐴,∞,𝑗)] 

Water column vertically and 

horizontally homogeneous; small 

variability in bottom reflectance for 

the same type of substrate. 

Applicable in high transparency 

waters. The model cannot be 

applied to very shallow waters. 

Composition of 

bands i,j 
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d
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s
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7
) 
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T
, 

H
R

V
/S
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O

T
) 

𝐿𝑇𝑂𝐴 , 𝐿𝑇𝑂𝐴,∞ in at least two spectral bands in the visible region, obtained by MSS-

TM/LANDSAT or HRV/SPOT sensors. 

𝐼𝑛𝑑𝑒𝑥𝑏1 = ln(𝐿𝑇𝑂𝐴,2 − 𝐿𝑇𝑂𝐴 ,∞,2) − 0.3 ln(𝐿𝑇𝑂𝐴,3 − 𝐿𝑇𝑂𝐴 ,∞,3) + ℎ𝑏1 

𝐼𝑛𝑑𝑒𝑥𝑏2 = ln(𝐿𝑇𝑂𝐴,1 − 𝐿𝑇𝑂𝐴 ,∞,1) + ln(𝐿𝑇𝑂𝐴,2 − 𝐿𝑇𝑂𝐴 ,∞,2)

− 0.6 ln(𝐿𝑇𝑂𝐴,3 − 𝐿𝑇𝑂𝐴 ,∞,3) + ℎ𝑏2 

𝐼𝑛𝑑𝑒𝑥𝑏3 = ln(𝐿𝑇𝑂𝐴,2 − 𝐿𝑇𝑂𝐴 ,∞,2) − 1.05 ln(𝐿𝑇𝑂𝐴,1 − 𝐿𝑇𝑂𝐴 ,∞,1) + ℎ𝑏3 

Same assumptions of Lyzenga’s 

model. Applicable only for 

LANDSAT and SPOT satellites.  

Composition of 

two or three 

bands  

T
a
s
s
a
n
 (

1
9
9

6
) 

B
a
n

d
 

c
o
m

b
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o
n

 

M
u
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p
e
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a
l 

𝐿𝑇𝑂𝐴 , 𝐿𝑇𝑂𝐴,∞ in at least two spectral bands. Pixels samples (depth known) of two 

homogeneous substrates: high and low bottom albedo, occurring in a wide range 

of depths. 

𝑋´𝑖 = ln[𝐿𝑇𝑂𝐴,𝑖 − 𝐿𝑇𝑂𝐴,∞,𝑖] 

𝑋´𝑖𝑗 = 𝑋´𝑖 − [(𝐾𝑑,𝑖 𝐾𝑑,𝑗⁄ )(𝑙𝑜𝑤 𝑎𝑙𝑏𝑒𝑑𝑜)]𝑋 �́� 

𝑋´𝑖𝑗 = 𝑋´𝑖 − [(𝐾𝑑,𝑖 𝐾𝑑,𝑗⁄ )(ℎ𝑖𝑔ℎ 𝑎𝑙𝑏𝑒𝑑𝑜)]𝑋 �́� 

Can be able to be applied in 

scenes with turbidity gradients 

between shallow and optically 

deep waters. Assumes vertically 

homogeneity. The application of 

this method is sequential. 

Composition of 

bands i,j 

S
a
g

a
w

a
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t 
a

l.
 

(2
0
1
0
) 

B
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d
 

c
o
m

b
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n

 

M
u
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h
y
p
e
rs
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a
l 𝐿𝑇𝑂𝐴,𝑖  ;  𝐿𝑇𝑂𝐴 ,∞,𝑖 ; 𝑘𝑖, 𝑞 and 𝑧 

𝐼𝑛𝑑𝑒𝑥𝑖 =
(𝐿𝑇𝑂𝐴,𝑖 − 𝐿𝑇𝑂𝐴 ,∞,𝑖)

𝑒(−𝐾𝑑𝑞𝑧)
= 𝑚𝑖𝑏,𝑖

 

Vertical and horizontal 

homogeneity. Can be applied in 

environments with low water 

transparency. Accuracy in 

bathymetric map is important to 

obtain a reliable result. 

Index 

proportional to 


𝑏,𝑖
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M
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d
 

h
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p
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a
l 𝐿𝑇𝑂𝐴,𝑖 , pixel samples of the same homogeneous substrate, depth known, 𝐿𝑇𝑂𝐴,∞,𝑖 Assumes vertical and horizontal 

homogeneity and small albedo 

variability of the substrate 

samples. This method is not 

effective in the red band.  

Pseudo-color 

band, depth 

independent 

G
o
rd

o
n
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n
d
 

B
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n
 (

1
9
7

4
) 

M
o
d
e
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B

a
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d
 

A
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M
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d
 

h
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p
e
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a
l 

𝑅𝑖, 𝑐, 𝑏 

𝑅𝑖(0+) =  𝑅1  +  [𝜌𝑏𝑅2/(1 –  𝑠 𝜌𝑏)] 

Vertical and horizontal 

homogeneity. Empirical 

estimation of model parameters. 

𝜌𝑏  

M
a
ri
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n
a

 e
t 

a
l.
 

(1
9
9
4
) 
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d
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d
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p
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l 

𝑅𝑤, 𝑅∞, 𝑧 in each pixel of the scene, 𝐾𝑑 

𝑅𝑤 = 𝑅∞ + (𝜌𝑏 − 𝑅∞)𝑒[−2𝐾𝑑𝑧] 

Assumes a vertical and horizontal 

homogeneity and high water 

transparency. 

𝜌𝑏  

B
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rw
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t 
a

l.
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9
9
3
) 
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l 

𝜌𝑅𝑆, 𝐾𝑑, two or more spectral bands are required, N corresponds to number of 

spectral bands used 

𝜌𝐵
𝑅𝑆 = 𝜌𝑅𝑆(0−)𝑒(2𝐾𝑑𝑍) 

𝑍 = ∑
ln 𝜌𝑅𝑆(0−)

(−2𝐾𝑑𝑁)

𝑁

𝑖=1

 

𝜌𝐵
𝑅𝑆(1 2⁄ 𝐾𝑑)

= 𝜌𝑏
𝑅𝑆(1 2⁄ 𝐾𝑑)

𝑒∆𝑧 

Model must be applied in clear 

water environments. Bathymetric 

map can be combined with model 

results and an image with bottom 

reflectance and depth structure is 

obtained.  

Derivation of 

the real bottom 

reflectance.  
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l 𝜌𝑅𝑆(0+), 𝜌∞

𝑅𝑆(0+), 𝐾𝑑, 𝑧 

𝜌𝑏
𝑅𝑆 =

1
0.54

𝜌𝑅𝑆(0+) − (1 − 𝑒−2𝐾𝑑𝑧)𝜌∞
𝑅𝑆(0+)

𝑒−2𝐾𝑑𝑧
 

Water-leaving reflectance does 

not need previous correction for 

sea-air interface. Accurate 

bathymetric data are required. 

Model must be applied in clear 

water environments. 
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𝑅𝑆  
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a
l ρ𝑅𝑆, 𝜃𝑣 , 𝜃𝑤,𝑏𝑏, 𝑎, 𝑧 in each pixel of the scene 

𝜌𝑅𝑆(0−) = 𝜌∞
𝑅𝑆(0−) (1 − 𝑒

[−(
1

𝑐𝑜𝑠 𝜃𝑠
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𝐶
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) +
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𝐷𝑢
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)𝑘 𝑧]

 

𝐷𝑢
𝐶 ≈ 1,03(1 + 2,4𝑢)0,5  ;   𝐷𝑢

𝐵 ≈ 1,04(1 + 5,4𝑢)0,5 

𝑢 =
𝑏𝑏

(𝑎+𝑏𝑏)
   ;   𝑘 =  𝑎 + 𝑏𝑏 

Assumes vertical and horizontal 

homogeneity. The model uses 

detailed information of the optical 

properties of the water column. 

Semi-analytic model. 
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For each water layer: 𝜌𝑅𝑆, Kd, z, bp, f, w(90°,0), 𝜓1 and 𝜓2   

𝜌𝑏
𝑅𝑆 = 𝜌𝑅𝑆(0−) − 𝜌∞

𝑅𝑆(0−) 

ρ∞
𝑅𝑆(0−) = 𝑄 [
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)
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Can be used if the water column 

is vertically heterogeneous and 

composed by multiple layers. 

Within each layer, the optical 

properties are homogeneous. 

Analytical model. 
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reflectance occurring in the scene. Data of the geometric conditions of the 

illumination and image acquisition. Any software that can generate the spectra for 

the spectral library.  

For the first application in an area, 

it can take long time to generate 

the spectral library. 
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Measurements of all bottom reflectance occurring in the scene. Any software that 
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3.2.3. Optimization/Matching algorithms 

Hyperspectral data provides information almost continuous in the visible region, which 

can help to differentiate among submerged substrates. However, when any of the 

previous procedures to correct water column effect is applied to images with high 

spectral resolution, the results are computationally heavy. Another approach that can be 

used involves simulating the spectra for different water column characteristics and 

mapping the spectra similarities with the simulated spectral library. The result is a 

substrate map independent of the water column effect (Figure 3.7). In other words, the 

water column effect is “added” to the substrate’s underwater spectra and is used for 

different environmental conditions. Further, classification is performed by assigning to 

each pixel a substrate type that corresponds to the spectrum in the library that best fits 

with those in the image. Depending on the proposed model, OAC concentration and 

bathymetric map are simultaneously derived. To generate the spectral library, all of 

these methods require actual bottom reflectance measured in situ. For this reason, all 

types of substrate reflectances in all possible combinations occurring in the scene that 

can be registered by the spatial resolution of the sensor must be accurately represented. 

Other approach able to be applied only to hyperspectral data is the inversion scheme in 

which using successive runs, it is looking to minimize errors between a simulated 

spectrum and a spectrum arriving from the image. Environmental conditions (in this 

case absorption and backscattering coefficients, depth, bottom reflectance), for which 

the errors are minimal, are considered as the real ones. For either LUT or inversion 

methods, the simultaneous retrieval of all the properties (bottom reflectance, depth and 

water constituents) does mean that the accuracy of each estimated property is highly 

dependent on the retrieval results of each of the other properties (DEKKER et al., 

2011). The relative effect of each of them depends on the water depth and clarity.  
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Figure 3.7 – Graphic representation of the approach using Look Up Table matching to generate 

bottom type map without effect of water column. 

 

 

3.2.3.1. Louchard et al.’s approach  

Louchard et al. (2003) created the spectral library simulated in Hydrolight software 

using the reflectance of the main bottom types present in the study area, estimations of 

IOP, in situ measurements of upward radiance (𝐿𝑢) and downward irradiance (𝐸𝑑), 

geometric data of the conditions of illumination, image acquisition and range of depth 

found in the area. The authors also considered Raman scattering. They then applied a 

minimum distance method to relate the simulated spectra with the spectra of a PHILLS 

image. This classification methodology generated a thematic map of the substrate 

without the effects caused by the water column. The authors noted that a good 

correspondence was found between the classification result and ground truth map, but 

they did not provide an objective quantification of the accuracy of the substrate type 

map. This method failed to differentiate the pavement from dense seagrass in areas 

deeper than 8 m. 
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3.2.3.2. Comprehensive Reflectance Inversion based on Spectrum matching and 

Table Lookup (CRISTAL) 

In contrast to Louchard et al.'s approach, Mobley et al.'s (2005) approach does not 

require field data and a priori assumptions regarding the water depth, IOPs, or bottom 

reflectance do not have to be made, rather, they are simultaneously extracted from the 

hyperspectral image. In this approach, pre-computed look-up tables (LUT) are used that 

include simulated spectral databases generated in HydroLight software for different 

pure substrates and several combinations of them, in varying depths, OAC in the water 

column, IOPs, sky conditions and geometry of data acquisition. A total of 41,590 

spectra were simulated. The authors only evaluated the method performance by visual 

interpretation and found that it was successfully applied to a PHILLS image because all 

variables extracted from the LUT application were consistent with the ground truth. 

This methodology assumes that the 𝜌𝑅𝑆 spectrum is accurately calibrated and the 

spectral library represents all of the environmental variability found in the image. 

Unlike most of the methodologies, the simulated spectra include inelastic scattering 

(Raman). If this is not the case, retrieval errors may be large.  

3.2.3.3. Bottom Reflectance Un-mixing Computation of the Environment model 

(BRUCE)  

Klonowski et al. (2007) proposed an adaptation of Lee et al.’s inversion method (1999) 

to simultaneously retrieve the substrate type and depth from the reflectance collected by 

the airborne HyMap imaging system (126 bands and 3.5 m of spatial resolution), on the 

Australian West Coast. In their work, they expressed 𝜌𝑏 as a linear combination of 

sediments (𝑅𝑠𝑑), seagrass (𝑅𝑠𝑔) and brown algae reflectances (𝑅𝑏𝑎). Spectral curves of 

10 substrate types were used as the input to the model: the six pure substrates most 

frequent in the area (two types of sediments, two types of seagrass and two types of 

brown algae) and four combinations of them. 

For each pixel, the seven unknown parameters 𝑎𝑝ℎ𝑦𝑡𝑜(440), 𝑎𝑔(440), 𝑏𝑏𝑝(440), 𝐵𝑠𝑑, 

𝐵𝑠𝑔, 𝐵𝑏𝑎 and 𝑧 assumed to be the actual conditions were those that minimized the 

residual between the simulated and measured spectra (spectra from the image). As result 

three substrate weighting coefficients (𝐵𝑠𝑑, 𝐵𝑠𝑔, 𝐵𝑏𝑎) are obtained. These coefficients 

are reflectance scaling factors that represent, after normalization, the proportional 
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coverage by an individual substrate class (FEARNS, 2011). They were used to assign 

the color composition: 𝐵𝑏𝑎 to channel red, 𝐵𝑠𝑔 to channel green and 𝐵𝑠𝑑 to channel 

blue. The performance validation was performed visually by comparing the substrate 

mapped with the video records for 25 points of the image, and the authors found a high 

level of consistency. Although 10 bottom reflectance spectra originating in pure and 

mixed substrates were considered in the validation only 5 classes were considered 

according to color in the composed image, so different resultant colors might mean the 

same combination of bottom types and vice-versa. One requirement of this model is that 

the bottom types must be spectrally different from one to the other. This point implies a 

restriction for using this approach in areas with a high diversity of bottom types because 

it could not provide a good separability between types. 

Fearns et al. (2011) applied the BRUCE method in an image collected by the airborne 

hyperspectral HyMap sensor in a shallow area, whose substrate contained sand, seagrass 

and macrophyte species. They retrieved proportions of each of these classes in each 

pixel. Map validation was performed to one section of one of the flight lines, and levels 

of classification success varied according to type of coverage: sand = 52 %, seagrass = 

48 % and brown algae = 88 %. The authors suggested that the presence of seagrass at 

low to medium densities in sand areas could swamp the sand signal and be responsible 

for low accuracy achieved for sand class. Higher success to classify brown algae could 

be related to lower depths where algal habitats were located.  

3.2.3.4. Semi-Analytical Model for Bathymetry, Un-mixing and Concentration 

Assessment (SAMBUCA) 

Brando et al. (2009) modified the inversion scheme proposed by Lee et al. (1999) to 

retrieve the bathymetry together with the OAC concentration (chl-a, CDOM and 

suspended particles) and bottom type. Contrary to Lee et al.'s algorithm, SAMBUCA 

model accounts for the linear combination of two substrate types. When solving for 

more than two cover types, SAMBUCA cycles through a given spectral library, 

retaining those two substrata and their estimated fractional cover which achieve the best 

spectral fit. In this work, the authors were interested in retrieving bathymetric 

information and some parameters of the water column were fixed in advance using 

information collected in field. Based on the types of bottom present in the study area, 
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they only considered brown mud and bright sand. Thus, 𝑔𝑏𝑚,𝑠𝑎𝑛𝑑 is the proportion of 

each of the bottom covers: brown mud and white sand. The authors used either least 

squares minimum (LQM), spectral shape matching function or a hybrid formulation of 

them to estimate the optimization residuum. Their paper proposed a novel method to 

improve the bathymetry retrieval by combining the optimization residuum with a 

substratum detectability index (SDI). Therefore, their focus was to retrieve depths, and 

they did not provide measurements of the performance of the method in retrieving 

substrate composition. 

3.2.3.5. Adaptive Look-Up Trees (ALUT) 

Hedley et al. (2009) proposed an algorithm that optimizes both the inversion scheme 

and matching between the simulated and measured spectra to reduce the time required 

for its application. The Adaptive Look-Up Trees (ALUT) algorithm proposed a more 

efficient subdivision of the parameter space (any parameter of interest) once the real 

range of variability is known. This is simpler to understand using an example. 

Considering changes in the reflectance as a function of depth, it can be observed that in 

the first meters of the water column small changes can lead to greater diminution in 

measured reflectance. However, at greater depths, small changes lead to lesser impacts 

in the measured reflectance. Therefore, the ALUT algorithm proposes a more detailed 

subdivision of the depth in shallow areas than in deeper ones. Additionally, Hedley et 

al. used the matching algorithm Binary Space Partitioning (BSP) tree, which is more 

efficient than an exhaustive search algorithm.  

They used the ALUT approach with the inversion method L99 [58] considering that 

bottom reflectance spectrum could be one of 78 different curves resulting from the 

linear mixture of 13 most common substrate types (sand, live and dead coral, algae and 

seagrass). Considering that they obtained high accuracy when retrieving depths from 

satellite images, the method appears to be a promising alternative for rapidly running 

the water column correction. Nevertheless, in that work Hedley et al. only compared 

depths retrieved by the model with depths measured by sonar, and they did not provide 

an estimation of the efficiency of retrieving bottom reflectance or substrate type 

compositions. The authors indicated that their method could have a high level of error 

when many parameters are derived together. 
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3.2.4. Water column corrections for multi-temporal studies 

To detect changes in images from the same sensor in different periods, an inter-

calibration between the images is needed. As in all of the temporal studies, co-

registration between images must be rigorous since the spatial misregistration can 

introduce false indications of change. These methods are advantageous because they are 

inexpensive and require little processing time and data availability. According to 

Equation 3.1, if the reflectance of the same invariant target shows differences between 

two dates, these differences might be caused by the acquisition geometry of a scene, 

water column and/or atmospheric effects. Therefore, contrary to the previously 

reviewed methods, prior atmospheric corrections are not required. One option is the 

application of a “pseudo-invariant feature” (PIF) technique (SCHOTT et al., 1988; 

ELVIDGE et al., 2004) wherein bright and dark pixels (e.g., white beach sand and 

seagrass substrate, respectively) called PIF pixels are extracted from all images. Any 

image can be selected as the reference (Image a) and the other image (Image b) is 

normalized to be compatible radiometrically with Image a. For this conversion, the 

digital number (DN) of PIF pixels of Image b are plotted versus those of Image a 

(Figure 3.8a) in each band. Fitting a linear equation to this plot will define a gain and 

offset to normalize Image b. This method works under the assumption that PIF pixels 

are constant over time. 

A similar normalization was used by Michalek et al. (1993) where the image used as the 

reference (Image a) showed the highest and widest data range in its histogram. Image b 

was modified to be compatible radiometrically with Image a (Figure 3.8b). The authors 

examined pixel samples that appeared similar in natural color in both images, such as 

bare soil, mangrove forest and deep water.  
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Figure 3.8 – (a) Diagram to obtain of gain and offset values to normalized image as function of 

a previous one, according to Elvidge et al. (2004) approach. (b) Diagram to 

obtain of gain and offset values to normalized an image as function of a 

previous one, according to Michalek et al. (1993) approach. 

 

 

3.2.5. Bertels et al.’s approach (2008) 

After the unsuccessful application of Lee et al.’s algorithm, Bertels et al. (2008) selected 

another approach to minimize the class confusion caused by the depth effect in CASI 

images of a coral reef area. In this work, they classified an image previously divided 

into five geomorphological zones found in the scene. For the geomorphologic zone 

mapping, they applied a minimum noise fraction (MNF) analysis to remove redundant 

spectral information and used the first five bands. Then, independent classifications 

according to its geomorphology were applied under the assumption that each 

geomorphologic zone has different depth and associated benthic communities. A post-

processing was finally performed to merge the classes between the different zones. The 

authors only validated their method in the fore reef and obtained an accuracy of 73 %. 

This approach did not generate reflectance spectra and can only be used in reefs with a 

determined configuration where the substrate types and geomorphologic zones are 

strongly related. 
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4 MATERIALS AND METHODS 

In this section, a general characterization of the study area, field work, data collection 

and remote sensing data using in the present work are described. More detailed 

information regarding data processing is provided in the correspondent chapters. 

4.1. Study area 

The Abrolhos Coral Reef Bank (ACRB) extends 60 km, along the coastal zone in the 

south of Bahia State (Brazil), between approximately 17°20‟-18°10‟S and 38°35‟-

39°20‟O (Figure 4.1). It is considered the largest and richest coral reef area in the South 

Atlantic Ocean and probably one of the world oceans’ major biodiversity hot spots. The 

biologic relevance of this area boosted the creation of the first Marine National Park in 

Brazil, besides being an environmental protected area and a marine extractive reserve. 

The ACRB is located in the largest continuous rhodoliths bed all over the world and its 

total annual CaCO3 production is comparable to that of the largest biogenic CaCO3 

deposits in the world (AMADO-FILHO et al., 2012) 

In this region, the geomorphology of the reefs is characterized by the type of growth in 

vertical columns. Such structures are called “chapeirões” and their shapes are similar to 

mushrooms with tops that have a circular or elongated shape. The reefs are formed 

parallel to the coastline, distributed in the form of two arcs, largely exposed during low 

tide (Figure 4.1) (LEIPE et al., 1999). Both arcs are separated by the Abrolhos Channel, 

15 km wide. The inner, or coastal, arc is located 10-20 km from the coastline and is 

formed by a complex structure of reef banks and isolated chapeirões with variable 

dimensions. The reef banks are formed by several chapeirões that are in close proximity 

to each other and whose tops are merged. The external, or outward, arc is located in the 

surroundings of the Abrolhos Archipelago, which is composed of small islands located 

approximately 60 km from the coast. The reefs in the external arc are disposed as 

isolated enormous chapeirões, in areas up to 25 m deep (LEÃO, 1999). Figure 4.2 

represents a cross-section of both arcs, showing the differences in the geomorphology 

and depths between them. 
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Figure 4.1 – Landsat TM-5 Image (RGB) of the study area (right) and its location in South 

America, indicated in a MODIS-Aqua Chlorophyll image (left) 

 

 

 

Figure 4.2 – Cross-section scheme of the main reef types in the study area showing the: coral 

reefs in the coastal (A) and external (B) arcs. 

                      Source: Dutra et al. (2006) 

 

 

The coastal arc is affected by processes acting in the mainland and bottom sediments 

near the coastline, which are characterized by 30 to 70% of quartz grains, rare micas 

and terrigenous mud. At the external arc, siliciclastic sediments represent less than 10%, 

whereas carbonate sediments dominate, mainly composed of reef derived constituents 

(SILVA et al., 2013). Reef banks with wide lateral dimensions are located closer to the 
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shoreline and they function as a physical barrier that block the water flows towards the 

open sea, acting as a sediment trap from continental sources. This explains the transition 

from dominant siliciclastic components along and near the coastline to pure carbonate 

sediments in the middle and outer continental shelf (LEÃO, 1982). Thus, while the 

external arc is influenced by the tropical waters of the Brazil Current and resuspended 

bioclastic marine sediments, the coastal arc also receives some contribution from 

continental discharges (KNOPPERS et al., 1999; LEIPE et al., 1999; SEGAL et al., 

2008, SILVA et al., 2013). Among the terrestrial discharges, the most important is from 

the Doce River, which has a mean annual discharge of 1,140 m
3
 s

-1
 (Source: ANA, 

2010). The greatest river discharge season is from November to April due to the rainfall 

regime along its catchment area, with the maximum between December and February 

(SEGAL et al., 2008). Sedimentation rates in the Abrolhos Bank are relatively higher 

than other recifal areas (SEGAL-RAMOS, 2003). The deposition flux is greater during 

the austral winter due to polar fronts crossing the area, when surface winds from SE, S 

and SW are predominant and produce turbulent processes increasing sediment 

resuspension (SEGAL et al., 2008). The circulation with direction North-South is 

induced by the along-shore winds with a seasonal cycle: Southward in spring-summer 

and Northward in fall-winter (TEIXEIRA et al., 2013). The cross-shore circulation is 

manly forced by tides, and the sub-inertial flow is weak and restricted by the local 

topography. The passage of cold fronts that arrive in ACRB or that arrive in Cabo Frio 

and have a remote effect in the region, is also important. Long-period shelf waves 

created thousands kilometers south of ACRB that propagate into the region also affect 

the local circulation.  

The Abrolhos reefs have also other peculiarities related to the biologic communities. 

The benthic community in ACRB is dominated mainly by cnidarian and seaweeds, and 

in lesser proportion, by sponges and mollusks. Three characteristics distinguish the 

cnidarian fauna of Abrolhos from other coral reefs: the low diversity, high degree of 

endemism and absence of branching scleractinian. Two factors can be appointed as 

responsible for this: (i) the isolation from the Caribbean Sea reefs; and (ii) some 

environmental conditions such as the high turbidity and low geomorphology variability 

that limit the availability of reef habitats (LEÃO, 1999). Regarding the algae 

populations, they constitute one of the most abundant elements in the Abrolhos coral 
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reefs, and are found throughout the entire reef ecosystem, particularly covering inter-

reef areas.  

4.2. Field work 

The field work conducted as part of the present work was framed in the "Rede 

Abrolhos", a cooperative network between several institutions. Two field campaigns 

were done in the ACRB as part of this work, both during the austral summer, which 

corresponds to the rainy season. The first was done between 02/06/2012 and 03/03/2012 

and the reefs visited were: Sebastião Gomes (SG), Parcel das Paredes (PA), the 

Archipelago (ARCH), and the Parcel dos Abrolhos (PAB) (Figure 4.3). The second 

field work was carried out between 03/06/2013 and 03/26/2013. In this case, the 

sampled areas were: SG, PA, ARCH, PAB, PL (Pedra de Leste) and Timbebas (TIM) 

(Figure 4.3). 

 

 

Figure 4.3 – Localization of the main stations sampled in the first and second field campaigns: 

Sebastião Gomes (SG), Parcel das Paredes (PA), Archipelago (ARCH), Parcel 

dos Abrolhos (PAB) and Timbebas (TIM). The bathymetry data was extracted 

from the ETOPO2 data base.  
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The daily sampling plan consisted basically in arriving at a main station and anchoring 

the vessel for the surveys. Two to six sites above the reefs located in the surroundings of 

the station, were sampled each day using a small boat due to the shallow depths. In this 

work, the term “station” is referred only to the main station sampled from the ship and 

“sites” are referred to the places visited with the small boat in the surrounding reefs. At 

the main stations the measurements consisted of: above and in-water radiometry, bio-

optical properties and environmental factor records. At the shallow sites covered by the 

small boat, the measurements were: above-water radiometry, water surface collection 

for bio-optical properties, environmental factors and underwater photographs for the 

characterization of the benthic community.  

4.2.1. Under-water radiometry 

Hyperspectral profiles of 𝐸𝑑 (μW cm−2 nm−1) and 𝐿𝑢 (μW cm−2 nm−1 sr−1) were 

collected underwater from 349.6 to 802.6 nm using HyperOCR PRO sensors connected 

to a Satlantic Profiler II (Satlantic Inc.). The 𝐸𝑑0 (μW cm−2 nm−1) deck sensor was 

maintained at the topmost level of the ship superstructure. The Satlantic Profiler was 

only deployed from the ship in deeper waters letting the instrument drift more than 50 m 

away before logging to avoid contamination in the measurements caused by shadows of 

the ship or additional reflection. Profiles were registered between the surface and 

bottom, with 2-3 casts per station. The data were processed using Prosoft 7.7.16 

software to estimate: the profiles of underwater remote sensing reflectance 𝜌𝑅𝑆(𝑧) and 

𝐾𝑑 (𝑧).  

Prosoft software estimates remote sensing reflectance profiles using the ratio of the 

upwelling radiance (𝐿𝑢) with the downwelling irradiance (𝐸𝑑), measured at each depth 

(z) (Equation 4.1). 

ρRS(z) =
Lu(z)

Ed(z)
                                                              (4.1) 

 

The 𝐾𝑑  (𝑧) was estimated following the standard method of Smith and Baker (1986), as 

the local slope of measured ln(𝐸𝑑(𝑧)) within a depth interval centered on 𝑧𝑚 (Equation 

4.2). In this work, depth intervals of 50 cm were chosen to determine the local slope. 
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𝑙𝑛(𝐸𝑑(𝑧)) =̃ 𝑙𝑛(𝐸𝑑(0−)) − (𝑧 − 𝑧𝑚)𝐾𝑑(𝑧𝑚)                            (4.2) 

 

To choose the best depth interval used to determine Kd, the 𝐸𝑑 profiles at each station 

were carefully examined. In the first meters of water column, 𝐸𝑑 showed a noisy 

behavior. Thus, the 𝐾𝑑 values were determined solely at depths where 𝐸𝑑 presented an 

approximately exponential decay, generally at depths greater than 6 m. 

4.2.2. Above-water radiometry 

Radiance measurements (𝐿, μW m−2 sr−1) were made using an ASD Fieldspec 

Handheld (ASD Inc.) radiometer, which collects radiance between 350 and 1100 nm 

(bandwidth 1 nm) and with a field-of-view of 25°. The sensor was used to measure 

signals proportional to the sea surface radiance (𝐿𝑤), sky radiance (𝐿𝑠𝑘𝑦) and the 

radiance reflected from a horizontal reference white panel Spectralon (𝐿𝑔). The azimuth 

angle with respect to the Sun plane was 137° to avoid shadows and sunglint 

contamination in the measurements (MOBLEY, 1999; FOUGNIE et al., 1999; 

HOOKER; MOREL, 2003). The zenith angle of the sensor was set to 45° for 

correspondent water and sky measurements. Measurements were done in the following 

sequence: WATER - WHITE REFERENCE - SKY, repeating each set 4 to 11 times. 

For each set of measurements, 𝜌𝑅𝑆(0+) (above-water remote sensing reflectance) was 

estimated following Expression 4.3: 

 

𝜌𝑅𝑆(0+) =
𝐿𝑤−𝜌𝑠𝑘𝑦∗𝐿𝑠𝑘𝑦

𝐿𝑔 𝜌𝑔⁄ ∗𝐹𝑐∗𝜋
                                                           (4.3) 

 

where 𝜌𝑠𝑘𝑦 is  an above-water reflectance factor for radiance, 𝜌𝑔 is the reflectance of 

the white reference with a value of 0.99 and 𝐹𝑐 is the calibration factor of  the white 

reference. 𝐹𝑐 refers to the calibration between the reference used in the field and a 

Spectralon panel that remains in the laboratory. 𝜌𝑠𝑘𝑦 was estimated according to 

Mobley (1999) as a function of the viewing and solar zenith angles and wind speed. 
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Due to the high light attenuation in the water column for wavelengths shorter than 400 

nm and longer than 700 nm only the visible portion of the spectrum was analyzed. 

Despite this, a residual correction was performed for each  each 𝜌𝑅𝑆(0+) spectrum 

following the procedure suggested by Rudorff et al. (2014) for turbid waters, which uses 

values in the near IR. For that, the cast with the lowest value at 800 nm (averaged 

between 790-810 nm) was used as the baseline to correct for the positive white offset of 

the other casts, measured at each site and station. Equation 4.1 and the residual 

correction were applied to correct the spectra from noises and biases due to 

contaminations from the viewing geometry and environmental factors (such as the sky 

condition and sea surface state) and to allow for an intercomparative analysis between 

the spectra. Finally, for each station the 𝜌𝑅𝑆(0+) was determined with the average of all 

casts.  

4.2.3. Bio-optical parameters 

At each station and site, 5-10 liters of seawater were collected at the surface for the 

estimation of the main OAC: absorption coefficients of CDOM (𝑎𝐶𝐷𝑂𝑀), detritus (𝑎𝑑) 

and phytoplankton pigments (𝑎𝑝ℎ𝑦𝑡𝑜) and chlorophyll-a concentration (chl-a). Water 

was filtered on board up to 3 hours after collection following NASA’s protocols 

(MITCHELL et al., 2002) and the conversion coefficients to estimate the particulate 

absorption (𝑎𝑝) were taken from Mitchell (1990). Two replicates were filtered for 𝑎𝑝 

with samples of 1-2 liters for each replicate, according to the water clarity. Water was 

filtered using Whatman Glass Fiber Filters (GF/F) with porosity of 0.7 µm and the 

filters with retained material were stored in liquid nitrogen until their analysis at the 

mainland laboratory. Particulate absorption spectra were measured using a Shimadzu 

UV-2450 spectrometer. After the 𝑎𝑝 measurements, the sample filters were soaked with 

Sodium Hypochlorite for 24 hs to remove the chemicals and pigments from the material 

retained on the filter, and the absorption spectra were measured once again in the filters 

to obtain 𝑎𝑑. 𝑎𝑝ℎ𝑦𝑡𝑜 was estimated as 𝑎𝑝ℎ𝑦𝑡𝑜 = 𝑎𝑝 − 𝑎𝑑. To estimate 𝑎𝐶𝐷𝑂𝑀, water 

samples were filtered through membrane filters with  0.2 μm pore size. Samples were 

preserved in dark at around 4°C until their measurements using a Hitachi 

spectrophotometer at the main laboratory. For 𝑎𝐶𝐷𝑂𝑀, a single replica was measured for 
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station. All measurements of the absorption coefficients were analyzed at the Instituto 

Oceanográfico, Universidade de São Paulo (IOUSP, Brazil). 

For the chl-a concentration, 500 to 750 ml of water samples were filtered using 

Whatman GF/F with 0.7 µm of porosity. N,N-Dimethyformamide (DMF) was used to 

extract pigments (SUZUKI; ISHIMARU, 1990). Duplicates for each station and site 

were analyzed using a spectrofluorimeter (LUTZ et al., 2009). The 𝑎𝑝 and chl-a 

duplicates were either averaged. 

Profiles of the backscattering coefficient measured at 700 nm were collected at the main 

stations with an ECO BB3 sensor connected to the Satlantic Profiler. The data was 

processed using Prosoft 7.7.16 software to estimate the particle backscattering 

coefficient of particles at 700 nm (𝑏𝑏𝑝(700)). The spectral 𝑏𝑏𝑝() was derived with the 

QAAv5 model (LEE et al., 2002) using 𝜌𝑅𝑆(0−) at 440 and 550 nm determined with the 

Satlantic Profiler II. The spectral 𝑏𝑏𝑝()  model was validated comparing the modeled 

and measured 𝑏𝑏𝑝(700). 

4.2.4. Environmental characterization 

The depths at each site were recorded using a handle ecobatimeter  measured at surface 

or by a diver using underwater pressure gauge. At each station, depth was measured by 

the ecobatimeter installed in the ship. The geographic position was always registered 

using a Garmin GPS unit (mean error ±5 m). 

At the same time of the above-water radiometric measurements, the following 

environmental factors were registered: wind velocity, percentage of clouds and sea 

state. This information aided for the estimation of 𝜌𝑠𝑘𝑦 in Equation 4.3. 

4.2.5. Benthic community 

At each site, underwater photographs were taken by a diver for the characterization of 

the benthic communities. Benthic photos were taken at a distance of about 30 cm from 

the bottom, and covered an area of about 60 x 60 cm for each picture. These photos 

were used for a detailed description and quantification of the main benthic classes 

present in the sites.  
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Between 2 and 9 benthic photos were analyzed for each site, depending on the 

heterogeneity of its benthic community. Photos were initially processed to adjust their 

contrast and histograms in the three channels (red, blue and green), which allowed a 

better identification of the classes. In each picture, 100 random points were collected 

and the class (up to the maximum taxonomical level as possible to be identified in an 

underwater picture) of each of them was registered (Figure 4.4). This processing was 

performed using the Coral Point Count (CPCe) software. 

 

 

Figure 4.4 – Random points on a submerged picture of benthic communities in the ACRB using 

the CPCe software. 

 

The benthic characterization included the following categories: 

 Seaweeds:  

- Phyllamentous green algae (Chlorophyta) 

- Fleshy green algae (Chlorophyta) 

- Brown algae (Phaeophyceae) 

- Fleshy red algae (Rhodophyta) 

- Non-Fleshy calcareous algae (Rhodophyta) 
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- Algal turfs (often a mixture of Chlorophytes, Cyanophytes, 

Phaeophytes, and Rhodophytes -BERNER, 1990-) 

 Seagrass 

 Corals: 

- Millepora sp.  

- Bleached Millepora sp. 

- Mussismilia sp.  

- Bleached Mussismilia sp.  

- Montastraea sp.  

- Bleached Montastraea sp.  

- Other corals 

- Other bleached corals 

 Sponge (Porifera) 

 Sediment 

 Sand 

 Zoanthids:  

- Palythoa sp. 

- Other Zoanthids 

 Other organisms 

 Shadows 

The percentage of coverage for each class was estimated in each photo. For each site, 

the mean percentage of coverage between pictures was calculated.  

4.3. Remote sensing data: Worldview-2 

In this work, very high spatial resolution data registered by the WorldView-2 (WV02) 

orbital sensor was used. The imagery (free of clouds) was captured on 02/14/2012 at 

10:06 local time, during our first field campaign, between the coordinates of 

17°54’9.38’’-18°3’22.71’’S / 38°35’43.25’’- 38°45’38.17’’W. The WV02 sensor has 

eight multispectral bands (MS) in the visible and near-infrared regions and one 

panchromatic band (PAN). Its spatial nominal resolution at nadir is 2 m for the 

multispectral bands and 0.5 m for the panchromatic band and its radiometric resolution 

is 11-bits, stored as a 16-bits integer. The nominal swath width is 16.4 km. The orbit of 



51 
 

WV02 is nearly circular, sun-synchronous, with an altitude of approximately 770 km 

with a descending nodal crossing time of approximately 10:30 a.m. (DIGITAL GLOBE, 

2010). WV02 is a commercial sensor that captures images only under request and the 

imagery can be done at nadir or off-nadir-angles, due to its off-nadir pointing capability. 

 

 

Table 4.1 – Main characteristics of the Worldview2 orbital sensor and specificities of the used 

scene: spectral and spatial resolutions, solar and off-nadir angles and percentage 

of cloud cover. 

Sensor specifications and ancillary information of the WV02 imagery 

Spectral Resolution  

(Center Wavelength and 50% 

Band Pass Band, in nm) 

Panchromatic    632      464 – 801 

Coastal              427      401 – 453  

Blue                  478       448 – 508 

Green                546       511 – 581 

Yellow              608       589 – 627  

Red                   659       629 – 689  

Red Edge          724       704 – 744  

NIR1                 831       772 – 890  

NIR2                 908       862 – 954 

Spatial resolution (m) PAN         0.5  

MS              2  

Solar zenith angle 64.8° 

Solar azimuth angle 82.8° 

Off-Nadir-Angle (ONA) 15.6° 

Cloud cover 0% 

 

The image used was delivered in the 2A Standard processing level. This level includes 

sensor radiometric and geometric corrections, and data are projected to a plane using a 

map projection and datum, in this case UTM Datum WGS-84. Sensor corrections 

account for the internal detector geometry, optical distortion, scan distortion, any line-

rate variations, and registration of the panchromatic and multispectral bands. 

Radiometric correction is performed to minimize dark and light vertical stripes caused 

by non-uniform responses between the detectors, the variability in electronic gain and 

offset, lens falloff, and particulate contamination on the focal plane. Since the WV02 is 

a pushbroom system, data in every column of an image come from the same detector 

causing this artifact. Additionally, radiometric correction scales all image pixels to top-

of-atmosphere spectral radiance allowing to apply a unique absolute calibration factor to 
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all pixels for each band. This correction includes: the relative radiometric response 

between detectors, non-responsive detector fill, and a conversion for absolute 

radiometry. Geometric corrections remove spacecraft orbit position and attitude 

uncertainty, Earth rotation and curvature, and panoramic distortion. 

 

 

 

 
 

 

Figure 4.5 – Flowchart of the main activities of data collection, processing and analysis  
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5 WATER COLUMN CORRECTION STUDY 

5.1. Introduction 

Bottom reflectance (𝜌𝑏) is the central parameter in the remote sensing of coral reefs 

and, depends on the physical structure and chemical substrate composition 

(HOCHBERG et al., 2004). 𝜌𝑏 in coral reef studies has been mainly used for the 

following:  

- Identification of coral bleaching events, which are frequently used as a proxy for coral 

reef health (ELDVIDGE et al., 2004). Bleached corals can be differentiated from 

healthy corals in their reflectance spectrum because the zooxanthells that are lost are 

associated with pigment depletion and color change (CLARK et al., 2000; HOLDEN; 

LEDREW, 1998; 1999). Despite its potentiality, it can be complicated to observe by 

remote sensing and depends on the prompt imagery of the area because dead corals are 

rapidly colonized by algae, with a spectral behavior similar to zooxanthells; 

- Mapping of different assemblages of benthonic species by using different techniques, 

such as methods based on spectra similarities or Object-Based Image Analysis (OBIA) 

(PHINN et al., 2012; KOBRYN et al., 2013; BOTHA et al., 2013; BENFIELD et al., 

2007; ZHANG et al., 2013; among others). In the latter, knowledge of reflective bands 

can be introduced, which has resulted in improved mapping accuracy; 

- Application of spectral mixed indexes to resolve benthic mixtures. This technique has 

been used in terrestrial environments where the three main fractions considered were 

vegetation, shadow and soil. In reef environments, it was applied with some success 

using the fractions algae, coral and sand (HOCHBERG; ATKINSON, 2003; HEDLEY 

et al., 2004; GOODMAN; USTIN,2007); 

- Application of methods such as derivative analysis in quasi-continuous spectra 

allowing detection of diagnostic features for discriminating between bottom types 

(HOLDEN; LEDREW, 1998; HOCHBERG et al., 2003; KUTSER et al., 2006).  

However, in some situations, the actual bottom reflectance spectra are not required. 

These situations occur when the objective of the work is solely produce a map of a coral 

reef from an individual image using either supervised or unsupervised classification 
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algorithms. In these cases, spectra arising from each mapped class are not valid for 

descriptive and/or comparatives purposes.  

Although remote technologies have a great potential in studies of the sea bottom, 

extracting the reflectance spectrum from the data of orbital optical sensors is complex. 

Several interferences affect the solar irradiance before it reaches underwater substrates 

which were referred to in section 3. This chapter left aside the problem of atmospheric 

correction and water surface reflection, and it was focused on the separation between 

the signals from the water column and seabed. 

Different methods have been proposed to minimize water column correction and were 

detailed in Chapter 3. The objective of this chapter was to perform an inter-comparison 

of methods to retrieve the bottom reflectance, evaluating their performance and 

uncertainties associated with different OAC concentration in water, depth and kind of 

bottom. The inter-comparison was accomplished using simulated spectra and 

multispectral data obtained from the WorldView-2 (WV02) sensor in the ACRB. Three 

methods were chosen for the inter-comparative analysis: Maritorena et al. (1994), Lee et 

al. (1999) and CRISTAL (2005), with the first two belonging to the second group and 

the last one to the third group. No method included in the first group was tested because 

they produce an index that involves two spectral bands instead of reflectance, which 

produces a non-viable performance comparison with methods in the other groups. 

Methods proposed by Maritorena et al. and Lee et al. seemed similar, but they differed 

in that Maritorena uses an AOP (𝐾𝑑) to characterize the water column while Lee uses 

two IOPs (𝑎 and 𝑏𝑏). It was wondered if using these methods for bottom retrieval would 

not provide distinct results. These two methods were created to simulate 𝑅(0−) or 

𝜌𝑅𝑆(0−) in shallow waters. Nevertheless, they were not tested previously to obtain 𝜌𝑏 

from 𝜌𝑅𝑆(0−) or 𝑅(0−) as is done here. The last method (CRISTAL) is a new approach 

that appears to have the potential to correct the water column. This method was chosen 

as a representative of the third group. 

5.2. Materials and methods 

5.2.1. Application and comparison of selected methods: simulated spectra 

Simulations were performed using the WASI v.4 software (GEGE, 2012). Three types 

of bottoms were used in the simulations: coral sand, brown algae and green algae 
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(MARITORENA et al., 1994). Four depths were considered: 3, 5, 10 and 15 m. Four 

types of water were defined as representative of the variation of conditions in the water 

column in coral reefs (Table 5.1). To define the water constituents, the literature was 

reviewed to determine the range of variation of chl-a, CDOM absorption (𝑎𝐶𝐷𝑂𝑀) and 

sediments concentration in the coral reefs environments (Table 5.2). These parameters 

vary between chl-a: 0.01-9.21 mg m
-3

; aCDOM(440): 0.0017-0.24 m
-1

; and sediments: 

0.8-2.2 mg l
-1

. Zenith and view angles were set at nadir (0°). In total, 48 situations were 

considered from the combination of 3 bottoms, 4 depths and 4 waters (3 ∙ 4 ∙ 4). In 

WASI, the 𝑅(0−), 𝑅∞(0−), 𝐾𝑑, 𝜌𝑅𝑆(0+), 𝜌∞
𝑅𝑆(0+) and 𝑎 coefficients were simulated. 

 

Table 5.1 – Water characteristics of the four different types of water used to simulate surface 

reflectance above shallow areas. 

Water 
type 

chl-a 
(g l-1) 

aCDOM(440) 
(m-1) 

Suspended particles 
Type I  (mg l-1) 

Suspended particles 
Type II (mg l-1) 

ad(440)  
(m-1) n 

Water-a 0.01 0.0017 0.01 0 0 -1 

Water-b 1 0.0316 1 0.8 0 -1 

Water-c 3 0.15 3.5 2.2 0.2 0 

Water-d 9 0.3 10 1 0.5 0 

 

Maritorena et al.’s algorithm was applied to the 48 simulated spectra of 𝑅(0−) using 

Equation 5.1. The cases where 𝜌𝑏 did not contribute to 𝑅(0−) (Equation 5.2) or when 

𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 behaved exponentially were excluded from the analysis. In all cases, a 

bottom contribution to the 𝑅(0−) modeled signal could be found even when the bottom 

was deeper than 𝑧90.  

 

𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 =
𝑅(0−) − 𝑅∞(0−)

𝑒−2𝐾𝑑𝑧
+ 𝑅∞(0−) (5.1)  

 

% 𝑜𝑓 𝑏𝑜𝑡𝑡𝑜𝑚 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
(𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 − 𝑅∞(0−)) 𝑒−2𝐾𝑑𝑧 

𝑅(0−)
∙ 100 (5.2)  
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Uncertainties in retrieving the bottom reflectance for each wavelength were estimated 

as: 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =
𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 − 𝜌𝑏 

𝜌𝑏
∙ 100 (5.3)  

 

 

The second applied method as the algorithm proposed by Lee et al. (Equation 5.4). In 

Equation 5.4, Du
C and Du

B are the optical path-elongation factors for scattered photons 

from the water column and bottom, respectively. They can be estimated from the a and 

bb coefficients (see Table 3.1). ρRS(0+), ρ∞
RS(0+) and 𝑎 coefficients spectra were used. 

ρRS(0+) and ρ∞
RS(0+) were converted to below water using expression 5.5. 

 

𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 =
𝜋 [ρRS(0−) − ρ∞

RS(0−) (1 − 𝑒[−(1+𝐷𝑢
𝐶)𝑘𝑧])]

𝑒[−(1+𝐷𝑢
𝐵)kz]

 (5.4)  

  

𝜌𝑅𝑆(0−) =
𝜌𝑅𝑆(0+)

0.5 + 1.5 𝜌𝑅𝑆(0+)
 (5.5)  

 

 

 

 

The backscattering coefficient is not an output of WASI software. Hence, the 𝑏𝑏 

coefficients were estimated according to Gege (2012): 

 

 

 

 

𝑏𝑏() = 0.00144 m−1 (


500
)

−4.32

+ 𝐶hl_𝑎(0.0006m2g−1 ∙ 𝐶hl_𝑎−0.37)

+  𝐶𝑀𝑖𝑒 0.0042m2g−1 (


500
)

𝑛

 

(5.6)  
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Table 5.2 – Water column characteristics in coral reefs areas Worldwide reviewed from 

literature. 

Coral Reef aCDOM  
(443) (m-1) 

chl-a  
(mg m-3) 

Sediments 
concentration  

(mg l-1) 
Approach Source 

Bahamas 
0.006-

0.030 

0.031-

0.21 
 Remote sensing Otis, 2012 

Bali 0.01-0.05 
0.088-

0.58 
 Remote sensing Otis, 2012 

GBR (lagoon) 
0.016-

0.075 

0.078-

0.38 
 Remote sensing Otis, 2012 

GBR (reef 

matrix) 

0.008-

0.040 

0.088-

0.58 
 Remote sensing Otis, 2012 

Florida Keys 
0.008-

0.050 

0.058-

0.38 
 Remote sensing Otis, 2012 

Maldives 
0.006-

0.045 

0.078-

0.58 
 Remote sensing Otis, 2012 

Palau and Yap 
0.003-

0.011 

0.031-

0.21 
 Remote sensing Otis, 2012 

Panama (Gulf of) 0.02-0.18 0.17-2.67  Remote sensing Otis, 2012 

Panama 

(Chiriqui) 

0.009-

0.044 

0.099-

0.81 
 Remote sensing Otis, 2012 

Philippines 
0.004-

0.030 

0.049-

0.81 
 Remote sensing Otis, 2012 

Thailand 

(Andaman) 
0.011-0.24 

0.160-

9.21 
 Remote sensing Otis, 2012 

Thailand (Gulf 

of) 
0.012-0.15 0.11-2.39  Remote sensing Otis, 2012 

Lee Stocking 

Islands, Bahamas 

0.0017-

0.067        

(at 440nm) 

0.01-0.32  In situ data 

 

Zaveneld and Boss, 

2003 

 

Moreton Bay, 

Australia 
 0.4-1 1-3.3 In situ data Dekker et al., 2011 

French Polynesia   0.3-0.9  0.8-2.2 In situ data 
Maritorena and 

Guillocheau, 1996 

GBR 
0.08-0.15 

(at 400 nm) 
0.05-0.7  In situ data 

Liston et al., 1992; 

Furnas et al., 1990;  

Kutser et al., 2006 

Curaçao  0.26-1.1  In situ data Van Duyl et al., 2002 

La Parguera 

Natural Reserve, 

Puerto Rico 

 0.13-1.7  In situ data 
Otero and Carbery, 

2005 
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Uncertainties in retrieving the bottom reflectance for each wavelength were estimated 

according to Equation 5.3. 

Because estimating the parameters used as input in any model involve errors, there are 

other output uncertainties related to this source. A sensitivity analysis can measure the 

impact of uncertainties for a parameter on a model result. This type of analysis shows 

the parameters for which more attention should be paid, because errors in their 

estimation can cause a significant and non-proportional response in the results. In the 

analysis, 𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 estimated using Maritorena’s and Lee’s models from 𝑅(0−) or 

ρRS(0−) modeled in WASI constituted the baseline retrieval. Each parameter (𝑧, 

𝐾𝑑, 𝑅∞, ρ
∞
RS(0−), 𝑎 and 𝑏𝑏) was then varied between -95 and +100% to evaluate the 

impact on the 𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑. Sensitivity was estimated according to equation 5.8:  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) =
|𝜌𝑏1 − 𝜌𝑏2|

𝜌𝑏1
100 (5.8)  

  

where 𝜌𝑏1 corresponds to each value obtained from baseline retrieval, with original 

parameters while 𝜌𝑏2 are the values obtained after modifying the parameters. This 

analysis was performed for some extreme cases: water-a and water-c; sand and brown 

algae; 3 and 10 m depth. Results were evaluated at 450, 550 and 650 nm.  

Finally, the CRISTAL method was applied. 5% of uncorrelated noise was added to the 

48 𝜌𝑅𝑆(0+) spectra to be corrected, and other 𝜌𝑅𝑆(0+) spectra were simulated, 

considering different combinations of the three bottoms (coral sand, green algae and 

brown algae) at 16 depths (1-16 m) and water column constituents (chl-a: 0.01, 0.02, 

0.1, 0.2, 0.3, 0.9, 1, 1.1, 2.5, 2.8, 3, 3.1, 3.2, 8, 8.5, and 9 g l
-1

; aCDOM(440): 0.0017, 

0.00269, 0.0074, 0.1, 0.15, 0.2, and 0.25 m
-1

; concentration of suspended particles Type 

II: 0, 0.5, 0.8, 1, 2, 2.2, and 2.5 mg l
-1

). In total, 26,352 spectra were generated and 

included in the spectral library. The classification technique SAM (KRUSE et al., 1993) 

based on the geometric proximity of two spectra was applied. 

Figure 5.1a shows the 𝐾𝑑 coefficients for the four waters. Increases in the OAC 

concentration produced increases in the 𝐾𝑑. Nevertheless, the minimum 𝐾𝑑 value did 
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not always occur in the lowest wavelength. Water-a had a low concentration of 

constituents, and its 𝐾𝑑 curve was similar with pure water and had a minimum at 400 

nm. However, this minimum value was displaced to higher wavelengths when the OAC 

concentration increased. In the case of water-d, its CDOM concentration was so high 

that the 𝐾𝑑 had a maximum at 400 nm. If z90 was estimated for the four waters 

(Equation 3.10); even in the clearest water, z90 was lower than 5 m for wavelengths 

greater than 600 nm (Figure 5.1b).  

 

 

 

Figure 5.1 – (a) Diffuse attenuation coefficient (𝐾𝑑, m
-1

) as a function of wavelength (nm) 

simulated in WASI for water-a to -d. (b) 𝑧90 (m) versus wavelength (nm) for 

water- a to -d, that corresponds approximately to depth where radiance decay in 

90%. 

 

 

5.2.2. Application and comparison of selected methods: remote sensing data 

In this section, some spectra extracted from a Worldview-2 (WV02) scene were 

intended to be corrected using Maritorena’s and Lee’s algorithms. The CRISTAL 

method was not used because of the lack of actual bottom reflectances, which are 

required to simulate the spectral library. The WV02 image corresponds to the Parcel 

dos Abrolhos and Archipelago, a portion of the ACRB (Figure 5.2). In this area depths 

vary between 2 and approximately 25 m and some reef structures show a typical 
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mushroom shape whose tops have a diameter between 20 and 300 m (FRANCINI-

FILHO; MOURA, 2008).  

The WV02 image was atmospheric corrected using the package ATCOR2 available in 

PCI Geomatica v.10.3.2, and visibility was set at 43 km. This value was obtained from 

the aerosol optical thickness at 574 nm (AOT547) of the MODIS-Aqua image on the 

same day, which was converted to a visibility value using the model proposed by 

Vermote et al. (2002). The scene was also corrected of sunglint effects (HEDLEY et al., 

2005). Bathymetric information for 117 points inside the scene, was provided by the 

Brazilian Navy. These points were homogeneously distributed in the scene and depths 

were corrected to a tidal height at the time of the imagery. Spectral curves of the surface 

reflectance (adimensional) (𝜌𝑤(0+)) were extracted in the same pixels where depth 

data was available. Several samples in deep areas were carefully selected, and mean 

values were calculated for each band. These values were used as input in both models to 

represent the deep water reflectances.  

 

 

 

Figure 5.2 – Quasi-true color composition (R: 659 nm; G: 546 nm; B: 478 nm) of a portion of 

the Abrolhos Coral Reef Bank, Brazil, around the archipelago, captured by 

WV02 sensor in 2012/02/14. Pink dots show distribution of depth points in the 

area (Right). Red square in image Landsat TM-5 (R: 660 nm; G:560 nm; B:458 

nm) captured in 2006/05/29 shows location of study area respect to coast (Left 

down). Location of study area in South America (Left up).  
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𝐾𝑑 values used to correct the water column effect where estimated from in-water 

profiles,  quasi-concomitant with the imagery (between 2012/02/27 and 2012/02/29). 

The hyperspectral 𝐾𝑑 along the water column was averaged for each profile excluding 

measurements in the 5 first meters because the 𝐸𝑑 showed a noisy pattern, mainly 

caused by waves and bubbles. Then, a mean 𝐾𝑑() value of all profiles was obtained 

(Figure 5.3). 

 

 

Figure 5.3 – In grey, diffuse attenuation coefficient (𝐾𝑑, in m-1) versus wavelength (nm) 

estimated from 𝐸𝑑 (m-1) profiles along water column measured quasi-

concomitant with WV02 imagery in ACRB, Brazil. Black squares represent 

simulations of 𝐾𝑑 for the bands of WV02 until 700 nm.  

 

WASI software in the inverse manner was used to retrieve 𝑎𝐶𝐷𝑂𝑀. In this sense, the 𝐾𝑑 

spectrum was used as an input and chl-a concentration was fixed at 0.48 mg m
-3

 

according to estimatives in the field. At last, 𝑎 was obtained as the sum of 𝑎𝐶𝐷𝑂𝑀, 𝑎𝑑, 

𝑎𝑝ℎ𝑦𝑡𝑜 and 𝑎𝑤 (POPE; FRY, 1997). 𝑏𝑏𝑝 was derived through the QAAv5 method (LEE 

et al., 2002) using the 𝜌𝑅𝑆 at 440 and 550 nm registered with the Satlantic Profiler II. It 

was validated using 𝑏𝑏𝑝 at 700 nm measured in situ. 𝑏𝑏 was estimated as the sum of 𝑏𝑏𝑝 

and 𝑏𝑏𝑤 (MOREL, 1974) (Figure 5.4). The hyperspectral data of 𝐾𝑑, 𝑏𝑏 and 𝑎 were 

simulated for the spectral bands of WV02 up to 700 nm. 
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117 spectra from the WV02 image for which depth information was available, were 

corrected. Maritorena and Lee’s algorithms were applied using equations 5.1 and 5.4, 

respectively. The inputs for Maritorena’s algorithm were 𝑧, 𝐾𝑑, 𝜌𝑤(0−) and 𝜌∞(0−). 

Previously, the above surface reflectances were converted to below water reflectances 

using equation 5.5. The inputs for Lee’s algorithm were 𝑧, 𝑎, 𝑏𝑏, ρRS(0−) and ρ
∞
RS(0−). 

The above-water surface reflectances obtained from atmospheric corrections were 

divided by π to convert them to remote sensing reflectances, with the surface considered 

as Lambertian. Above remote sensing reflectances were also converted to below-water 

reflectances (Equation 5.5). 

 

 

Figure 5.4 – Water optical properties estimated nearly concomitantly with the time of WV02 

imagery around the archipelago in ACRB, Brazil. (a) Absorption coefficients 

(m
-1

). (b) Backscattering coefficients (m
-1

). 

 

5.3. Results and discussion 

5.3.1. Simulated spectra 

For the baseline retrievals using Maritorena et al. and Lee et al.’s models, a gradual loss 

in bottom contribution was observed for increases in the OAC concentration and depth. 

This occurred because when the depth increases, the optical path augments, and there 

are more chances for a photon reflected by the bottom to be absorbed before arriving to 

the surface. All types of water showed bottom contribution when they were located at 3 

m depth. When the bottoms were located at 5 m in water-d, they only had a small 

contribution to surface reflectance (0.01-1.5% depending on the type of substrate) after 
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470-500 nm. In contrast, only the bottom at 10 m had contributions from the clearer 

waters (types a and b) and, in water-c, they were lower than 1% in certain portions of 

the spectrum. At 15 m, the bottom signal arrived to the surface in the entire visible 

spectrum only in water-a and water-b up to 600 nm. Additionally, the bottom 

contribution depends on the physicochemical and biologic characteristics of the 

substrate. If the bottom is more reflective, it is expected that more photons will come 

from the bottom and an additional quantity of them will have a chance of crossing the 

water column and arriving to the surface. For example, for a twice as reflective bottom, 

its contribution to the surface signal will be higher than for a less reflective bottom, 

although it will not be proportional.  

At some depths, Maritorena’s model retrieval showed an exponential growth, such as 

when the term 𝑒−2𝐾𝑑𝑧 tended to zero. 𝑒−2𝐾𝑑𝑧 was lower when 𝐾𝑑 and 𝑧 were higher. 

Therefore, in waters-a to c an exponential behavior was observed only in the red region. 

However, for water-d, this situation was observed also in the blue in response to 

increasing 𝐾𝑑 by CDOM absorption. Compared to Maritorena’s model, Lee’s model 

retrieval showed an exponential decay in some cases. Generally, this behavior was 

found when the term 𝑒[−(1+𝐷𝑢
𝐵)𝑐𝑧] was lower than 0.0002.  

Note that in this section, 𝐾𝑑, 𝑧, 𝑏𝑏, 𝑎, ρ
∞
RS(0−), 𝜌𝑏 and 𝑅∞(0−) were known and fixed in 

advance. Therefore, if the WASI software had used the Lee or Maritorena’s algorithms 

to estimate the water reflectance in the shallow water, 𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 would have been 

exactly the same as 𝜌𝑏 in the shallow and clearer waters. Differences between the real 

and retrieved bottom reflectance by both models are essentially due to differences 

between the model used by WASI and the tested models In many cases, Maritorena’s 

algorithm could retrieve the shape of the ρb spectra from the surface spectra simulated 

with WASI software (Figure 5.5). As expected, the algorithm had a better performance 

in shallower depths and clearer waters. For example, at 5 m depth, the model produced 

good results up to 700 nm with average of uncertainties of 6.5% (results are a bit 

degraded above 600 nm) but performance became degraded above 600 nm when the 

depth was 10 m (average of uncertainties 43.5%). The performance was further 

degraded in water-c and -d, being possible to retrieve 𝜌𝑏 only in some section of the 

spectrum depending on the depth, with mean uncertainty of 35%. However, Lee’s 
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model showed a slightly lower performance than Maritorena’s (mean uncertainty at 

10% for water-a, 5 m; 28% for water-a, 10m, between 600-699 nm) and tended to 

underestimate the bottom reflectance, especially after 600 nm (Figure 5.5). This 

algorithm was able to retrieve the shape of the algae spectra in most cases between 400 

and 600 nm in water-a and -b at 5 m and below 600 nm in water-c at 10 m. If 𝑅(0−) 

was used as the starting point for both models and if 𝑅(0−) was divided by π to obtain 

ρRS(0−) according to Lee et al.’s model (1999), closer values were obtained between 

the results of both models.  

Reflectances, absorption and backscattering coefficients simulated by WASI software 

were slightly noisy. In cases where the water reflectance was very low (red and blue 

regions in the most turbid waters) this noise was magnified and explains some noisy 

behavior in the retrievals for certain waters and regions of the spectrum (Figure 5.5). 

The Maritorena et al. (1994) algorithm yields errors up to 66% in the clearest waters 

(water-a) in the range from 400-499 nm, 62% in the range from 500-599 nm, and 91% 

in the range from 600-700 nm, depending on the bottom depth (between 3 and 15 m). 

The figures become 66%, 21%, and 36%, respectively, when using the Lee et al.’s 

algorithm, which indicates reduced uncertainties as a result of differences in radiative 

transfer modeling. When waters are more turbid (water-b, -c and -d), the errors 

generally increase. In the most extreme case (water-d), the errors could be as high as 

300% for both models, depending on the portion of the spectrum and bottom depth. In 

general, no pattern associated with uncertainties was observed because they were 

simultaneously related to the optical path length (Kd ∙ 2 ∙ z) and bottom reflectance in a 

non-linear way. For Maritorena’s model, however, uncertainties at the shallowest depth 

appeared to be more sensitive to the variability of the optical path length for the three 

types of bottoms. For optical path length increases, uncertainties were more related to 

the reflectance at the water surface. Using Lee’s algorithm, uncertainties were not 

sensitive to the unique input, optical path length, 𝜌𝑏, 𝜌𝑅𝑆(0−) or 𝜌∞
𝑅𝑆(0−), and made it 

more difficult to predict the model performance in a particular environment. The pattern 

of uncertainties was dependent on the bottom reflectance. For example, for the brown 

algae bottom, uncertainties were not related to a sole factor. In contrast, uncertainties 

were explained mainly by the optical path length when the bottom was sand.  
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Figure 5.5 – Bottom reflectance below water versus wavelength (nm) for the same type of 

substrate and depth. In lines, there are results retrieved using Lee et al. (in blue) 

and Maritorena et al.’s (in red) algorithms, compared with real bottom 

reflectance. In columns, there are results for the same kind of water.   
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Both models showed similar sensitivity to variation in parameters (Figures 5.6 and 5.7). 

Lee’s model exhibited a similar response pattern to 𝑎 coefficient than Maritorena’s 

model to the 𝐾𝑑 because 𝑏𝑏 was so low than its contribution to water attenuation 

seemed negligible in comparison with 𝑎. At 450 and 550 nm, models sensitivity showed 

a linear response in all of the parameters in the clearest water and shallowest situations 

(Figures 5.6 and 5.7). This response was symmetric at 450 nm considering either 

underestimation or overestimation in the parameters, and as length path increased, the 

models increased their sensitivity. In situations where substrates were located below a 

smaller path length in water (small 𝐾𝑑 or 𝑎, and 𝑧) models seemed insensitive to 𝑅∞ or 

𝜌∞. In contrast to deep water reflectance, attenuation and depth that are the parameters 

acting in the exponential term, showed an asymmetrical response according to 

underestimation or overestimation for long path length in waters (high attenuation 

and/or 𝑧). It occurred because an increase on 𝐾𝑑, 𝑎 or 𝑧 implied to modify denominator 

in Equations 5.1 and 5.4 of much lower values. Considering variations in either of them, 

the models showed an exponential behavior in their sensitivity to overestimations in the 

most turbid water (water-d). For example, overestimations lower than 50% impacts in 

more than 300% in the models results. At 650 nm, no one situation showed a linear 

behavior in sensitivity to 𝐾𝑑 and 𝑧. The response patterns were similar than at 550 nm; 

however, at 650 nm models sensitivity was higher. Both algorithms were insensitive to 

𝑅∞ or 𝜌∞ variations at 650 nm in the clear and shallowest water, while model sensitivity 

increased non linearly in deeper and more turbid waters.  

Comparing the most reflective bottom (sand) with the lowest reflective bottom (brown 

algae), models were less sensitive to sand. In the clearest and shallowest situation 

(water-a, 3 m), both methods seemed to be robust. However, sensitivity is higher when 

length path in water increased. As the bottom contribution becomes larger, the effect of 

water column is less important reducing sensitivity. Analogously, according to OAC 

concentration or depth increase, contribution of bottom to surface reflectance decreases 

while water column contribution increases. It means that small errors in estimative of all 

parameters (attenuation, depth and deep water reflectance) incur in large errors in 

bottom retrieval in not clear and/or deeper environments.  
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Figure 5.6 – Sensitivity analyses for parameters of Maritorena et al.’ model: 𝑅∞, 𝐾𝑑 and 𝑧. 

Values correspond to sensitivity (in %) defined in equation 5.8. Results are 

arranged by parameter and wavelength (450, 550 and 650 nm).  

 

 

Although errors in the modeling could be a large factor for accurate retrievals, some 

conclusions can be extracted. In general uncertainties are higher when optical path 

length is higher and sensitivity associated with both models is also higher in this case. 

Depending on depth and 𝐾𝑑, it is not always possible to retrieve a bottom signal or the 

retrieved signal might be subject to a great degree of uncertainty. This means that it is 

essential to know the environment under study to evaluate if the model is properly 

recovering the bottom reflectance or if it is creating an artifact. Validation of the water 

column correction is desirable when using in situ bottom reflectance; however, it can be 
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difficult to measure in the field. In addition, measurements of the bottom reflectance are 

normally performed very close to the target to minimize water interference, and the 

resulted Instantaneous Field of View (IFOV) is very small.  

 

 

Figure 5.7 – Sensitivity analyses for parameters of Lee et al.’ model: 𝜌∞, 𝑎, 𝑏𝑏 and 𝑧. Values 

correspond to sensitivity (in %) defined in equation 5.8. Results are arranged by 

parameter and wavelength (450, 550 and 650 nm).  
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Considering that the substrate in coral reefs can be highly heterogeneous, punctual 

measurements are not representative of larger areas (1-900 m
2
 depending on the 

configuration of the remote sensor); therefore, an understanding of the theory of the 

behavior of light in water as well as of the study area, such as the water column 

characteristics and real bottom reflectance at some locations, are required for 

interpreting such measurements. 

Using the CRISTAL method, each of the 48 𝜌𝑅𝑆(0+) spectra was associated with the 

others in the spectral library whose SAM value was the minimum, and both spectra 

were considered as the same bottom. Therefore, the result of this method was a 

categorical classification. The accuracy obtained was: 81.25%, for brown algae, 87.50% 

for green algae and 93.75% for coral sand. Some confusion between the three classes 

was observed (Table 5.3), which occurred in water-c and –d, which were optical 

complex Case-2 waters. 

This technique showed a satisfactory result, and it has the potential to be used to correct 

images. Nonetheless, several considerations are important. First, when the 𝐾𝑑 and depth 

increase, the same spectra should be obtained at the surface for different bottoms. As 

example, in Figure 5.8 two 𝜌𝑅𝑆(0+) spectra were modeled in water-d at 5 m depth, for a 

sand bottom and the other for brown algae, with 5% uncorrelated noise for the latter. If 

it is neglected the noisy pattern of the brown algae spectrum, both curves showed the 

same shape. Second, the technique requires measurements of the bottom reflectance of 

all of the bottoms present in the area and in all combinations in which they might occur. 

If these inputs do not represent all of the variety present in the field, the technique will 

not retrieve the real type of bottom in a pixel. In this work, the exact same reflectance of 

pure substrates that was wanted to retrieve was used, which means that the most 

favorable conditions constructing the spectral library were used. The confusion could be 

higher if different combinations of substrates are used.  

While the three methods tested here can be used to correct the water column effect, it is 

not simple to compare the performance between Maritorena and Lee’s models with the 

CRISTAL model because the results are different. While the first two retrieve a numeric 

value of the bottom reflectance without the effect of the water column, the CRISTAL 

method produces a categorical result. When applied to an image, Maritorena and Lee’s 
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model will result in a matrix with continuous values in each spectral band, whereas the 

CRISTAL method will produce a map with classes of bottoms. The choice of a method 

depends on different factors, such as the objective of the work, available input data, type 

of data (multi or hyperspectral), time of processing, etc. Whatever the chosen method, it 

must have some in situ data to perform the water column correction 

 

 

Table 5.3 – Confusion matrix obtained for CRISTAL method using the SAM classification 

algorithm. 

 

 

 

 

 

.  

 

Figure 5.8 – Simulated remote sensing reflectance (sr
-1

) above water as a function of 

wavelength (nm) in shallow waters (5 m depth) with chl-a = 9 g l
-1

, 

aCDOM(440) = 0.3, suspended particles Type I = 10 mg l
-1

, suspended particles 

Type II = 1 mg l
-1

 and adetritus(440) = 0.5. The blue curve corresponds to brown 

algae substrate, while the red one represents coral sand substrate including 5% 

of uncorrelated noise.  
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5.3.2. Remote sensing data 

To analyze the bottom retrieval for both methods, values where the algorithm was 

invalid (0 > 𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑣𝑒𝑑 > 1) were excluded. Then, values where typically no bottom 

contribution to surface reflectance was expected were also removed. The bottom 

contribution to surface reflectance is dependent on bottom reflectance by itself. Due to 

real 𝜌𝑏 in the study area was not available, other simulations were performed in the 

WASI software considering a standard bottom composed of 1/3 coral sand, 1/3 brown 

algae and 1/3 green algae. The bottom was simulated at 28 different depths between 1 

and 28 m in a water medium with the same parameters estimated for the day of WV02 

imagery. The bottom contribution was estimated through equations 5.2 and 5.7, and 

both models were slightly different in its estimation. For each depth, it was calculated 

the mean range of wavelength for which the bottom contribution at the surface was 

received. Figure 5.9 shows the shrinkage in wavelength range according to the depth 

increases. The water column characteristics in the study area were similar to the water-b 

simulated in section 5.2.1. Hence, values where exponential behavior was expected 

according to previous results were also neglected. 

𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 by Lee’s algorithm showed a higher percentage of invalid values at all 

depths. For example, between 9 and 11 m depth Maritorena’s model retrieved 0-16% 

invalid values, whereas Lee’s algorithm failed between 9 and 88%. Considering 13-16 

m depth, the Maritorena model retrieved invalid values in 25-58% of the cases, whereas 

Lee’s model retrieved 24-100% invalid results. Therefore, the Maritorena’s model 

seemed to show a better performance than the Lee’s algorithm.  

Although all surface spectra in the shallow water seemed similar, they were influenced 

by the bottom because deep water showed a lower spectrum than shallow. As the 

bottom depth increased, the surface spectrum reduced its magnitude and approximated 

to the deep water spectrum. However, similar spectra for the surface water when the 

bottom was located at different depths can be explained by the differences in bottom 

reflectance. Indeed, depth points were clearly located above areas with different bottom 

characteristics (Figure 5.10a). These differences can be observed as slight discrepancies 

in 𝜌(0−) spectra (Figure 5.10b). 
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Figure 5.9 – Maximum range of wavelength in which a substrate (composed by coral sand, 

green and brown algae) located at different depths can be detected with remote 

sensing techniques.  

 

If bottoms located at very distinct depths showed uniform reflectance patterns, it meant 

that they were not the same kind of bottom and exemplified the importance of applying 

water column corrections. After Maritorena’s technique was applied, the 𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 of 

these spectra showed a divergence, not only in their shape but in their magnitude 

(Figure 5.10b). Note that substrates at similar depths (at approximately 7 m) retrieved 

similar magnitudes in 𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑. Moreover, substrates at 3.79 and 7.29 m in Figure 

5.10 were located above the top of the reefs and were expected to have similar 

composition in a biological community dominated by corals, turf and crustose algae 

(VILLAÇA; PITOMBO, 1997; SEGAL; CASTRO, 2011; BRUCE et al., 2012).  

Likewise, according to a visual inspection, points at 7.39 and 10.09 m are expected to 

be composed by the same type of substrates: sand and macroalgae. In fact, retrieved 

spectra in each pair of locations showed the same shape, which suggested the same type 

of bottom. Nonetheless, it seems that the algorithm can properly retrieve the shape of a 

spectrum in some bands but fail to retrieve its correct magnitude. 𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 through 

Lee’s algorithm presented a peak in the shortest wavelength (427 nm) followed by an 

abrupt decay toward the longer wavelengths (Figure 5.10d).  
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Figure 5.10 – (a) Zoom in different portions of WV02 image in quasi-true color (R: 659 nm; G: 

546 nm; B: 478 nm). All images have exactly the same contrast and are in the 

same scale. Pink circles show location of depth points and their values are 

indicated. (b) Reflectance below water versus wavelength (nm) captured by 

WV02 sensor above the four points located in (a) and above deep water. (c-d) 

Bottom reflectance below water versus wavelength (nm) retrieved by 

Maritorena et al. and Lee et al.’s algorithms, respectively.  

 

Only bottoms at the shallowest points exhibited a similar shape as the Maritorena 

retrieval. In this case, an increase in 𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 was also observed according to bottom 

depth increases. Several uncertainty sources may cause increasingly large biases in 

retrieved bottom reflectance as depth increases. For example, 𝐾𝑑, 𝑏𝑏 and 𝑎 were not 

estimated exactly at the time of the imagery, and this can introduce errors in results. As 
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observed in the sensitivity analyses in section 5.2.1, uncertainties in these inputs can 

have an important impact in retrievals and they can be related to the depth. Besides that, 

all models are based on the exponential decay of light. Nevertheless, in the first meters 

of the water column, the 𝐸𝑑 profile showed a noisy pattern because of environmental 

factors such as waves, bubbles, OAC stratification, and fluctuations of the surface 

(STRAMSKI et al., 1992; FLATAU et al., 1999; FLATAU et al., 2000). It means that 

light could not perfectly decay exponentially, in particular considering shallow depths 

such in this analysis. If the light decay is not exactly exponential, the models will tend 

to retrieve skewed bottom reflectances as the depth increases. 

The spectral shape of 𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 from both models showed maximum values in shorter 

wavelengths, where the attenuation coefficient was lower. The natural substrates (e.g., 

sand, algae, corals, mud) do not have this type of reflectance curve, and it reveals that 

algorithms failed to retrieve the bottom reflectance below 500 nm. Above 600 nm, there 

are no differences between the shallow and deep water showing that there is no 

contribution of the bottom in these bands even in the lowest depth. It means that the 

absorption in the water is so high that it is not possible to retrieve bottom reflectance. 

Accordingly, the bands between 400 and 600 nm can contribute to the bottom 

differentiation. In this sense, the WV02 has an advantage over other orbital sensors with 

high spatial resolution because it has 4 bands inside this interval. Nonetheless, if the 

performance of the Maritorena’s algorithm in retrieving bottom reflectance from the 

simulated spectra is considered (Section 5.2.1), it was able to retrieve a high reflectance 

value in water-b at 5 m, even above 600 nm. The models fail to simulate properly water 

reflectance at the surface above shallow bottoms and acting attenuation processes 

appear to be different in nature than in the simulations for models developed until now. 

Comparing the retrievals by both models, an overestimation by Lee’s algorithm can be 

observed (Figure 5.11). Nevertheless, both retrieved exactly the same value at 546 nm 

in all depths, which was precisely in the band where there was the lowest percentage of 

invalid values. The overestimation by Lee’s retrieval could correspond to an exponential 

behavior. Notice that N is higher at 546 nm because the invalid values were removed 

from the shorter and longer wavelengths.  
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Figure 5.11 – Bottom reflectance retrieved using Lee et al.’s algorithm versus Maritorena et 

al.’s algorithm retrieval from WV02 image. Each plot corresponds to a different 

wavelength (427, 478, 546, 608 and 659 nm). Straight lines correspond to 

proportion 1:1. 
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To correct simulated spectra in an orbital multispectral image, Maritorena’s was more 

efficient. It is also advantageous because it uses a lower quantity of inputs. Models with 

a high quantity of inputs frequently produced worse results because of uncertainties in 

estimating of each entrance parameter that propagated to the results. Goodman et al. 

(2008) noted that pre-processing steps, such as atmospheric and sunglint corrections, are 

important because they could have a large impact on the results of the Lee et al. model, 

especially when large amount of cross-track sunglint is present in an image. To obtain 

better results, the authors also suggested using a parameter 𝑄 in the equation for bottom 

reflectance (𝑄 =  𝐸𝑢/𝐿𝑢, the ratio of upwelling irradiance to upwelling radiance at 

nadir) instead of using . 

5.4. Final considerations 

In recent years, the number of studies of coral reef ecosystems using remote sensing 

approaches has increased substantially. However, the characteristics of the medium of 

these ecosystems require the use of correction methods for the effects produced by the 

water column to compensate for those caused by the depth and optically active 

constituents. The application of an appropriate model for correcting the water column 

effects and accurately analyzing the input data, along with the development of new 

models, result in radiometric data with minimal water column effects that increase the 

accuracy of the mapping of reef ecosystems. Water column corrections minimize the 

confusing effects caused by different depths in scenes but do not eliminate this effect. 

At long wavelengths and high depths, it is difficult to retrieve the bottom reflectance 

due to the high light absorption by the water molecules. 

Different models have been developed for passive sensors for both multi and 

hyperspectral resolutions. Simpler correction models have been applied for multi-

spectral data of a few bands and consider clear water with vertical and horizontal 

homogeneity. For this reason, image correction fails when it is applied to deep or 

complex waters. However, these models have good potential since they only require a 

small amount of in situ data and may be useful in some regions. On the other hand, 

newer models allow considering higher environmental variability in water column 

related with depth. Although coral ecosystems are in clear water environments, 

horizontal heterogeneities in water transparency can often occur. This means that the 
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light attenuation may have some degree of spatial variability, especially in shallower 

areas. Thus, sometimes the use of a single attenuation coefficient in an entire scene, 

often obtained for deep water, can be inappropriate. It is for this reason that the 

assumption of horizontal homogeneity is a limitation for all of the models. New models 

for water column correction should consider this variability. A viable alternative would 

be to break the image into homogeneous areas for the application of different 

attenuation coefficients or different water correction models. Another input required in 

most models is the depth. For this reason, the availability of accurate bathymetry that is 

normalized by the tide height for the time of the image collection and with a spatial 

resolution match is a requirement to obtain a satisfactory result. Few models consider 

inelastic scattering (Raman) and none take into account the fluorescence of the 

phytoplankton and CDOM. However, in some situations, these scatterings may have 

important contributions in the light field, and their inclusion in the models can improve 

the fit.  

The comparison between methods based in radiative transfer models showed that the 

model performance varied with depth, OAC concentration and type of bottom. Even 

considering the homogeneous water column in an image, different performance of water 

column correction models is expected between pixels according to the substrate and 

depth. It is an aspect that has to be included when mapping accuracy is developed. For 

example, validation points should be distributed in an area to be representative of all 

conditions found in a scene. Using simulated spectra, results showed that in clear waters 

and depth lower than 10 m it is possible to retrieve moderately accurate bottom 

reflectance, and are consistent with Dekker et al. findings (2011). When retrieving 

bottom reflectance from the WV02 image, results were degraded.  

However, the lack of actual in situ bottom reflectance prevented a quantitative 

estimation of their accuracy. Although Lee et al.’s inversion scheme (1999) was 

previously applied with success to retrieve the water coefficients, it was developed 

considering a homogeneous reflective substrate. Its efficiency was lower for retrieving 

bottom reflectance. Even when Maritorena’s model failed to retrieve the bottom 

reflectance at longer wavelengths, it showed a higher performance and can be easily 

applicable with just a few inputs. Algorithms are still not capable of completely 

separating the water from the bottom reflectance, and because the performance of 
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models is depth dependent, they do not obtain accurate bottom reflectances and do not 

eliminate completely the effect of depth. 

After carefully investigating each method, the question that inevitably arises is what is 

the best method? The answer is not simple and each method has its advantages and 

limitations and can work properly in certain environments or potentially fail. For 

example, some methods assume homogeneity in the distribution of constituents of the 

water column while others can consider heterogeneities in the water between pixels. But 

inputs and outputs also differ between algorithms. Hence, the best choice for correction 

model depends on the environment and sensor characteristics, mapping purposes and 

availability of in situ data. When a new work is being planned, remote sensing images 

and field data collection can be designed. In this situation, water column corrections 

could be chosen in advance, for which a critical comparison of the performance of 

methods would be desired. Nevertheless, in an attempt to produce this comparison, 

certain restrictions were found. Most of the models did not provide a validation of their 

retrieval or each author validated their method in a different way. Some of them 

evaluated the adjustment between the simulated and measured bottom reflectance using 

different statistics parameters (R
2
, R, RMSE) or by visual comparison. Others scarcely 

visually inspected the scene after application of the water column correction model, 

whereas others did not show whether the water column correction application improved 

the mapping accuracy. Comparisons of map accuracy can also be subjective because it 

depends on a number of classes, sensor configurations, classification algorithms and 

environmental characteristics of the area, among others. For this reason, works such as 

Dekker et al.’s (2011) that produce an objective inter-comparison between different 

methods are required for the process of selecting an appropriate method and must be 

strongly encouraged.  

With the availability of more in situ data from the water column, it is expected that a 

more realistic situation could be simulated and better results would be obtained. In the 

ideal condition, it would be desirable to know all of the IOPs from the water column, 

depth, and atmospheric conditions across the entire scene at the time of the image 

acquisition together with a significant quantity of points of bottom reflectance spectra to 

validate the results. Thus, what is the advantage in using remote sensing if so much data 

are required for reliable and accurate results? First, remote sensing offers an expansion 
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of spatial and simultaneous data collection that cannot be achieved with other 

approaches. Second, an initial effort is required at the beginning when a new area is 

explored; areas that are more well-known and for which higher quantities of data are 

available increase the reliability of a model and require fewer ground truth as model 

inputs. An endeavor to determine the water characteristics (e.g., 𝐾𝑑, IOPs, OAC 

concentrations) in an area as a function of time should result in the successful 

application of water column corrections. Once these parameters are known, they can be 

used in other studies at the same season of year if they do not coincide with extreme 

weather or biological events, such as occurrence of hurricanes, phytoplankton bloom 

events or spawning events. 

Coral reefs active remote sensing is a complement to passive remote sensing 

multispectral and hyperspectral data for bottom mapping in coral reefs because 

fluorescence signals from LIght Detection And Ranging (LIDAR) measurements can be 

used to estimate the water column characteristics, bathymetry and habitat complexity 

(BROCK et al., 2004, BROCK; PURKIS, 2009). Fluorescence measurements also can 

provide information to differentiate between dead and healthy coral. In addition to 

retrieving bathymetry, active remote sensing offers the potential to estimate different 

AOPs and IOPs from fluorescence and polarization measurements from airborne 

platforms (HOGE et al., 1993; VASILKOV et al., 2001). 
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6 HYPERSPECTRAL ANALYSES OF BENTHIC COMMUNITIES 

6.1. Introduction 

At present, coral reef monitoring is a relevant topic in the global climate change context. 

If model predictions are confirmed, a depletion in biodiversity will be observed along 

with an increasing seaweed coverage in these ecosystems. Also, studies of benthic 

communities are relevant not only in the global change context. They have ecologically 

fundamental importance to determine the dynamics and functions in coral reef 

environments, productivity, rates of metabolism, biogeochemical cycles and indicates 

the reef status (KINSEY, 1985; CONNELL, 1997; HOCHBERG et al., 2003). This 

information is needed to establish guidelines of management and conservation of reef 

ecosystems.  

Several maps of coral reef areas have been published in literature (HOLDEN; 

LEDREW, 1999; PURKIS, 2005; KUTSER et al., 2006; BENFIELD et al., 2007; 

BERTELS et al., 2008, FEARNS et al., 2011; among others). These works have shown 

that it is possible to differentiate macroalgae from other types of benthic classes, even 

with a some degree of uncertainty. Evidence of this is that most of the mapping of coral 

reefs using remote sensing imagery considered at least one pure class of seaweed (e.g., 

brown algae or green algae or macroalgae) and showed some success of this 

discrimination with accuracy varying between 62 and 100%. Hence, if a benthic 

community was completely replaced by macroalgaes according to model predictions 

(HOEGH-GULDBERG et al., 2007), it should be easily detected by remote sensing.  

Until now, many works have used hyperspectral information collected in situ, very 

close to the targets, or in controlled laboratory conditions to understand the reflectance 

response of the benthic components of the communities (HOLDEN; LEDREW, 1999; 

HOCHBERG; ATKINSON, 2000; CLARK et al., 2000; FYFE, 2003; HOCHBERG et 

al., 2003; ANDRÉFOUËT et al., 2004; LIM et al., 2009; UHL et al., 2013). This kind of 

data has various advantages when compared with orbital information: (i) there is no 

influence of the atmosphere; (ii) the water column is minimal between the sensor and 

target, avoiding water column effects in the measurements, i.e., absorption and 

scattering; (iii) measurements are obtained for pure species in small areas, which allow 

the creation of spectral libraries; and (iv) with such small IFOV, spectral mixing is 



82 
 

negligible in the measured reflectance. These works showed that the spectral shape of 

individual benthic elements is mainly determined by the absorption of different 

pigments present in the biological community (HOCHBERG et al., 2003). Hedley and 

Mumby (2002) also highlighted the contribution of pigment fluorescence on the 

measured reflectance, and they encourage the inclusion of this effect in optical models. 

However, when using remote sensing information, , such effects are still poorly known.   

Some spectral features allow to perform an interspecific or intertaxa discrimination 

(FYFE, 2003). These characteristics must be evolutionally conservative so they may be 

maintained among different geographic regions (HOCHBERG et al., 2003). 

Notwithstanding, the optical similarity of some characteristic features result in some 

important restrictions for remote sensing purposes (LUCZKOVICH et al., 1993). It may 

seem contradictory that, on one hand, the spectral features are consistent and 

conservative and, on the other hand, a lot of spectral confusion exists between taxa. 

Hence, the question is if these spectral features are enough for the separation between 

bottom types? It seems that the absorption peaks are broadly conserved due to the 

presence of specific pigments in the different bottom types, which are evolutionally 

conserved, however, great variability in the reflectance spectra may be caused by 

distinct concentration of pigments, as well as, the influence of environmental noises 

which are difficult to remove and may still remain in measurements. Pigments are not 

constant between individuals, even being from the same species. Also, the reflectance is 

is influenced not only by the characteristics of the target by itself, but also by the 

environmental conditions affecting the light field, such as the acquisition geometry 

(viewing and solar zenith angles), and in the case of marine environments, the sea 

surface and sky conditions (NICODEMUS et al., 1977; HEDLEY et al., 2012).  

Besides of the complexities listed above, the actual benthic communities are not always 

formed by large patches occupied by pure substrates. Hence, when the target of interest 

is a habitat formed by the combination of different types, as usually occurs in nature, 

additional complexity is expected. In the first place, different taxa can produce the same 

pigments and only vary in their proportions (HEDLEY; MUMBY, 2002). In fact, 

analyzing the presence and concentration of pigments in samples of coral and algae 

tissues it is possible to see that it is necessary to unravel the mixture between optical 

signals from different organisms that occur in a benthic community to apply this 
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information for remote sensing purposes (MYERS et al., 1999). Second, epibiont 

foulers that are frequently found in seagrass and macroalgae as well as and 

zooxanthells, which occur within coral tissues, can also interfere in the reflectance 

spectra. Third, multiple scattering or multilayered structures also affect the reflectance 

spectra. Therefore, the tridimensional structure of the reef is another source of 

variability in the reflectance. For example, the morphology of corals can influence their 

reflectance spectrum, as massive and branching corals can present perspicacious but 

different characteristic features (HOLDEN; LEDREW, 1999). Fourth, the bottom of 

reef environments are submerged, and the water column above them will present 

different reflectance spectra according to the depth and OAC concentration. The water 

column will affect not only the bottom reflectance spectra acting as an "additive term", 

but also the light attenuation downward to the substrate and upward to the water 

surface. Models to correct the water column effect attend to remove the water 

reflectance from the surface spectra, as well as compensate for the light attenuation. 

However, such models do not work perfectly. The uncertainties in the bottom 

reflectance retrieval related to the algorithm performance and in the estimation of the 

parameters required by the models were discussed in the previous chapter. 

The first works that applied remote sensing imagery to map coral reefs date from the 

1970’s. Four decades after, several questions still remain. For instance: Do the 

characteristic features of pure substrate still remain distinguishable in the spectra of 

complex benthic communities? Is it possible to detect subtle increases of seaweed 

coverage in coral reef environments by remote sensing? Acute variations in the 

proportion of macroalgaes can be observed with differences in the reflectance spectra? 

Is it possible to distinguish benthic communities based only in their reflectance spectra? 

Is there any feature that alone helps to differentiate benthic communities? Is it possible 

to isolate the environmental factors (depth, solar zenith angle, IOPs, IFOV) from the 

biological factors (benthic species)? Or may it be that even when applying water 

column correction procedures, some environmental biases will still be included?  

In this chapter, continuous in situ above-water spectra collected at shallow points in the 

ACRB were analyzed. Benthic communities at these sites were not dominated by just a 

few species and therefore, their spectra can be used to represent the real optical 

complexity found in a complex coral reef environment with high diversity. Contrary to 
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other works, the water column is included in the measured spectra, incorporating 

additional raveling to the study. It is actually, not feasible to evaluate the real potential 

of remote sensing for such applications, associating the reflectance spectra to 

submerged biological communities without including the water column. Since the in-

situ sensor Field of View (FOV) is small, this implies that it must be used at a 

reasonable distance from the target. For example, a sensor with a FOV of 25° (such as 

the ASD) should be used at 1 m of distance from the bottom to integrate an area of 0.60 

m
2
. The objective of this chapter was to address the following points: (i) to analyze the 

water column optical constituents estimated in situ in different sites of the ACRB 

belonging to both arcs; (ii) evaluate the ability of a water column algorithm to retrieve 

accurate bottom reflectance spectra from above-water radiometric measurements; and 

(iii) relate the bottom reflectance to the community composition, looking for spectral 

differentiation between communities through possible diagnostic features. 

6.2. Materials and methods 

6.2.1. Bio-optical characterization 

In this section, all samples collected both in the stations and sites were analyzed, 

totalizing 62 samples. The absorption coefficients were used to classify the water type 

according to the Case-1 and Case-2 classification (MOREL; PRIEUR, 1977). A simple 

classification scheme was performed using the correlation coefficient between 

𝑎𝐶𝐷𝑂𝑀(440) + 𝑎𝑑(440) vs. 𝑎𝑝ℎ𝑦𝑡𝑜(440) to analyze the degree of dependence between 

the colored organic matter components with the local phytoplankton standing stock. To 

evaluate the percentage of contribution of 𝑎𝑝ℎ𝑦𝑡𝑜, 𝑎𝐶𝐷𝑂𝑀 and 𝑎𝑑 to the total biogenic 

absorption budget (the sum of the three components), a ternary diagram was also 

applied to the three components measured at 440 nm (GOULD; ARNONE, 2003; 

SYDOR et al., 2004).  

6.2.2. Above-water radiometric measurements 

A total of 20 sampled sites were analyzed in this chapter, situated in different areas of 

the ACRB in both arcs, between the coordinates 17°20’-18°10’S and 38°35’-39°20’O. 

The sites belonging to the external arc were: Parcel dos Abrolhos (PAB), at 60 km from 

the coastline and Archipelago (ARCH); and belonging to the coastal arc were: 

Timbebas (TIM) at 18 km from the coast, Pedra de Leste (PL), at 12 km, and Parcel 
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das Paredes (PA). The sites were located above reef banks with different benthic 

communities and bottom depths, which varied between 0.3 - 5 m. The sites were chosen 

according to a previous inspection of the bottom, done by scuba diving, to attend the 

following conditions: (i) a homogenous benthic coverage, with an extended patch 

enough to avoid contaminations in the radiometric measurements from neighboring 

areas with different characteristics, and (ii) to have as much sites as possible covering 

the different biological communities found in the ACRB, to be included in the analysis. 

Above-water radiometric measurements were collected every day during the campaign 

from 03/08/2013 - 03/26/2013, at 9:00-16:40, local time. Thus, the Sun zenith angles 

varied within 17-69°. Above-water radiance (𝐿) was measured when pointing the sensor 

to the ocean, sky and the white reference, as explained in Section 4.2.2. Above-water 

remote sensing reflectance (𝜌𝑅𝑆(0+)) was estimated according to Equation 4.3. All the 

spectra were filtered to eliminated noisy spikes using a moving average low-pass band 

of 25 points.  

6.2.3. Water column correction 

Similar to the processing performed to the surface spectra, the water column correction 

attempted to make the reflectance spectra independent of the effects of some 

environmental conditions, such as, the bathymetry, and the light attenuation caused by 

absorption and backscattering of the OAC present in different concentrations at each 

site. The 𝜌𝑅𝑆(0+) spectra collected in situ were first converted to 𝜌𝑅𝑆(0−) using 

expression 6.1 (LEE et al. 1999). Then, they were converted to below-water irradiance 

reflectance (𝑅(0−)) assuming that the ocean is a Lambertian surface, following 

Equation 6.2. 

𝜌𝑅𝑆(0−) =
𝜌𝑅𝑆(0+)

(0.5+1.5𝜌𝑅𝑆(0+))
                                                  (6.1) 

 

𝑅(0−) = 𝜋 ∗ 𝜌𝑅𝑆(0−)                                                     (6.2) 

 

To retrieve bottom reflectance, the Maritorena et al. (1994) model was used since it 

showed better performance compared to other models for the retrievals (as shown in 
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Chapter 5, Equation 5.1). The term 𝑘 = (𝑎𝑡𝑜𝑡𝑎𝑙 + 𝑏𝑏) was used instead of measured 𝐾𝑑 

(from the original model), since it was not possible to measure 𝐸𝑑 profiles using the 

Satlantic Profiler at the sites with shallow depths (see Equation 6.3). In this expression, 

𝑅∞(0−) corresponds to the below-water irradiance reflectance of optically deep waters, 

and 𝑧 is depth.   

 

𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 =
𝑅(0−)−𝑅𝑑𝑒𝑒𝑝 𝑤𝑎𝑡𝑒𝑟(0−)

𝑒−2𝑘𝑧 + 𝑅∞(0−)                                  (6.3) 

 

In a first attempt to extract 𝜌𝑏 from 𝑅(0−), the absorption coefficients measured from 

the in situ samples collected at each site (as detailed in section 4.2.3) were used in 

expression 6.3. The total absorption coefficient (𝑎𝑡𝑜𝑡𝑎𝑙) was determined as: 

 

 𝑎𝑡𝑜𝑡𝑎𝑙 = 𝑎𝑤 + 𝑎𝐶𝐷𝑂𝑀 + 𝑎𝑝ℎ𝑦𝑡𝑜 + 𝑎𝑑                                       (6.4) 

 

being 𝑎𝑤 the absorption coefficient of pure water measured by Smith and Baker (1981). 

The total backscattering coefficient (𝑏𝑏) was determined as: 

 

 𝑏𝑏 = 𝑏𝑏𝑝 + 𝑏𝑏 𝑝𝑢𝑟𝑒 𝑤𝑎𝑡𝑒𝑟                                          (6.5) 

 

where 𝑏𝑏 𝑝𝑢𝑟𝑒 𝑤𝑎𝑡𝑒𝑟 corresponds to the backscattering coefficient of pure water using the 

relation [𝑏𝑏 𝑝𝑢𝑟𝑒 𝑤𝑎𝑡𝑒𝑟 = 0.00144 m−1 ∗ ( 500 nm⁄ )−4.32], according to Morel (1974). 

Since no 𝑏𝑏𝑝 data was available for the shallow sites where Fieldspec measurements 

were done, the values of 𝑏𝑏𝑝 were estimated with the Quasi-Analytical Algorithm 

(QAAv5) (LEE et al., 2002) using below-water reflectance, as follows:  

  

𝑏𝑏𝑝() = 𝑏𝑏𝑝(555) (
555


)

𝑌

                                               (6.6) 
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𝑌 = 2.2 {1 − 1.2 𝑒
[−0.9 

𝜌𝑅𝑆(0−)(440)

𝜌𝑅𝑆(0−)(555)
]
}                                     (6.7) 

 

 

𝑏𝑏𝑝(555) =
𝑢(555)𝑎(555)

1−𝑢(555)
− 𝑏𝑏 𝑝𝑢𝑟𝑒 𝑤𝑎𝑡𝑒𝑟(555)                             (6.8) 

 

 

𝑎(555) = 𝑒(−2−1.4 𝛼+0.2𝛼2)                                                (6.9) 

 

 

𝛼 = 𝑙𝑛 (
𝜌𝑅𝑆(0−)(440)

𝜌𝑅𝑆(0−)(555)
)                                                    (6.10) 

 

 

𝑢() =
−𝑔0+[(𝑔0)2+4 𝑔1 𝜌𝑅𝑆(0−)()]

1/2

2 𝑔1 
                                           (6.11) 

 

where 𝑔0 and 𝑔1 are coefficients set to 0.084 and 0.17, respectively, since these values 

are recommended for coastal waters (LEE et al., 1999). 

The determination of deep water marine reflectance (𝑅∞) for the shallow sites, was 

performed by assuming the same 𝑅(0−) measured at other sites deeper than 7 m 

(assuming negligible bottom contribution), with approximate values of 𝑎 and 𝑏𝑏 . After 

applying the water column correction procedure, however, the  𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 showed 

some anomalous behavior, with exponential values at the beginning of the blue spectral 

region and towards the red end. Because of the small depths of the sites, this behavior 

was not expected and a second approach was tested, as explained in the following.  

In the second approach, modeled 𝑅∞ using Equation 6.12 according to Lee (personal 

communication) was used instead of the measured values at deeper sites. 

 

𝑅∞(0−) = 0.33 𝑏𝑏/(𝑎𝑡𝑜𝑡𝑎𝑙 + 𝑏𝑏)                                    (6.12) 
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This approach gave better results for the 𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑. 

A third step was further performed in the correction scheme attempting to improve the 

retrievals of 𝜌𝑏. Here, the Lee et al. (1999) algorithm was first applied in the inversion 

form and then the Maritorena et al. (1994) algorithm in the forward way. This approach 

was similar to that adopted by Goodman and Ustin (2007) to correct for the water 

column using satellite orbital data of the AVIRIS sensor. The inversion/optimization 

scheme of Lee et al. (1999) was applied to derive 𝑎𝑝ℎ𝑦𝑡𝑜(440), 𝑎𝑔(440) (the sum of 

𝑎𝐶𝐷𝑂𝑀 + 𝑎𝑑), 𝑏𝑏𝑝(400), and 𝑧 from the measured 𝜌𝑅𝑆(0+) spectra, at each station. 

𝑎𝑝ℎ𝑦𝑡𝑜() was estimated as:  

 

𝑎𝑝ℎ𝑦𝑡𝑜 = [𝑎0 + 𝑎1 𝑙𝑛 𝑃]𝑃                                       (6.13) 

 

 

where 𝑃 is 𝑎𝑝ℎ𝑦𝑡𝑜 at 440 nm and 𝑎0 and 𝑎1 are empirical coefficients adjusted by Lee et 

al. (1999). 𝑎𝑔() was estimated as: 

 

𝑎𝑔 = 𝐺𝑒[−0.015 𝑛𝑚−1(−440)]                                      (6.14) 

 

where 𝐺 corresponds to 𝑎𝑔 at 440 nm. And 𝑏𝑏𝑝 was determined as: 

 

𝑏𝑏𝑝 = 𝑋 (
400


)

𝑌

                                                 (6.15) 

 

where 𝑋 corresponds to 𝑏𝑏𝑝 at 400 nm. The slope 𝑌 was estimated using a ratio between 

𝜌𝑅𝑆(0−) at 440 and 555 nm, according to the QAAv5 (Equation 6.7).   

The inversion/optimization scheme of Lee et al. (1999) uses solely the measured 𝜌𝑅𝑆 as 

input to determine: 𝑎𝑝ℎ𝑦𝑡𝑜(), 𝑎𝑔(), and 𝑏𝑏𝑝(). The modeled absorption and 
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backscattering coefficients were then used to estimate 𝑅∞(0−) (Equation 6.12) and used 

as input for the Maritorena et al. (1994) algorithm to retrieve the bottom reflectance 

(𝜌𝑏). The 𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 obtained using the measured and modeled coefficients were then 

compared and the best retrieval was used for the analysis of the relations between the 

bottom reflectance and benthic community. 

6.2.4. Benthic community composition 

To relate the retrieved bottom reflectance spectra with the benthic communities, benthic 

classes were grouped according to their characteristic 𝜌𝑏  spectral shape. Non-fleshy 

calcareous algae groups were merged with algal turf and red fleshy algae, because they 

typically have similar spectral shapes (HOCHBERG et al., 2003). Although the 

reflectance amplitude signal for bleached coral is generally lower than for sand, the 

spectral shape of these bottom types is similar, hence both classes were also merged 

(HOCHBERG et al., 2003). Also, the reflectance curve of green fleshy algae and 

seagrass are characterized by a single broad feature around 550-560 nm and were joined 

in a unique class together with green phyllamentous algae (HOCHBERG et al., 2003). 

The 7 benthic classes considered were: 

 Green bottom type = Green fleshy algae + Seagrass + Green 

phyllamentous algae 

 Brown bottom type = Brown algae 

 Red bottom type = Non-fleshy calcareous algae + Red fleshy algae + 

Algal turf 

 High reflective bottom type = Sand + Bleached coral 

 Live coral 

 Sponge 

 Zoanthids 

Hedley et al. (2012) considered mixtures of pairs of substrates in different proportions 

and found that non-dominant classes restricted statistical separability, at least to sub-

pixel proportions of 20%. Considering three classes of bottom types, i.e., sand, live 

coral and algae, Hochberg and Atkinson (2003) showed that linear mixtures frequently 

pushed the classification to the dominant type. Based on these findings, it is expected 

that the reflectance spectra should be dominated by the most abundant classes. In the 
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present work, some sites had biological communities with a balanced distribution 

between different classes and non-dominant classes added up 50 % of the total. For 

comparative purposes between the bottom reflectance and benthic communities, a 

threshold of a minimum 20% of dominance of a specific class within the defined bottom 

types was established to analyze its relations with 𝜌𝑏. 

6.2.5. Hyperspectral 𝝆𝒃𝒐𝒕𝒕𝒐𝒎 vs. benthic communities composition 

6.2.5.1. Spectral Derivative analysis 

Derivative analysis is commonly applied to hyperspectral radiometric data (BUTLER; 

HOPKINS, 1970; DEMETRIADES-SHAH et al., 1990). In this kind of analysis, 

features already included in zero-order spectra are enhanced in the first and second-

derivatives, which are the most commonly used in this type of approach. This spectral 

processing technique intensifies the main features, by reducing the background signals 

that do not add new information to the zero-order spectra (TALSKY, 1994; HEDLEY; 

MUMBY, 2002). Moreover, the derivative analysis is advantageous compared to other 

techniques, because the derived spectra are independent of continuous offset, resulting 

in a reduction of bi-directional effects on a wide range of wavelengths (UHL et al., 

2013). In this work, the first-derivative applied by finite approximation was estimated 

for all spectra according to Equation 6.16. First-derivatives were used to inspect the 

consistency of a few features, feasible to be detected only in some of the zero-order 

spectra. 

 

𝑑𝜌𝑏𝑜𝑡𝑡𝑜𝑚

𝑑
|

𝑖
=

𝜌𝑏𝑜𝑡𝑡𝑜𝑚(𝑖)−𝜌𝑏𝑜𝑡𝑡𝑜𝑚(𝑗)

𝑗−𝑖
                               (6.16) 

 

where 𝑖 and 𝑗 are consecutive bands, respecting the order 𝑖 < 𝑗. 

6.2.5.2. Spectral Angle Mapper analysis 

Spectral Angle Mapper (SAM) is a supervisionised classification technique based on the 

shape of reflectance curves, as a function of the geometric similarity between two 

spectra (KRUSE et al., 1993). In this approach, the reflectance spectra are treated as 

vectors and their difference is measured as the arc-cosine of the scalar product between 
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them (Equation 6.17). For this reason, it is not sensitive to the differences in magnitude 

between the spectra, but only the spectral shape.  

 

𝑑𝑆𝐴𝑀 = 𝑐𝑜𝑠−1 [
∑ 𝑠𝑝𝑒𝑐𝑡𝑟𝑎1𝑖𝑠𝑝𝑒𝑐𝑡𝑟𝑎2𝑖

𝑁
𝑖=1

[∑ 𝑠𝑝𝑒𝑐𝑡𝑟𝑎1𝑖
2𝑁

𝑖=1 ]
1

2⁄
 [∑ 𝑠𝑝𝑒𝑐𝑡𝑟𝑎2𝑖

2𝑁
𝑖=1 ]

1
2⁄
]                       (6.17) 

 

where 𝑠𝑝𝑒𝑐𝑡𝑟𝑎1 and 𝑠𝑝𝑒𝑐𝑡𝑟𝑎2 are the reflectance curves to be compared, both 

measured at band 𝑖. SAM was applied to all spectra and dSAM values were used to 

create a SAM matrix, formed by the differences between each pair of spectra.  

6.2.5.3. Multivariate statistics 

Cluster analysis was performed to group sites according to the biological information 

(abundance of benthic categories) as well as their spectral information. In the last case, 

the spectral information encompassed the retrieved bottom reflectance using the third 

approach of the water column correction (with modeled atotal and bbp), and also their 

associated SAM matrix, considering it as a similarity matrix. Unlike the bottom 

reflectance spectra by their own, the SAM matrix is not affected by differences in 

amplitude between the reflectance curves, but only by their spectral shape. For this 

reason, the same grouping was not necessarily expected when using the reflectance 

spectra or SAM matrix. All cluster analyses were processed with the amalgamation rule 

of Ward’s method and using Euclidean distance.  

6.2.5.4. Data mining 

Data mining is defined as the process of discovering patterns in the data, with  the 

capacity to highlight useful information from large database, in any type of data or 

system (HAN; KAMBER, 2006; WITTEN et al., 2011). Some algorithms frequently 

used in data mining and learning machine are based in decision trees. As a result of its 

application, a decision tree is produced, which indicates rules for the discrimination 

between the groups previously defined. It means that from a huge data base, decision 

tree algorithms select which information is relevant for the classification and in which 

thresholds that information should be used. The C4.5 algorithm (QUINLAN, 1993) is 

an example of decision-tree classifiers and is available in the free software Weka 3.10 
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(http://www.cs.waikato.ac.nz/ml/weka/). It has been applied to remote sensing data with 

successful results (e.g., SILVA et al., 2008).  

This technique was applied with the aim to identify if diagnostic bands were presented 

in the bottom reflectance spectra, so that the benthic communities could be separated 

according to the spectral information. For the data mining application, bottom 

reflectance was restricted to wavelengths between 450 and 650 nm, since this spectral 

region is where the main absorption peaks of pigments occur and where lower 

uncertainties regarding the water column correction are expected to be found. The 

normalization of the spectra in the range of 450 to 650 nm by mean and standard 

deviation preceded the analysis. To avoid negative values, an offset value equal to 2.83 

was added to all spectra. This offset value corresponded to the absolute minimum 

obtained for all sites for the normalized spectra (450 to 650 nm). The normalization 

procedure was applied to consider only the possible diagnostic features in the analysis, 

and to avoid including the influence of the spectral magnitude of 𝜌𝑏. Besides of the 

individual bands, some reflectance ratios were also included in the analysis. The bands 

obtained from the normalized spectra had a 10 nm bandwidth and were centered at: 455, 

465, 475, 485, 495, 505, 515, 525, 535, 545, 565, 575, 585, 595, 605, 615, 625, 635 and 

645 nm. Band ratios considering all of the possible combinations using these bands 

were also calculated. This bandwidth was chosen following recommendations of Fyfe 

(2003), who appointed that optimal bands used for the differentiation of seagrasses 

should be reasonably narrow, varying from 5 to 15 nm breadth. In the total, 411 values 

were used for each site when applying the data mining analysis: 201 narrow 1 nm bands 

from 450-650 nm plus 19 wider 10 nm bands and 191 band ratios. 

The spectral data mining analysis allowed the identification of spectral features that 

were associated to two benthic classes that were separated in the cluster analysis. 

Smaller groups were not taken into account since the number of samples included in 

some of them was reduced (e.g., two sites for some groups). A criterion used for the 

grouping analysis was based on the abundance of red substrate types. Among all sites, 4 

of them were excluded of this analysis. PA2-1 and ARCH-9 were desconsidered 

because the red coverage type was absent in them. ARCH-11 and ARCH-12 were not 

included because the performance of the water column correction algorithm used to 

retrieve bottom reflectance was low for wavelengths longer than 600 nm. 

http://www.cs.waikato.ac.nz/ml/weka/


93 
 

6.2.5.5. Band depth 

The continuum removal processing was applied to all spectra between 585 and 700 nm 

in ENVI 4.7 environment. This normalization rescales data in a value interval between 0 

and 1 (KOKALY; CLARK, 1999). It is calculated dividing the reflectance at a certain 

wavelength in the absorption feature by the value of the hull at that wavelength 

(CLARK; ROUSH, 1984). After applying the continuum removal to the bottom 

reflectance between 585 – 700 nm, band depth (𝐵𝐷) was estimated as: 

𝐵𝐷 = 𝐶𝑅𝑅(585) − 𝐶𝑅𝑅(675)                                 (6.18) 

being 𝐶𝑅𝑅(585) and 𝐶𝑅𝑅(675) the continuum removed reflectance at 585 and 675 

nm, respectively. The band centered at 585 nm was found to be in a position of relative 

maximum. Whereas the 675 nm band is where the maximal absorption of chl-a occurs, 

and therefore, a minimum in bottom reflectance was seen in the spectra.   

The 𝐵𝐷 was related to the coverage of benthic types that had chl-a through Pearson, 

correlation, considering the abundance of: red substrate type; green substrate type; 

brown substrate type; red + green + brown substrate types; and red + green + brown 

substrate types + live coral. In this case, substrate types with lower coverage than 5 % 

were not neglected. 

6.3. Results and discussion 

6.3.1 Bio-optical characterization 

The CDOM absorption coefficient showed a high variation between 0.0014 to 0.3485 

m
-1

. The maximum value almost doubles the highest found in other coral reef areas 

(Table 5.6). Chl-a concentration, in the other hand, presented a variation between 0.06 

to 1.27 mg m
-3

, comparable with those reported in other coral reefs (Table 5.2). 

According to the in situ IOPs, the ACRB can be characterized as Case-2 waters, since 

the absorption coefficient of detritus plus CDOM are not correlated with the 

phytoplankton absorption coefficient, even if the samples are analyzed separated for 

coastal and external waters (R
2
 = 0.0244 for all waters; R

2
 = 0.0037 for coastal waters; 

R
2
 = 0.0247 for external waters). This means that besides of the local phytoplankton 

production, external sources may also contribute to the variability in the optical 

properties of the water column at the ACRB. In the collected samples the total 
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absorption was dominated by phytoplankton particles, CDOM, or a mixture of them, 

while detritus represented less than 50% and was not dominant at any site, as can be 

seen in the ternary diagram (Figure 6.1). Note that this diagram represents the 

dominance of the absorption coefficients and not their absolute values. In 65% of the 

cases, CDOM was the COA with the highest contribution to absorption at 440 nm. In 

the coastal areas, it is expected for CDOM not to be solely related to the biological 

activity of phytoplankton, but also come from terrestrial runoff or benthic inputs from 

seagrass and corals (MOBLEY et al., 2004). The pattern of the sediment distribution 

indicates some degree of terrestrial contribution in the coastal arc, since they are 

dominated by siliciclastic sand and mud (LEIPE et al., 1999; DUTRA et al., 2006). The 

sediments transported by rivers to the coastal zone are mainly distributed perpendicular 

to the shoreline (SILVA et al., 2013). However, the along-shore currents and 

topography of the coastal arc forms also an efficient hydrodynamic and 

geomorphological barrier for the offshore transport of the suspended materials. For this 

reason, the continental influence is minor upon the external arc, where sediments are 

dominated by pure carbonates (DUTRA et al., 2006). This means that CDOM in the 

ARCH and PAB areas should come mainly from the benthic local production while in 

the coastal arc, terrestrial material is also received. Other worldwide coral reef areas 

have also shown CDOM dominating the water absorption properties, with its high 

concentration attributed to a decay in the benthic biota and to tide exchanges controlling 

its temporal variation (ZANEVELD; BOSS, 2003; MOBLEY et al., 2005).  Figure 6.2 

shows that CDOM and phytoplankton pigments did not follow a distribution according 

to the distance to the coast. Nevertheless, high detritus absorption was found only in the 

coastal arc. The source of detritus in the external arc is mainly originated from the local 

biological community and the highest values are associated to ressuspension dynamics, 

especially caused by the passage of polar fronts, which are more frequent during the 

austral winter. During the summer, as in the case of this work, the water column should 

actually be more vertically stable due to the less frequent arrivals of cold fronts to the 

ACRB, keeping the suspended sediments low.  

The depths at the sampling sites and stations varied between 0.3 and 22.5 m, but the 

water samples were always collected at surface. Analyzing the absorption coefficients 

obtained in situ, it is possible to observe that their distribution does not respond to the 



95 
 

depth of the location where the samples were taken. This suggests that vertical 

processes are less important than the horizontal. The water samples were collected 

above the reefs, at inter-reef areas or around the Archipelago. 

 

 

Figure 6.1 – Ternary diagram representing the percentage of the absorption coefficients of each 

optical constituent (CDOM, detritus and phytoplankton) at 440 nm, referred to 

the total absorption. Samples in the internal green triangle are dominated by 

phytoplankton absorption; in the yellow triangle are dominated by CDOM 

absorption; in the blue triangle, by detritus absorption; and in the red triangle at 

the middle of the diagram corresponds to the mixture between all constituents. 
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Figure 6.2 – Absorption coefficients at 440 nm obtained in situ as a function of longitude (in the 

axis x) and the depths of the sites in meters (in the axis y).  The area of the 

circles is directly proportional to their value. Upper left: ad. Upper right: aCDOM. 

Down: aphyto. 

 

In such a small scale in which some samples were taken (around 60 to 200 m distant), a 

considerable variation in the absorption and backscattering coefficients was observed 

(Figures 6.3 to 6.5). This emphasizes the idea that a unique attenuation coefficient used 

to apply the water column correction in an entire scene, for satellite applications, could 

be inappropriate, and thus, an algorithm including the horizontal heterogeneity should 

be used. Hence, the use of algorithms that retrieve IOPs simultaneously, could be the 

best approximation to obtain the bathymetry and bottom reflectance for environments 

with high horizontal environmental heterogeneity. These findings however, are contrary 

to those found by Holden and LeDrew (2008). The authors proposed that the 

assumption of horizontal homogeneity could be valid and suggested the use of a single 

attenuation coefficient applied to the entire satellite image, when they studied a coral 

reef environment in Fiji, in the South Pacific. The choice of the best method will 

actually depend on the environmental characteristics of each area. 
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Figure 6.3 – Absorption coefficients measured in the field at all stations and sites in the ARCH 

and PAB reefs: 𝑎𝑑𝑒𝑡𝑟𝑖𝑡𝑢𝑠(440) (upper left); 𝑎𝐶𝐷𝑂𝑀(440) (upper 

rigth); 𝑎𝑝ℎ𝑦𝑡𝑜(440) (lower rigth); 𝑏𝑏𝑝(555) (lower left), measured at stations in 

the ARCH and PAB reefs. At the side of each figure, a colorimetric scale 

represents either absorption or backscattering values in m
-1

. The islands are 

represented in grey. 

 

 

6.3.2. Retrieved bottom reflectance 

In this work, three approaches were used to retrieve the bottom reflectance. In all cases, 

Maritorena et al.’s model was applied, but the values used for the inputs varied. The 

best results both in magnitude and shape of the bottom reflectance spectra, as well as the 

modeled deep water reflectance, were obtained using the absorption and backscattering 

coefficients retrieved by Lee et al.’s inversion scheme using measured above-water 

radiometry. Figure 6.6 shows some examples of the bottom reflectance retrieved 

through the three approaches applied at different locations. Using the first approach, the 

bottom reflectance showed the largest variability compared to the expected behavior. 

Such variability was manifested in the high values obtained towards the blue and red 

end of the visible spectra, in some extremes cases even showing an exponential 

behavior in this spectral region (e.g., ARCH-12 in Figure 6.6). Using modeled 𝑅∞(0−)  
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Figure 6.4 – Absorption coefficients measured in the field at all stations and sites in PL and PA 

reefs: 𝑎𝑑𝑒𝑡𝑟𝑖𝑡𝑢𝑠(440) (upper left); 𝑎𝐶𝐷𝑂𝑀(440) (upper rigth); 𝑎𝑝ℎ𝑦𝑡𝑜(440) 

(lower rigth); 𝑏𝑏𝑝(555) (lower left), measured at the stations in PL and PA 

reefs. At the side of each figure, a colorimetric scale represents either absorption 

or backscattering values in m
-1

.  

 

the results were improved at some sites (e.g., ARCH-10), but the bottom reflectance still 

showed anomalies towards the blue bands, either as increases or as negative values. 

Clearly, high increases towards the blue bands are due to an artifact of the model 

application.  

The only difference between these approaches was in the 𝑅∞(0−) used. Measured deep 

water reflectance was generally higher than the modeled and the main differences were 

observed especially for bands shorter than 500 nm (Figure 6.7). Two main reasons can 

explain this discrepancy. The first is that the assumption of no bottom contribution to 

the surface reflectance could be invalid in some situations depending on the OAC 

concentration, and particularly for the blue and beginning of the green spectral regions,  
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where light penetration is expected to be higher compared with longer wavelengths. The 

depths of the points used as “optically deep waters” varied between 7 to 22 m. On the 

other hand, for the examples cited in Figure 6.6, the maximum z90 values expected for 

these points were 8.54 and 10.35 m, which are much shallower than the bottom depths 

of these points (15 and 20 m, respectively). The second source of variability between 

measured and modeled 𝑅∞(0−) could be caused by some overestimation in the above-

water radiance measured by the ASD Fieldspec, as reported by RUDORFF et al. (2014). 

Despite of this, although the modeled 𝑅∞(0−) was lower than measured, this reduction 

was still not enough to lead some of the bottom reflectance spectra to the correct shape, 

in  which  case  remaining  an  increase  in  the blue or, on the contrary,  the modeled  

 

 

Figure 6.5 – Absorption coefficients measured in the field at all stations and sites in the TIM 

reef: 𝑎𝑑𝑒𝑡𝑟𝑖𝑡𝑢𝑠(440) (upper left); 𝑎𝐶𝐷𝑂𝑀(440) (upper rigth); 𝑎𝑝ℎ𝑦𝑡𝑜(440) 

(lower rigth); 𝑏𝑏𝑝(555) (lower left), measured at the stations in the TIM reef. 

At the side of each figure, a colorimetric scale represents either absorption or 

backscattering values in m
-1

. 
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𝑅∞(0−) was sometimes so low that the algorithm retrieved negative values. Hence the 

second approach was also not satisfactory to obtain accurate bottom reflectance. 

 

Figure 6.6 – Retrieved bottom reflectance (adimensional) as a function of wavelength (nm), 

Appling the three approaches. (a): using a and bb coefficients measured in situ 

and R(0
-
) measured in waters with similar OAC concentration; (b): using a and 

bb coefficients measured in situ and modeled R(0
-
) (pink); (c): using modeled a 

and bb coefficients and R(0
-
) (red). The graphs correspond to different stations: 

ARCH-12, PL-6 and ARCH-10. 

 

 

Figure 6.7 – R(0
-
) modeled using a and bb coefficients measured in situ (green), and R(0

-
) 

measured in waters with similar OAC concentration (orange), as a function of 

wavelength (nm). The graphs correspond to different stations: ARCH-12, PL-6 

and ARCH-10. 
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Among the three approaches, and contrary to the expected, the last one, which did not 

use measured coefficients as input to obtain 𝜌𝑏, showed the best performance. On the 

one hand, there are always some uncertainties associated with the in situ measurements, 

especially of 𝑎 and 𝑏𝑏. Hence, this can be a source of error responsible, at least in part, 

for the anomalous behavior of the bottom reflectance. In an endeavor to evaluate if 

errors in the estimates could be caused by these anomalies, some tests were performed 

considering an overestimation of 20% simultaneously in all measurements (𝑧, 𝑎𝑝ℎ𝑦𝑡𝑜, 

𝑎𝐶𝐷𝑂𝑀, 𝑎𝑑, 𝑏𝑏𝑝) and re-estimating 𝑅∞(0−) using the new values to apply the second 

approach. Even in this situation, the retrievals showed anomalous behavior towards the 

red and blue spectral ends, in waters with high CDOM concentration. It is thus 

suggested that other sources of error still remain besides the uncertainties in the bio-

optics measurements. As mentioned before, the Fieldspec measurements tend to 

overestimate the water-leaving radiance. When using the diffuse attenuation measured 

in the field, even if its estimation was perfectly accurate, the algorithm will still not 

adjust well because of the overestimation in the surface reflectance, causing biases in 

the retrieved bottom reflectance. The inversion/optimization scheme retrieves values for 

both the coefficients and bathymetry, seeking to minimize the overall error between 

measured and modeled values. Although the constituents and bathymetry obtained by 

the inversion model are also subjected to uncertainties, these errors tend to be 

compensated with those in the reflectance measurements made using Fieldspec and 

retrieving a reasonable bottom reflectance. Even though the combination of both 

inversion and forward forms of the algorithms seem to work well to retrieve the bottom 

reflectance, the inversion way can only be applied to hyperspectral data, and the 

radiometric information needs to be available up to 850 nm, at least. 

While the shape of the retrieved bottom reflectance spectra varied considerably within 

the three approaches, for the ARCH-10 and PL-6 sites, their magnitude were similar. 

On the other hand, for ARCH-12 sites the magnitude of the reflectance spectra was 

much higher for the first two approaches (Figure 6.6). Note that in these cases the “y” 

axis reaches up to 0.50, and only to 0.35 for the third approach. Considering the mean 

value of each spectrum as an indicator of amplitude variations, the third approach 

showed a range of variability of 600 % between the highest (PA2-2, magnitude = 

0.0377) and lowest (ARCH-12, magnitude = 0.226) spectra (Figure 6.8). 
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In the spectral region between approximately 500 to 600 nm, the retrieved bottom 

reflectance seemed to be less affected by either one of the water column correction 

approaches. This spectral region is where the bottom has its highest contribution to the 

surface reflectance, and at the same time it has the lowest differences in the parameters 

used as input for the approaches. On the contrary, the retrievals at the blue and red 

spectral regions seemed more variable according to the inputs used in the models. 

Comparing the two first approaches, the main differences in the retrievals were found 

for the blue wavelengths, due to the higher differences between the modeled and 

measured 𝑅∞(0−) in this spectral region. Among the second and third approaches, the 

differences in the retrieved bottom reflectance at the blue region were caused basically 

by differences in 𝑎𝑑 + 𝑎𝐶𝐷𝑂𝑀 and 𝑎𝑝ℎ𝑦𝑡𝑜. On the other hand, at the red spectral region 

where major attenuation occurs, caused predominantly by water molecules, some 

differences in the absorption or backscattering due to other constituents have small 

impact in the total attenuation. At this region, the differences in the bottom reflectance 

retrievals were caused mainly by differences in the depth determinations, due to the 

high light attenuation. Hence, even a little variance in depth can largely alter the optical 

path impacting the retrieved bottom reflectance in the red spectral region.   

 

 

Figure 6.8 – Retrieved bottom reflectance (adimensional) as a function of wavelength (nm) 

using the third approach with the parameters retrieved using Lee et al.’ 

inversion scheme (1999): average value between all sites (white line); mean 

±standard deviation (gray area); maximum-minimum of the retrieved bottom 

reflectance at all sites (black area) (N=20).  
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6.3.3. Benthic community composition 

The analyzed benthic communities were, in general, dominated by algae, being algal 

turfs the predominant type present in 80% of the sites with more than 15% of coverage 

(Figure 6.9). Brown and green algae were also abundant, reaching maximum 

percentages of coverage of 65.8 and 33.7 %, respectively. Although live coral was also 

abundant, their coverage did not exceed 41 % at any site and at only 40 % of the sites 

more than 15 % of coverage by some type of coral was registered. Millepora sp. and 

Mussismilia sp. were the most representative coral genera. The less abundant classes 

were Seagrass (present only at one site), Sponge and Zoanthid, both with coverage 

between 1 to 27 %. Bleached coral was the less abundant class, with a bare coverage of 

1.1 % maximum. TIM-7 was the only site where it was possible to identify 

cyanobacteria in the photographs, with 6.7 % coverage. 

 

 

Figure 6.9 – Relative composition of benthic communities in the ACRB considering the average 

of abundance between all sites. In violet scale, the composition of live coral 

class is showed (left). In green scale, the proportions of each category to the 

algal class are represented (down). 

 

 

All sites showed communities composed by different proportions of bottom types. In 

some cases, the differences among the sites were subtle, but none of them had exactly 
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the same benthic community as the other (Figure 6.10). All the points had more than 10 

% coverage of one type of algae or turf, at least. Even when two sites showed similar 

dominance of algae e.g., PL-7 and PL-9, the proportions of the different algal types 

were not the same between them. Contrary to other studies in coral reefs, in this study 

no site was represented by a unique pure substrate, for example, of brown algae, green 

algae, live coral, etc. The in situ above-water remote sensing reflectance collected in a 

realistic framework for remote sensing applications, showed that the heterogeneity of 

the benthic community sampled within the IFOV of the sensor, implies in a great 

challenge to identify and separate each of the bottom types contained in each site. Since 

the depths were different for the distinct sites, the IFOV varied between 1.2 to 9.9 m
2
, 

and therefore, the area of the benthic community considered in each spectrum was also 

different. Figure 6.11 shows the underwater pictures taken at different sites and 

illustrate the variability between sites and the complexity in each of them. One can 

clearly observe the differences between the community compositions of the different 

sites.  

 

 

 

Figure 6.10 – Relative percentage of coverage of each category to the benthic communities for 

the 20 sites analyzed in the ACRB. 
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Figure 6.11 – Photographs of the benthic community taken at four sites within the ACRB during 

the field campaign of 2013/March at the same time that above-water 

radiometric measurements were done. ARCH-12 (Upper left); ARCH-13 

(Upper right); TIM-7 (Lower left) and PA2-2 (Lower right). 

 

 

Other coral reefs worldwide have shown larger patches of pure benthic classes than for 

the ACRB, and their richness and diversity were also reported to be higher. Several 

forms of coral that are frequently found in other regions (e.g., SW Pacific, 

SCOPELETIS et al., 2010) were completely absent or scarce in the ACRB, such as soft 

and tabular corals. Furthermore, in the ACRB the number of coral and algae species 

registered in the visited sites was lower compared to other reefs elsewhere. 

6.3.4. Analyzing the bottom reflectance in light of the benthic community 

Hochberg et al. (2003) measured 13,100 bottom reflectance spectra of several classes of 

pure bottom type (seagrass, different types of algae and coral, sand and mud) in the 

Atlantic, Indian and Pacific Oceans. They found that the bottom reflectance showed 

spectral features common to all of the bottom types, but exhibited variations in the 

magnitude. The relative shape of these substrates was rather biogeographically 

maintained, showing low values at the blue and green bands, caused by the absorption 

of photosynthetic and photoprotective pigments (BIDIGARE et al., 1990; DOVE et al., 
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1995; SALIH et al., 2000). At the red spectral region, the reflectance curves presented 

higher values, explained by the lower absorption and/or the presence of active 

fluorescence (MAZEL, 1995). Chlorophyll-a absorption may be readily seen with a 

depression in the spectra near 675 nm, and high reflectance towards the near-infrared 

can be seen at 700 nm for algae types. With the exception for carbonate sand, all bottom 

types had a low reflectance averaged over the entire visible spectra, generally falling in 

the range 0–30 %, and all of them have either peaks or shoulders near 600 and 650 nm. 

In this work, the “real” measured bottom reflectance was not available to validate the 

estimates. It is worth noting though, that even if under-water measurements of bottom 

reflectance without interference of the water column had been available, some 

simulations would have been needed to obtain the expected reflectance at the 

community level. Moreover, the overall retrieved bottom reflectance obtained from the 

third approach of the water column correction showed spectral shapes consistent with 

the previous descriptions observed in other works (e.g., HOCHBERG et al., 2003) (see 

Figure 6.12). This is: the low values between 400 to 500 nm; a peak between 575 to 625 

nm; a depression around 675 nm, well conserved at all sites, and an increase towards the 

end of the red region. ARCH-12 and ARCH-11 were the only sites that did not show an 

increase towards 700 nm. A plausible explanation for this is that the retrieved depths by 

the Lee et al.’s inversion algorithm were 0.2 and 1.15 m, respectively for both sites. 

This implies an underestimating of 95 % and 67 % because the real depths were of 0.2 

and 1.15 m, respectively. That is to say, that the actual optical path for the longer 

wavelengths was high in both cases. When using the modeled depths as input for the 

forward model, the optical path was underestimated and then, the algorithm was not 

able to simulate the expected increase for the longer wavelengths. Both forms, however, 

either using modeled or measured depths as input, performed well in 90 % of the cases 

for the entire visible spectrum and in 100 % of the cases for wavelengths shorter than 

600 nm. In most cases, environmental information such as depth and even the bio-

optical properties, were not necessary to obtain 𝜌𝑏𝑜𝑡𝑜𝑚. This means that the 

inversion/optimization scheme of Lee et al.’s algorithm, followed by the forward way 

can be applied successfully to retrieve the bottom reflectance up to 600 nm, for sites 

shallower than 5 m, even in Case-2 waters.  
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Using reflectance curves published in Hochberg et al.’s work (2003) as reference, the 

spectra of all sites were inspected to identify the typical features of each pure bottom 

type. Two or three reflectance peaks were expected to be observed in the presence of 

any type of algae, between 600 to 650 nm. Some peaks could be identified in this 

spectral region at almost all sites (either in the zero-order and/or first-derivative 

spectra), but their positions were dislocated in respect to the reference spectra (Figures 

6.12 and 6.13). Several simulations of bottom reflectance were performed in WASI 

software using reference spectra of bottom types obtained from Maritorena et al. (1994).  

 

 

Figure 6.12 – Retrieved bottom reflectance (adimensional) as a function of wavelength (nm), 

using parameter values from the inversion scheme of Lee et al. (1999).  
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Figure 6.13 – First-derivative of the retrieved bottom reflectance (adimensional) as a function of 

wavelength (nm). Retrieved bottom reflectance was estimated using parameters 

values from the inversion scheme of Lee et al. (1999).  

 

These simulations included two or three types of macroalgae, in different proportions: 

Boodlea sp. representative of green algae, an average of Sargassum sp. and Turbinaria 

sp. for brown algae and an average of Porolithon onkodes and a Corallinacea for red 

algae. In the bottom reflectance of these compositions it is possible to identify four main 

peaks that are maintained, but their position can change according to the percentage of 

each type (Figure 6.14). If other taxa were included (e.g., live coral, sponge), even more 

variability in the feature locations should be expected arising from the presence of other 

pigments. Hence, the displacements of the features found here do not contradict those 

found in the previous works. In the region between 600 to 630 nm, only phycocyanin 

has an absorbance peak. Around 640 nm, there is a region with low absorption 

considering the main pigments at the same time (Figure 6.15). The presence of a slight 
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reflectance peak in the bottom reflectance (more evident in the first-derivative) may be 

due to this lack of pigment absorption. On the other hand, the presence of absorption 

features near 600-630 nm may also suggest the presence of phycocyanin and/or 

chlorophyll-b in the sample. Additionally, phycocyanin shows a peak of fluorescence 

centered at 640 nm, which could contribute to a slight increase in the reflectance in this 

region. 

 

 

Figure 6.14 – Bottom reflectance simulated in WASI for combinations of different proportions 

of red, green and brown algae, from reflectance curves in Maritorena et al. 

(1994). 

 

 

 

 

Figure 6.15 – Spectra absorption (in %) of the main pigments encountered in benthic 

communities versus wavelength (in nm). 

                         

              Source: http://www.citruscollege.edu/lc/archive/biology/Pages/Chapter06-Rabitoy.aspx 
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Some spectra showed a slight increase at the first blue wavelength (before 420 nm) 

(e.g., sites ARCH-9, PAB2-1, PAB3-1). This behavior was also previously observed for 

several pure bottom types (e.g., algal turf, calcareous algae, brown and green algae), 

whose reflectance spectra were measured underwater, close to the targets (HOCHBERG 

et al., 2003). In a reflectance curve simulated based on the presence of five 

zooxanthellae pigments, this increment can also be expected (HOCHBERG et al., 

2003). An atypical behavior, not reported previously, was observed in the retrieved 

bottom reflectance curves, which consisted in a depressed shoulder centered at 600 nm. 

In some cases the mentioned feature was almost imperceptible in the zero-order spectra, 

but noticeable only in the first-derivative. Noteworthy that in the water column 

correction, instead of using as inputs the measured absorption coefficients from the in 

situ measurements, the modeled coefficients were used, which in turn, considered solely 

the effects of the spectral absorption of chlorophyll-a. Hence, the “anomalous” feature 

could actually correspond to some pigments present in the water column that were not 

corrected by the Lee et al.’s algorithm. However, when observing the absorption spectra 

measured in situ, this absorption feature was not present. Hence, this absorption peak 

had to be caused by pigments present in the benthic community. Some pigments such as 

phycocyanin and chlorophyll-b have a typical absorption peak around 600 nm, much 

higher in the first case, which can be responsible for this feature in the bottom 

reflectance spectrum. Chlorophyll-b is present in green algae, while phycocyanin is 

found in both cyanobacteria and red algae (SATOH et al., 2001; SIMIS et al., 2005). All 

sites had some presence of either red or green algae substrates. But even when their 

percentage of coverage was low, it could be possible that the absorption around 600 nm 

could have been caused by cyanobacteria, even though not detected in the benthic 

community through the picture sampling. Cyanobacteria occur frequently in coral reefs 

associated to benthic communities, as microbialites, in symbiosis with sponge, as 

epiphytes of seagrass or algal turf, or as microbial mats (CHARPY et al., 2012).  

Another absorption feature, detectable mostly in the zero-order spectra and in all of the 

first-derivative, was located between 450 to 500 nm. In the paper of Hochberg et al. 

(2003) it is possible to identify a slight absorption peak centered at 500 nm, mainly 

associated to calcareous and turf algae. In this work, the intensity of this feature had no 

relation with the red substrate abundance. Nonetheless, carotenoids, chlorophyll-b and 
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phycoerythrin are pigments with high absorption in this region. As mentioned before, 

green algae synthesize chlorophyll-b. Phycoerythrin is commonly found in red algae 

(HEDLEY; MUMBY, 2002). In return, carotenoids are widely included in several 

substrates: green, brown and red algae, zooxanthella, coral tissues, sponges (FOX; 

WILKIE, 1970; ZAGALSKY; HERRING, 1977; CZECZUGA, 1983; HEDLEY; 

MUMBY, 2002). The presence of these types of substrates in the analyzed benthic 

communities would explain the referred absorption peak.  

Most of the spectra also showed a small positive peak between 684 and 687 nm, but 

only in the first-derivative. This feature was observed as a narrow band and could 

correspond to fluorescence by chl-a, present in all vegetal cells and which were present 

in all sites either in forms of algae, seagrass, turf or in the zooxanthells associated to 

corals (HARDY et al., 1992). 

In general, the bottom reflectance spectra obtained over the benthic communities of the 

Abrolhos Bank were consistent with the expected for the categories that composed each 

of the sites, based on previous measurements of the individual classes (e.g., 

MARITORENA et al., 1994; HOCHBERG; ATKINSON, 2000; HOCHBERG et al., 

2003). Some features maintained perfectly their position in the ρb spectra, as for 

example the depression at 675 nm. At this wavelength only Chl-a, which is a pigment 

common to most of the bottom types, shows a strong narrow absorption band. Other 

features, on the contrary, varied in their position and bandwidth. This shift can be 

explained by the overlapping absorption bands of other pigments between 400 to around 

650 nm. Nevertheless, a question that is still to be responded is that, even though the 

bottom reflectance seemed to respond well to the biological composition of the seabed, 

revealed by the spectral features observed the in curves, is it really possible to 

differentiate subtle discrepancies in the community proportion of the benthic sites 

analyzed in the ACRB, based solely in the bottom reflectance spectra?   

Analyzing the sites according to the similarities in the benthic community composition 

in a cluster analysis, the sites in the extreme groups showed the most different 

community compositions (Figure 6.16). In one side, sites PAB3-1 and PAB2-1 without 

red bottom type were together; and in the other extreme, ARCH-9 and PA2-2, which 

only had red bottom types and sponges were joined. Comparing the order of the 
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grouped sites, they responded to a gradient governed mainly by the percentage of 

coverage of red bottom type, and additionally, of brown substrate in a finer scale. 

Looking at  the broad grouping (with two main groups), they were established 

according to the red bottom type abundance, in which all sites with less than 50 % 

abundance or no red substrate presence, formed the same group (G1). G1 was composed 

by 11 sites: PA2-2 ARCH-9, ARCH-10, PL5, ARCH-13, PA1-1, TIM-7, ARCH-11, 

ARCH-12, PA1-2 and PL11. Sites with higher red substrate abundance belonged to the 

second group (G2, 9 sites). Sites in G2 were: PL-7, PL-9, PL-6, PL-8 PL-10, PA2-3, 

PAB3-2, PAB3-1 and PAB2-1. Establishing a threshold criterion of 1 in the linkage 

distance, the G1 group can be refined in 3 sub-groups (G1-a,b,c). G1-a was composed 

by two sites without red substrate (PA2-2 and ARCH-9); G1-b was formed by five sites 

with low coverage of red bottom type and low or no coverage of brown substrate,  and 

with communities quite equivalent in their bottom type composition (ARCH-10, PL-5, 

ARCH-13, PA1-1 and TIM-7); G1-c included four sites dominated by brown cover type 

(ARCH-11, ARCH-12, PA1-2 and PL-11).  

Two main groups were also formed either by the bottom reflectance or SAM matrix, 

however with some differences among the groups according to type of input data. 

Comparing the dendrograms of both benthic communities and SAM matrix, the 

separability of the sites was higher when considering the biological information, rather 

than only the spectral shape of ρb, as can be seen in the linkage distance scale (Figures 

6.16 to 6.18). The ρb magnitude also added information for the discrimination of the 

groups, evidenced in the linkage distance axis. However, the groups formed by benthic 

composition and radiometric information were not the same. This is to say that spectral 

information does not respond exclusively to the bottom composition, in which case, 

environmental information still remains in the retrievals of bottom reflectance, or, these 

targets are not spectrally differentiable. Only some sites were grouped together both by 

their magnitude and spectral shape and by their benthic community composition. They 

were ARCH-9, ARCH-10, PA1-1 and PA2-2 on one side, and PL-6, PL-7, PL-9 and 

PAB3-2 by the other side.  

 



113 
 

 

Figure 6.16 – Cluster analysis for the coverage of benthic communities (right). At the side of the 

graph, colored bars represent the percentage of coverage of each benthic 

category (left).   

 

 

 

 

Figure 6.17 – Cluster analysis for the SAM matrix applied to bottom reflectance spectra (right). 

At the side of the graph, colored bars represent the percentage of coverage of 

benthic categories at each site (left). 
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Figure 6.18 – Cluster analysis for bottom reflectance in all visible region (right). At the side of 

the graph, colored bars represent the percentage of coverage of benthic 

categories in each site (left). 

 

 

Nevertheless, observing the benthic composition among these groups, they presented 

large differences and no point in common in some cases. Note, for example, the benthic 

communities in PA2-2 (covered by a high reflective bottom type and green bottom type) 

and PA1-1 (covered by live coral, brown and red substrate types). These bottom types 

that were grouped together are ecologically different, but were confused with their 

reflectance spectra. 

To identify the bands that were effective to separate the groups in the cluster analysis, 

data mining was applied to normalized ρb spectra. Because of the number of samples 

and groups used in the data mining approach, it pointed out the identification of 

diagnostic bands used to discriminate between high (more than 50 %) and low 

abundance of red bottom type. The decision tree constructed from the C4.5 algorithm 

had a size of 5, with 3 leaves (Figure 6.19). It was based on bands centered at 594 and 

515 nm. Sites with high percentage of abundance of red substrate type were 

characterized by high reflectance at these two bands. However, this is contrary to the 

expected, because the absorption of Chl-a and phycoerythrin is high in the range 
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between 515 and 594 nm. The percentage of correctly classified groups was just 50 % 

and the confusion was high (Table 6.1). This means that the classification based on both 

spectral bands worked as a random classifier and had no physical meaning. An 

important thing was that the number of sites considered was low, only 20. A greater 

quantity of sites is needed for a robust identification of diagnostic bands or spectral 

regions. The present analyses, however, revealed that this failed attempt suggests that 

there are no typical spectral features so strong to be common to the same group 

allowing a satisfactory spectral classification of the bottom coverage, despite of the 

small sampling size. Uhl et al. (2003) corroborate with this result when they state that 

“spectral signatures of algal groups were so close to each other that a correct assignment 

was unreliable and, moreover, spectral unmixing was unfeasible”.  

 

          

Figure 6.19 – Decision tree obtained from data mining processing for normalized bands 

between 450 and 650 nm and different band ratios (left). G1 corresponded to 

group 1 identified in the cluster analysis of the benthic communities and was 

characterized by low coverage of red substrate type. G2 was the second group 

with more than 50 % of red substrate type.   

 

 

 

 

Table 6.1 – Confusion matrix for the cross-validation after the decision tree creation. 
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G2 2 7 9 
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It should be taken into account that some features are shared by different bottom types. 

In the Hocheberg et al.’s work, they used 61 to 1,377 reflectance spectra worldwide 

spread to estimate mean values for the identification of typical and conserved features. 

However, some spectral variability may still be observed among measured reflectance 

spectra for the same bottom type. Fyfe (2003) identified intraspecific differences in the 

reflectance pattern of seagrasses among years, seasons and habitats. Even when the 

presence of pigments is evolutionally conserved, their synthesis and the concentration 

within individuals can vary not only between species, but also intraspecifically or 

temporally within the same individual. The production of pigments depends on the 

reproductive and madurative stages, genetic variation, health of the individual, diurnal 

cycle, season of the year, nutritional state, stressful conditions, and environmental 

conditions, such as light intensity (HEDLEY; MUMBY, 2002; UHL et al., 2013).  

Additionally to pigment concentration, structural factors can also affect the reflectance 

spectra. In seagrass, for example, the arrangement and abundance of the leaf internal air 

channels called lacunae vary considerably among species and are likely to have an 

important influence on the reflectivity of the leaves (FYFE, 2003). In algae species the 

morphology, thickness of the stalk and cellular structure affect the relationship between 

pigment densities and the absorption spectra (RAMUS, 1978; VOGELMANN; BJÖRN, 

1986; HANNACH, 1989). Also, in algae light absorption in the visible region is not 

only caused by photosynthetic pigments, but also includes absorption by non-

photosynthetic tissues (e.g., proteins, nucleic acids) (CLAYTON, 1971). Non-

pigmented absorption may exceed that of photosynthetic pigments in the blue 

wavelengths, whereas most of the absorbed red light may be channeled to 

photosynthesis (ENRIQUEZ et al., 1994). 

Considering all this variability in the reflectance of benthic targets, it is not surprising to 

perceive that the quantity and position of diagnostic bands vary so much among the 

different works, even though when the aim was the separability of pure classes. The 

possible factors responsible for this range of variability may be pointed out as: the 

sensor used, sensor position (in situ, on-board an aircraft or orbital platform), spatial 

resolution of the sampled sites, bottom type categories considered or the geographic 

study area. Just to illustrate, some of the spectral ρb bands previously appointed in other 

works are:  
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 Bands within the respective intervals of 500 – 530, 450 – 550 and 680 

– 740 nm, used for the discrimination between corals and macroalgae 

(MYERS et al., 1999). 

 Bands centered at 506 – 566, 582 – 686 and 654 – 674 nm used to 

discriminate between sand, algae, bleached and healthy coral 

(HOLDEN; LEDREW, 1999) 

 In the first-derivative spectra, a band centered at 596 nm to 

discriminate between live, recently dead and old dead categories. At 

550 nm to separate between live and dead coral. A gradient between ~ 

515 – 572 nm to discriminate between live and dead coral (CLARK et 

al., 2000). 

 Spectral reflectance with 16 or 13 wavelengths either using orbital or 

in situ data, for the separability of coral, sand and algae (the position of 

all these bands were not mentioned) (HOCHBERG; ATKINSON, 

2000) 

 Bands centered at 522 – 574 and 637 – 700 nm for the separation 

between seagrasses species (FYFE, 2003) 

 Bands positioned at 406, 430, 454, 467, 480, 499, 507, 529, 540, 577, 

602, 608, 643 and 684 nm for the classification of brown fleshy algae, 

green fleshy algae, red fleshy algae, calcareous non-fleshy algae, turf 

non-fleshy algae, bleached hermatypic coral, blue hermatypic coral, 

brown hermatypic coral, soft/gorgonian coral, seagrass, terrigenous 

mud and carbonate sand (HOCHBERG et al., 2003) 

 Bands common to both and CASI reflectance: 406, 450, 535, 539, 554, 

580, 584, 592, 614, 630, 645, 665 and 682 nm for the discrimination 

between macroalgae species (ANDRÉFOUËT et al., 2004). 

 The first-derivative of the 558 nm band to separate between stages of 

coral colonies (MUMBY et al., 2004). 

 Narrow bands centered at 555, 650, 675 and 700 nm to use the Leaf 

Area Index for the discrimination between seagrass (YANG et al., 

2010). 
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The Band Depth (BD) was the last analysis applied in the present work to associate the 

spectral data with the bottom types containing chl-a. The BD between the maximum 

peak around 600 nm and the minimum at 675 nm is usually used as proxy of chl-a 

concentration in studies by remote sensing. Insofar chl-a concentration increases, the 

spectral degree between 600 and 675 nm also increases, and thus, the band depth is 

directly proportional to chl-a content. Here, on the other hand, band depth was inversely 

correlated with the percentage of coverage of Red+Brown+Green substrate types (Table 

6.2). The absorption peak centered at 675 nm was a feature conserved at all spectra, 

caused by the chl-a content present in all communities. Contrary to the other portions of 

the visible spectra, at this wavelength there was no overlapping absorption caused by 

other pigments. On the other hand, at 585 nm there is an overlap of absorption by 

phycoerythrin and phycocyanin. The presence of phycoeythrin in red substrates could 

thus mask the difference between reflectance at the BD wavelengths, i.e., 600 and 675 

nm. Cyanobacteria also could occur in some bottom types, in which case phycocyanin 

would be present. Controlled experiments in laboratory could corroborate this 

hypothesis  of the co-occurrence of other pigments reducing the band depth. For this, 

reflectance spectra should be measured above different substrates taken from the 

seabed, in which a detailed identification of all the components would need to be 

performed. High-Performance Liquid Chromatography (HPLC) from bottom 

components should also be done to relate the reflectance with the presence and 

concentration of pigments in the different benthic communities and validate the possible 

presence of phycocyanin. 

 

 

Table 6.2 – Pearson correlation index between band depth and different substrate type coverage: 

Green substrate type, Brown substrate type, Red substrate type, 

Green+Brown+Red substrate types, Green+Brown+Red substrate types + Live 

coral. Significative value is highlighted (N=20; p < 0.05). 

 Green 

substrate type 

Brown 

substrate type 

Red 

substrate 

type 

Green + 

Brown + Red 

substrate types  

Green + Brown 

+ Red substrate 

types + Live 

coral 

BD -0.306 0.058 -0.186 -0.503 -0.337 
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Without question, a larger set of sampling sites to be included in new campaigns over 

the Abrolhos bank, to complement this study, is strongly recommended.  

Previous works using spectral measurements in coral reef bottom types have worked 

with spectra which were either collected underwater, close to the target, or measured in 

samples collected out of the water. In these cases, the water column effect was not 

included in the measurements or minimized and, in general, they did not deal with much 

spectral complexity, because samples were pure with only one species or, a maximum 

of two species simultaneously. In this work, measurements were done above the benthic 

substrates in a more realistic framework, including benthic and environmental 

complexities, due to the water column effect that had to be corrected and the seabed 

heterogeneity. Within the Case-2 waters of the ACRB, the studied submerged benthic 

communities were not separable by hyperspectral ρb information. This does not mean 

that there are no complex communities able to be separated by bottom reflectance 

spectral data. But it does represent a counterexample showing that if a study is based 

solely in radiometric data, errors in the association with the biological community can 

occur. In some situations, alterations in the benthic coverage may not be captured 

exclusively by remote sensing. Hence, habitat changing indicators based exclusively in 

remote sensing data should not be considered as real alterations without field 

validations. Effective monitoring programs should necessarily include both 

complementary approaches: remote sensing and field campaigns. Even with some 

limitations and a limited quantity of sampled sites, this chapter depicts a real situation, 

within the best conditions as possible, without atmospheric interferences. Bottom 

reflectance is potentially useful for the discrimination of pure bottom types in shallow 

areas. Nonetheless, in more complex submersed communities, where several types of 

bottom with similar spectral behavior coexist, spectral information seems insufficient 

for subtle discriminations.   

In addition to spectral data, remote sensing can provide other types of information. For 

example, active remote sensing such as LIDAR seems promissory for ecological 

studies. Benthic mapping by LIDAR instruments on board airplanes can be produced in 

very high resolution (e.g., 6 cm grid). This refined data can be used to reproduce the 

structural complexity of the reef, which can be used together with spectral information 

for change detection and diversity studies in coral reef habitats. 
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7 REMOTE SENSING DATA FOR CORAL REEF MAPPING IN THE ACRB 

7.1. Introduction 

Remote sensing represents an efficient and complementary tool for field studies. As for 

terrestrial areas, in reef ecosystems it provides data acquisition with the best cost-benefit 

relation, because it allows synoptic monitoring in extensive areas, including places with 

difficult access (MUMBY et al., 1999). Besides of the wide spatial coverage, orbital 

data can also provide temporal information to evaluate changes and succession 

dynamics in coral reefs. According to Hamel and Andréfouët (2010), different 

approaches may be applied using remote sensing data for coral reef ecological studies. 

He considered a direct use to obtain information about the benthic coverage, habitat 

localization, diversity of patches and habitats, geomorphology of the seabed and reef 

structures, bathymetry and ocean circulation. The authors also considered the indirect 

use of remote sensing with auxiliary data obtained in the surroundings of these 

environments. This includes the utilization of meteorological-oceanographic data, for 

example: SST, significant wave height, sea surface height, turbidity, chlorophyll 

concentration, CDOM absorption, wind speed and direction, aerosol optical thickness, 

precipitation rates, incoming solar radiation and cloud coverage. Such indirect use may 

also include terrestrial information, such as land-use coverage maps, hydrographic basin 

structure and urban growth maps. Therefore, remotely obtained data is useful for an 

integrated ecosystem analysis in different scales of ecological analysis.  

Mapping of reef habitats can provide important information for the management of 

these ecosystems, both to examine reef structure and resource inventory and also for the 

estimation of ecological functions and biodiversity (YAMANO, 2013). Remote sensing 

coral reef mapping started with the launch of the LANDSAT satellite series, since the 

1970’s (SMITH et al., 1975). Research developed using orbital and aerial information 

have continued following technological advances with new sensors and processing data 

methods (KUTSER et al., 2006).  

In the evaluations of mapping performance, two factors are considered. First, the 

accuracy and second, the detail level in which maps are created, typically expressed as 

the number of thematic classes. High thematic resolution is frequently needed for 

realistic ecological studies about reef processes (SCOPÉLITIS et al., 2010). This is 
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because it is improbable that simple typologies allow representing adequately the 

complexity of the processes that are found in this type of environment. The level of 

detail of a map of substrate types does not depend only on the sensor and quality of an 

image (ANDREFOUET; WANTIEZ, 2010). But also it can depend on the 

characteristics of the reef, the availability of auxiliary environmental variables (that can 

only be obtained in situ), as well as the imagery processing techniques used, image 

interpretation, and even, the user expertise (ANDRÉFOÜET, 2008; WABNITZ et al., 

2008). In coarse classifications, the typical classes that are usually considered are of 

pure bottom types, as for example, sand, coral, algae and deep water. In more detailed 

studies, mixtures of different substrate types should also be considered (BENFIELD et 

al., 2007, BERTELS et al., 2008, KNUDBY et al., 2010), but as it was seen in Chapter 

6, some benthic communities can be spectrally confusable and this spectral ravel 

represents a limitation in the number of classes that can be effectively used.  

Bertels et al. (2008) highlighted that comparisons of map accuracies, between different 

coral reefs, is not trivial in most cases. Foremost because reef structures in different 

geographic regions generally have different geomorphological and biological 

characteristics, leading to the identification of different benthic classes. These classes 

can have different spectral signatures resulting in different separability properties, 

which affect the classification accuracy. Hence, studies performed in different regions 

are not completely comparable due to the disparity between the mapped areas. 

However, several studies comparing the accuracy of coral reef maps in different regions 

have still been carried out (LIM et al., 2009). Reviewing literature, there is a general 

pattern that follows the sensor resolutions and processing methods for the different 

mapping results. As the sensor resolution increases and the processing methods are 

more sophisticated, more accurate and detailed the maps are expected to be.  

Maps created using multispectral sensors with intermediate spatial resolution (10 to 30 

m), as for example, the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER/TERRA), HRV/SPOT, TM/LANDSAT and Enhanced Thematic 

Mapper Plus (ETM+/LANDSAT), showed low-medium accuracy, varying from 30 to 

75 %, depending on the number of classes (KNUDBY et al., 2007). In a coarse 

classification, accuracies frequently range between 60 to 74 % (GREEN et al., 2000, 
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CALL et al., 2003). When using more than 10 classes, accuracy was lower, around 30% 

(MUMBY; EDWARDS, 2002).  

Two main reasons can explain these results. In first place, the confusion between 

classes. This topic was addressed in Chapter 6 using hyperspectral data. When 

multispectral information is considered, the situation can be even worse, since the 

positions of the spectral bands are not optimized for bottom type discrimination 

(HOCHBERG; ATKINSON, 2003; CALL et al., 2003). Also, multispectral sensors 

generally have relatively large pixel sizes considering the heterogeneity of these 

ecosystems. The interaction between the spatial resolution of the sensor and the size of 

benthic patches will control sub-pixel mixtures that will occur in the images. The level 

of spectral mixture affects even more the classification accuracy, depending on the 

benthic types involved (HEDLEY et al., 2004). Thus, intermediate spatial resolution 

sensors (10 - 30 m) are more appropriate to study reefs only with pure bottom types, 

although this situation is not the most frequent (MUMBY et al., 2004). However, orbital 

data of the LANDSAT satellite series is still a useful tool to evaluate coverage changes 

in coral reef substrates at a medium level through temporal studies, since they have the 

longest data base with records for more than 30 years (DUSTAN et al., 2001).   

Currently, the availability of sensors with better spectra and spatial resolutions has 

improved mapping accuracy in these complex ecosystems. It has been recognized that 

high spatial and spectral resolution data can provide more detailed information about the 

reef (MUMBY et al., 1997). Very high spatial resolution sensors such as IKONOS or 

QuickBird, with nominal resolutions of 4 and 2.4 m, respectively, and other aircraft 

sensors with spatial resolution around 1 m (e.g., CASI), have been successfully applied 

for coral reef mapping in different regions worldwide spread (ANDRÉFOUËT et al., 

2003; LOUCHARD et al., 2003). Higher spatial resolution allows the better 

discrimination of substrates (LOUCHARD et al., 2003), and supports a higher number 

of classes to map. These high spatial resolution sensors have allowed to map benthic 

substrates reaching accuracy between 80-88 %, when using 8 or 9 classes (KNUDBY et 

al., 2010). In 2009 the WorldView-2 (WV02) satellite was launched with better 

resolutions than its predecessor multispectral sensor Quickbird. WV02 orbital sensor 

has high spatial resolution (2 m) and better spectral resolution than other multispectral 

orbital sensors (8 multi-spectral bands) with similar spatial resolution. Despite its 
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potential for target discrimination, there are only a few works published using this 

sensor for coral reef mapping (COLLIN; PLANES, 2012). 

The first works regarding the mapping of benthic substrates from satellite images, 

applied pixel-based automatic classification methods (MUMBY; EDWARDS, 2002, 

SCOPÉLITIS et al., 2010). Using multispectral images with high spatial resolution, 

Andréfouët et al. (2003) and Mishra et al. (2006) applied these classification techniques 

to map 3 to 15 thematic classes. Some other works also applied semi-supervised 

techniques or multi-steps classification schemes, which are more sophisticated 

techniques than a simple automatic classification. As examples, works of Bertels et al. 

(2008) and Bouvet et al. (2003) can be mentioned. In their work, image segmentation 

was initially performed. Subsequently, the segments were grouped based on spatial and 

spectral analyses or from decision rules defined by statistical parameters.  

Recently, the Object-Based Image Analysis (OBIA) was used to process high spatial 

resolution images with reef environments. This technique increased mapping accuracy 

80 to 90 % when using 4 to 10 classes (BENFIELD et al., 2007, SCOPÉLITIS et al., 

2010). This application allows the integration of different data bases, enabling the 

extraction of more robust conclusions about changes in the extension, localization and 

spatial patterns of benthic resources along time (LUCIEER, 2008). Scopélitis et al. 

(2010) developed a classification scheme based on field expertise and knowledge using 

visual photointerpretation. This methodology allowed including 45 classes of the 

structure of the coral community, being the most detailed thematic map documented in 

literature regarding orbital remote sensing in coral reefs. The definition of these classes 

allowed distinguishing substrates according to the percentage of live coral and all the 

variety of morphologies of coral and substrate present in the area. In a comparison 

between different techniques used to produce bottom maps, those based on the expertise 

of the photointerpreter were the most accurate. This shows that substantial 

improvements in the thematic resolution can be obtained if efforts are invested in the 

familiarization with the study area and interpretation of patterns in the image with local 

knowledge. 

In the ACRB, only one work has explored the use of remote sensing data to map 

submerged benthic substrates (MOREIRA, 2008). This work focused in the Pedra de 
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Leste (PL) reef, belonging to the coastal arc. ETM+/LANDSAT and synthetic 

QuickBird images were used. The ETM+/LANDSAT image provided a map with 

accuracies between 45 – 55 % considering four classes (Sand; Palythoa; Zoanthids; 

Deep reef); while six classes (Sand; Sand+Halimeda; Palythoa; Dictyota; 

Phyllamentous algae; Mixed) were used for QuickBird mapping with an accuracy 

varying between 40 and 73 %. In the surrounding of the Archipelago and over the  

Parcel dos Abrolhos, however, no mapping of the bottom substrate has yet been done. 

In this area, all reefs are submerged, and the chapeirões occur isolated to each other, 

without merged tops, differently from the coastal arc. The aim of the present chapter 

was to perform the first coral reef habitat mapping in the Parcel dos Abrolhos, 

belonging to the ACRB, Brazil, using data from the WorldView-2 orbital sensor. For 

this, the object-based image analysis (OBIA) was applied to the WV02 image collected 

on 2012/02/14 to produce a high resolution bottom type map. 

7.2. Materials and Methods 

7.2.1. Pre-processing of the WV02 scene 

7.2.1.1. Geometric correction 

Together with the WorldView-2 images, files containing coefficients called Rational 

Polynomial Coefficients (RPC) are delivered. These coefficients can be used in the 

absence of adequate control points collected in situ (Ground Control Point – GCP). The 

image was georeferenced using the numeric model Rational Function, available in PCI 

software, which uses RPC for the correction. 

7.2.1.2. Atmospheric correction 

In a following step, atmospheric correction was applied to the WV02 image. The 

purpose of this step in the pre-processing scheme of remote sensing imagery is the 

reduction or elimination of atmospheric effects. This step is important especially for 

aquatic environments considering the low signal reflected by water, which amplifies the 

sensor noise. The performance of the algorithms applied to obtain the bathymetry and 

bottom reflectance retrievals, depends on the accuracy of the values of reflectance used 

as input. Hence, a good atmospheric correction is essential to obtain accurate bottom 

type maps. The correction converts digital numbers (DN) to physical quantities, for 

example, to surface reflectance. The atmospheric correction was performed in PCI 
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Geomatica 2013 using the ATCOR2 package. The input for the model is the raw image 

with DN values, the software converts them to 𝐿𝑇𝑂𝐴 and then, applies the atmospheric 

correction to obtain the output, which is surface reflectance (𝜌𝑤). For the conversion 

from DN to 𝐿𝑇𝑂𝐴 (𝑖𝑛 𝑊 𝑚−2 𝑠𝑟−1𝜇𝑚−1), the software uses the absolute calibration 

factor (𝐾𝐵𝐴𝑁𝐷, 𝑖𝑛 𝑊 𝑚−2 𝑠𝑟−1𝑐𝑜𝑢𝑛𝑡−1), and the effective bandwidth (∆𝜆𝐵𝐴𝑁𝐷,

𝑖𝑛 𝜇𝑚). Values of 𝐾𝐵𝐴𝑁𝐷 and ∆𝜆𝐵𝐴𝑁𝐷 coefficients for each band are included in the 

IMD file delivered together with the image.  

The ATCOR2 model assumes a Lambertian surface, is restricted to sensors with small 

swath angles and takes into account adjacency effects, which caused by backscattering 

of bright targets on neighboring pixels. The model works with atmospheric catalogues 

that contain radiative transfer functions through MODTRAN-2 and SENSAT-5 models, 

stored in Look-Up-Tables (RICHTER, 1996). ATCOR2 was used to correct the WV02 

satellite imagery assuming a flat terrain, maritime aerosol type and tropical condition. 

Visibility and adjacency effects were set at 43 and 0.18 km, respectively. Visibility was 

obtained from the aerosol optical thickness at 574 nm (AOT547) of the MODIS-Aqua 

image obtained on the same day of the WV02 image (collected on 2012/02/14 at 10:06 

local time). A window of 9x9 pixels was defined in the AOT547 image centered at the 

central coordinate of the WV02 image. The mean value of these pixels was estimated 

and converted to a visibility value using the model proposed by Vermote et al. (2002) 

(Equation 7.1, Figure 7.1). The performance of the atmospheric correction was 

evaluated by extracting samples in the deepest areas, where no bottom signal was 

expected to contribute to the surface reflectance. 

 

𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑘𝑚) = 3.9449 (𝐴𝑂𝑇550 − 0.08498)⁄                      (7.1) 
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Figure 7.1 – Visibility (in km) as a function of Aerosol Optical Thickness (at 550 nm) according 

to Vermote et al.’s model (2002).  

 

 

7.2.1.3 Sunglint correction 

In remote sensing images with high spatial resolution (e.g., of IKONOS, Quickbird or 

Worldview2 sensors, with 4, 2.4 or 2 m, respectively) collected over water bodies, 

sunglint is observed as a rugosity effect in the surface. This effect causes confusion to 

detect submerged features and has to be adequately treated. The method proposed by 

Hedley et al. (2005) was adopted to perform sunglint correction in the WV02 scene. 

This method considers that water-leaving radiance in the Near Infrared (NIR) region is 

negligible and so any signal remaining after the atmospheric correction must be due to 

sunglint (KAY et al., 2009). The method assumes a linear relation between the signals 

of bands in the infrared and the visible regions, because the real index of refraction is 

nearly equal for NIR and visible bands (MOBLEY, 1994). For its application, some 

samples collected above areas displaying a range of sunglint effects and over 

homogeneous sub-surface spectral brightness are required and the regression of each 

visible band versus the NIR band has to be performed. Equation 7.2 formally describes 

such correction. 

 

  𝜌´𝑤,𝑖(0+) =  𝜌𝑤,𝑖(0+) − 𝑠𝑙𝑜𝑝𝑒𝑖(𝜌𝑤,𝑁𝐼𝑅(0+) − 𝑀𝐼𝑁𝑁𝐼𝑅)            (7.2) 

 



128 
 

where the suffix 𝑖 refers to the signal in the visible region, 𝜌´𝑤,𝑖(0+) is the above-water 

sunglint corrected reflectance in band 𝑖, 𝜌𝑤,𝑖(0+) is the above-water reflectance in band 

𝑖, 𝑠𝑙𝑜𝑝𝑒𝑖 is the regression slope of band 𝑖 against the NIR band, 𝜌𝑤,𝑁𝐼𝑅(0+) is the 

above-water reflectance in the NIR region, and 𝑀𝐼𝑁𝑁𝐼𝑅 corresponds to the minimum 

value of the samples in the NIR band. Only bands at the visible region can be corrected 

by this method. 

For both assumptions to be valid, two other postulations are necessarily presupposed: (i) 

the wavebands are perfectly aligned, (ii) signals in the visible and NIR bands are 

collected at the same time, and (iii) the spatial resolution of the visible and NIR bands 

are the same. Although the spectral bands of the WV02 sensor are not perfectly aligned 

in space and some delay exist between bands, a significant correlation between the 

visible and NIR bands in the sampled pixels over deep waters still remain. Figure 7.2 

shows the scatter plots of the reflectance sampled over deep waters at the visible bands 

against the NIR bands. The WV02 sensor has two bars of detectors. In each of them, 

three visible and one NIR bands are disposed. Better adjustments were observed 

between the NIR and visible bands that are in the same bar of detectors. The equations 

used to perform sunglint correction in each band are listed in Table 7.1. The 

performance of sunglint correction was evaluated visually and according to the spectral 

behavior of the samples extracted at different locations of the scene and contaminated 

by sunglint distortion.  
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Figure 7.2 – Scatterplot of surface reflectance values at the visible bands against reflectance in 

the NIR region from samples extracted in deep waters. Each plot refers to one 

spectral band of the WV02 sensor: 427 nm (Upper left), 478 nm (Upper right), 

546 nm (Middle left), 608 nm (Middle right), and 659 nm (Lower left). 
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Table 7.1 – Equations used to perform sunglint correction in each band, based in Hedley et al.’ 

model (2005). 

Band 

centered 

at (nm) 

Equation 

427 𝜌´𝑤,427(0+) =  𝜌𝑤,427(0+) − 0.9898(𝜌𝑤,908(0+) − 0.001) 

478 𝜌´𝑤,478(0+) =  𝜌𝑤,478(0+) − 1.0967(𝜌𝑤,831(0+) − 0.0009) 

546 𝜌´𝑤,546(0+) =  𝜌𝑤,546(0+) − 1.1394(𝜌𝑤,831(0+) − 0.0009) 

608 𝜌´𝑤,608(0+) =  𝜌𝑤,608(0+) − 1.091(𝜌𝑤,908(0+) − 0.001) 

659 𝜌´𝑤,659(0+) =  𝜌𝑤,659(0+) − 1.0968(𝜌𝑤,831(0+) − 0.0009) 

 

 

7.2.1.4. Water column correction 

The Maritorena et al. (1994) algorithm was chosen to correct the water column effect in 

the WV02 image. Only the five bands shorter than 700 nm were corrected. The 

algorithm was applied following the same procedure as described in chapters 5 and 6 

(using Equation 7.3). First, the above-water reflectance was used to determine 𝑅∞(0−) 

and 𝑅(0−), using both surface reflectance in deep and shallow areas (ρ∞and ρw, 

respectively) (Equation 7.4). 

 

𝑅(0−)−𝑅∞(0−)

𝑒−2𝐾𝑑𝑧 + 𝑅∞(0−) = 𝜌𝑏 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑                                 (7.3)  

 

𝑅∞(0−) =
𝜌∞(0+)

0.5+1.5𝜌∞(0+)
        ,      𝑅(0−) =

𝜌𝑤(0+)

0.5+1.5𝜌𝑤(0+)
                   (7.4) 

 

Besides 𝑅(0−), the algorithm also uses 𝐾𝑑, 𝑧 and 𝑅∞(0−) as inputs. The 𝐾𝑑 used for 

each band, was obtained from measured in situ data. Since this parameter was not 

available for each pixel on the image, the average value of 𝐾𝑑 obtained at the ARCH 
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and PAB stations during the summers of 2012 and 2013, was used to represent the 

entire scene. Hyperspectral 𝐾𝑑 data was simulated to the multispectral bands of the 

WV02 sensor using ENVI v.4.8 (Table 7.2). 

 

Table 7.2 – 𝐾𝑑 (m
-1

) obtained around PAB and ARCH stations in the ACRB during the summer 

of 2012 and 2013 for the five bands of WV02 in the visible region. 

Band centered at (nm) 𝑲𝒅 (m-1) 

427 0.144 

478 0.115 

546 0.142 

608 0.329 

659 0.384 

 

Samples of pixels (N = 4,112) of the below-water reflectance image were extracted in 

deep-water areas and the average between them was estimated. This value was used for 

the R∞(0−) in Equation 7.3. The curve of the deep water samples used is shown in 

Figure 7.3. Deep areas were selected in the image based on a bathymetry map provided 

by the International Conservation Organization of the Abrolhos Bank. 

All pixels where the retrieved depth was deeper than 12 m or where the water column 

correction algorithm retrieved 0 > 𝜌𝑏𝑜𝑡𝑡𝑜𝑚 > 1 were masked out. This depth threshold 

was defined for two reasons. First, according to findings discussed in Chapter 5, the 

uncertainties of the retrieved bottom reflectance are higher in areas deeper than 10 m, 

for non-clear waters. Second, the uncertainties in the retrieved bathymetry are lower up 

to 12 m for most types of waters (Stumpf et al., 2003). 
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Figure 7.3 – Average of R∞ (0
-
) corrected for sunglint and extracted over deep waters within the 

WV02 image. 

 

 

7.2.1.5. Bathymetry map 

Bathymetry data for each pixel of the image is a requirement to retrieve bottom 

reflectance using Maritorena et al.’s algorithm (1994). However, this detailed 

information of 𝑧 was not available and bathymetry was obtained from remote sensing 

data using the algorithm proposed by Stumpf et al. (2003) (Equation 7.5).  

 

𝑧 = 𝛽1
𝑙𝑛(𝑛𝜌𝑤,𝑖)

𝑙𝑛(𝑛𝜌𝑤,𝑗)
− 𝛽0                                                 (7.5) 

 

where 𝛽1is a tunable constant to scale the above ratio; 𝑛 is a constant for small areas, 

which is chosen to assure both that the logarithm will be positive under any condition 

and that the ratio will produce a linear response with depth, usually varying between 

500 and 1,500 (500 for the present work); and 𝛽0 is the offset for a depth of 0 m. Using 

two bands 𝑖 and 𝑗 (𝑖 < 𝑗) that have different 𝐾𝑑, as the logarithm values change with 

depth, the ratio also changes. As the depth increases, while the reflectance of both bands 

decreases, the logarithm of ρw,i will decrease proportionally faster than the logarithm of 

ρw,j and then, the ratio will increase. Contrary to other algorithms, the one used here can 

be applied over non-homogeneous bottom types since the ratio compensates for 
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variations in the bottom reflectance. Coefficients 𝛽1 and 𝛽0 are obtained from a 

regression between (ln(𝑛𝜌𝑤,𝑖) ln(𝑛𝜌𝑤,𝑗)⁄ ) against real 𝑧 values measured in some 

pixels where field information was available.  

In this work, field information of 𝑧 at 135 points well distributed over the WV02 scene 

was provided by the Brazilian Navy. Such information was delivered in Universal 

Transverse Mercator Projection, Datum Corrego Alegre and previously transformed to 

tidal height at 0 m.  Two treatments had to be performed to the data set before using. 

First, depths were corrected for the tidal height variation of the day and time of the 

WV02 image. As no tidal gauge data was collected in the Archipelago by that time, the 

predicted tidal height for the closest port (Ilheus Port) was used (1.39 m). Second, 

geographic coordinates were converted to the Projection of Universal Transverse 

Mercator, Datum WGS-84, to be compatible to the WV02 image. Once these 

corrections were performed, the points were separated in two pools of sets, one of them 

used for calibration and the other for model validation. Due to the total of points was 

scarce for both procedures, a cross-validation technique was applied. For that, the points 

were separated in different sets of calibration (70% of the points) and validation (30% 

of the points), in which points were randomly assigned for either one. For each set of 

calibration-validation points, the 𝛽1 and 𝛽0 coefficients were estimated, and adjusted for 

both steps (calibration and validation).  

The Stumpf et al. (2003) algorithm adapted for the WV02 image and study area is 

expressed in Equation 7.6. The 𝛽1,0 coefficients, 𝑛 value and band combination 

presented in this equation, produced the best adjustment (Table 7.3).  

  

𝑧 = 56.279
𝑙𝑛(500𝜌𝑤,478)

𝑙𝑛(500𝜌𝑤,546)
+ 59.9808                                         (7.6) 
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Table 7.3 – 𝛽1 and 𝛽0 coefficients used for the calibration of the bathymetry map, R
2
 and RMSE 

obtained for different data sets. Bold numbers represent mean values between 

the sets. 

1 0 R2 RMSE 
56.896 -61.040 0.4608 3.2006 

52.485 -55.141 0.3952 3.2926 

54.117 -57.162 0.3899 3.5331 

43.294 -43.779 0.3265 3.1327 

62.140 -67.373 0.4378 3.5501 

56.646 -60.291 0.3748 3.6372 

59.876 -64.482 0.4498 3.3314 

56.997 -60.844 0.3728 3.7123 

60.078 -64.720 0.3845 3.6517 

60.261 -64.976 0.3852 3.5979 

56.279 -59.9808 0.39773 3.46396 
 

7.2.2. Bottom mapping in the Parcel dos Abrolhos, ACRB 

After applying the water column correction to the WV02 image the band at 478 nm had 

the greater quantity of valid pixels (67.75%) compared with the other bands. For this 

reason,  the classification scheme used to produce the bottom type map of the ACRB 

was applied only to the 478 nm band Even though spectral information was lost using 

only one band, the adopted criterion was to prioritize the spatial extension of the bottom 

map over the quantity of classes able to be discriminated at 478 nm. 

7.2.2.1. Definition of classes  

Four classes were considered based on image interpretation, as well as  observations 

and findings gained from the field work. The classes were: Sand; Macroalgae+Sand; 

Reefs; and Inter-reef areas. The reef areas encompassed different benthic communities 

located above the chapeirões, with a mixture of classes present in different percentages: 

coral, macroalgae, sponge, calcareous algae and Zoanthids. The inter-reef areas were 

located around the chapeirões and included Sand, Sediments, Macroalgae, Algal Turf 

and Rhodoliths in different proportions (Table 7.4). Macroalgae class was dominated by 

different types of algae (brown, red or green) and in some cases included exposed sand 

or rocks in low proportion. Sand areas in some cases included also sparse algae or 

seagrass.  
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 Table 7.4 – Illustration of the thematic classes used for the bottom mapping in the Parcel dos Abrolhos, ACRB.   

Thematic 

class 

Sample 
Context 

WV02 at 478 nm Photos 

Reef 

  

Dark gray / black compact 

areas, with size varying 

around 60 and 200 pixels 

with roundishl shape 

Inter-reef 

area 

  

Light to medium gray, 

mixed colored pixels, 

extensive matrix with some 

dark patches (reefs) inside. 

Macroalgae 

  

Dark gray areas limiting 

sand or inter-reef areas. 

Variable shape.  

Sand 

  

Clear homogeneous areas, 

with variable shapes, 

delimited by darker 

extensions of inter-reef 

areas or macroalgae  
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7.2.2.2. Processing of the WV02 scene 

OBIA has a high potential to integrate different techniques of processing, retrieval and 

analyzing multi-resolution data from various sensors (BLASCHKE et al., 2008). This 

technique starts with a segmentation that is defined as an aggregation of high level of 

detail (pixels),producing usable objects. Once the objects are defined, the second step is 

to apply a rule-based classifier to make explicit the required spectral and geometrical 

properties, as well as, the spatial relations for advanced class modeling. Contrary to a 

classical image classification, the OBIA is an interactive and cyclic process,  open for 

accommodating different categories of target classes, from specific domains, with 

different semantics, etc  

7.2.2.3. Segmentation 

eCognition software uses three parameters to perform segmentation that can be defined 

by the user: (i) Scale Parameter that determines the size of objects; (ii) Shape, which is a 

trade-off between shape and color, i.e., the lower the value, the higher is the influence of 

color in the process; and (iii) Compactness, that produces more compact objects, as 

higher its value is.  

The WV02 image presented a gray scale gradient in the entire scene, and some 

discontinuities were observed to be related possibly to some calibration distortions. This 

was because the same features showed different reflectance values according to their 

position in the image. Also, different classes showed different sizes, so that, the same 

spatial scale was not appropriated for the segmentation of all features. On the other 

hand, processing time of segmentation was more than 10 hours for the entire scene, 

even using only one spectral band. For these reasons, the image was subdivided in four 

parts and segmentation was performed in several steps. Several tests were performed in 

each subset with different reflectance thresholds, Scale Parameter and Shape, according 

to characteristics of classes in each subset. The performance of the tests was visually 

inspected and analyzed (Figure 7.4). 

The segmentation rules that showed the best results in the different subsets were:  

 Multi-resolution segmentation was run to isolate sand or inter-reef 

areas. For that, a superior threshold for reflectance values was located 
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between 0.16 - 0.19 depending on the subset. The Scale Parameter 

varied between 50 and 100.  

 Then, a multi-resolution segmentation was run to isolate small reefs. A 

inferior threshold for reflectance values was 0.18 - 0.15 depending on 

the subset. Scale Parameter varied between 10 and 50. Always, in each 

subset, superior threshold defined to isolate sand segments was higher 

than inferior threshold used for reef areas. 

  

 

 

Figure 7.4 – Result of the segmentation process that was considered satisfactory, in a subset 

image of a portion of the Parcel dos Abrolhos. The figure shows reefs defined 

as different objects after segmentation (in blue). 

 

7.2.2.4. Classification 

The classification process was not performed using an automatic algorithm, but rather 

using objects that were assigned manually to different classes according to their 

reflectance values and size, based in visual inspection of the image. As in the 

segmentation process, a multi-step classification was also adopted and different 

thresholds were defined sequentially in different portions of the subsets, according to 

the neighborhood of the different objects. Reflectance values were the highest for sand 

areas, intermediate for inter-reef areas and macroalgae and the lowest for reef areas and 
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thresholds were defined according to behavior of each feature in subsets. Maximum 

reflectance values in inter-reef areas were found in the center of the scene, coincident 

with the shallowest area in the bathymetric map. In some occasions, a threshold in the 

object size of this class was also delimited, being higher than 50 pixels and lower than 

300 for reef areas. After the classification process, a low-pass filter with a 3x3 window 

was used to remove the salt-pepper effect in some parts of the map. 

7.2.2.5. Mapping validation 

Information of the benthic communities was collected at 39 sites, which were used for 

the map validation. These locations were sampled during both surveys in 2012 and 

2013. They were distributed northern and southern of the Santa Barbara Island (the 

largest of the ACRB) and above the Parcel dos Abrolhos located eastward to the 

Archipelago. However, 5 of them were masked after applying the water column 

correction due to their proximity to land areas. Thus, 34 sites were actually used for the 

validation of the bottom type map. The accuracy assessment of the bottom type map 

was performed through a standard confusion matrix (CONGALTON; GREEN, 1999). 

Accuracy of the user, producer and Kappa index were calculated. 

7.3. Results and discussion 

7.3.1. Performance of the pre-processing steps 

7.3.1.1. Atmospheric correction 

ATCOR2 module in PCI software performs internally with first a conversion from DN 

to radiance. Within this step, a radiometric correction is also done. The absolute 

radiometric calibration factors (𝐾𝐵𝐴𝑁𝐷 , in W m−2 sr−1 count−1) and the effective 

bandwidths (∆𝜆𝐵𝐴𝑁𝐷, in μm) used for such conversion are continuously updated by the 

Digital Globe company through calibration tests done in highly reflective surfaces in the 

Earth, and the correct values to be used in each scene are delivered together with the 

remote sensing data. These calibration tests have to be constantly done because the 

detectors of the orbital sensor suffer degradation over time. Figure 7.5a shows the 

spectral curve of DN values above deep waters. Peaks at 659 and 831 nm are observed 

because of the relative discalibration between the spectral bands. After DN is 

transformed to radiance units, one may observe an increase at 427 nm and decrease at 
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659 and 831 nm, showing that the spectral radiometric correction performed well 

(Figure 7.5b).  

The radiance spectral curve inspected above deep waters shows high values at the blue 

region, where Rayleigh scatterings dominates, increasing exponentially towards the 

shorter bands. After atmospheric correction, the surface reflectance shows a reduction at 

the beginning of the visible region (427 nm), compensating for the atmospheric 

Rayleigh scattering. However, some higher values were still observed after atmospheric 

correction at the longer bands of the WV02 sensor. This may reveal an imperfect 

correction of the model. The ATCOR2 model was actually not developed to be applied 

for water bodies. The Maritime aerosol model that can be selected for such correction 

was developed to be applied in the boundary layer over oceans and continents under a 

prevailing wind from the ocean, but it still is not so well adapted for the retrieval of 

water-leaving radiance. 

 

 

Figure 7.5 – Mean values extracted from the WV02 image in deep waters, as a function of 

wavelength (nm): digital number (DN) in a 16-bits scale, dimensionless (a); 

radiance in W m
-2

 sr
-1

 m
-1

 (b); and surface reflectance of deep waters (𝜌∞), 

dimensionless (c). 
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Several orbital sensors such as MODIS-Aqua, SeaWiFS and MERIS, with low spatial 

resolution, have specific atmospheric model routines that are operationally implemented 

in specific software. They have been developed to be applied specifically in oceanic 

areas and have been evaluated to derive ocean-color products by the Atmospheric 

Correction Working Group (ACWG) established by the International Ocean-Color 

Coordinating Group (IOCCG) for that purpose (IOCCG, 2010). Nevertheless, those 

algorithms were developed for Case-1 waters, and they fail in Case-2 waters mainly due 

to the incorrect assumption of zero water-leaving radiance at the NIR region and due to 

the high CDOM absorption at the shorter bands. In the case of sensors with intermediate 

or high spatial resolution (30 m or less), the situation is even worst. No algorithm to 

correct atmospheric effects performing well in aquatic environments is operational for 

these sensors. These sensors with better spatial resolution have been used routinely to 

study coastal waters, river plumes and coral reef areas (MUMBY; EDWARDS, 2002; 

BOUVET et al., 2003; ANDRÉFOUËT et al., 2003; SARANGI et al., 2004; PURKIS, 

2005; PALANDRO et al., 2008; RUDORFF et al., 2011, PHINN, et al., 2012; among 

many others) and atmospheric corrections to retrieve reasonably good surface 

reflectance values are required.  

In the present work, during the WV02 imagery, some reflectance measurements were 

done near the Abrolhos Archipelago. Only three locations were sampled on the same 

day, and the depth of these points varied between 3.8 and 10.2 m. Comparisons between 

the surface reflectance collected in situ and by the orbital sensor are shown in Figure 

7.6. Larger errors between both types of measurements i.e., satellite and in situ, were 

observed for the shorter bands (up to 608 nm), with mean uncertainties between 46 and 

63%. These errors were not random, but rather revealed consistent biases of an 

overestimation of the in situ measurements compared to the satellite remote sensing 

reflectance. Despite of all the limitations aforementioned regarding the atmospheric 

correction algorithms applied to water body environments, the water surface remote 

sensing reflectance obtained from the satellite WV02 image showed a behavior 

consistent with the in situ measurements. Hence, the correction applied in the present 

work was well done. It is important, however, also to note that differences in the 

reflectance estimates are not caused exclusively by atmospheric interference. 

Differences in the configuration of sensors, signal-to-noise relation and size of the area 



141 
 

integrated by both types of data i.e., satellite and in situ, are other factors responsible for 

these biases. 

 

 

Figure 7.6 – Water reflectance (𝜌𝑤) as a function of wavelength (nm) collected in situ (gray 

squares) and extracted from the WV02 image (Black diamonds), in three 

different sites around the Archipelago (ARCH-20, ARCH-21 and ARCH-22). 

 
 

 

7.3.1.2. Sunglint correction 

The sunglint effect seen in the surface reflectance image was removed after the 

application of the Hedley et al. (2005) algorithm through Equation 7.5. Rugosity effect 

in the water surface was eliminated, bottom features were enhanced and submerged 

targets could be better discrimimated. Around the Archipelago, sunglint effect was not 

so significant, possibly because the islands make a physical barrier for wind and waters 

were calmer in this region. However, above the chapeirões, eastward from the islands, 

the sunglint effect was high, making difficult the identification of the bottom types 

before applying the correction of such effect. In terms of the reflectance values, the 

sunglint correction caused an overall reduction in all bands and there was no anomalous 

artifact in the spectral behavior (Figure 7.7). The standard deviation also decreased, as 

the color was homogenized, since bright pixels containing specular reflection were 

obscured. 
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Figure 7.7 – Water reflectance (𝜌𝑤) before and after application of sunglint correction for the 

different bands of the WV02 sensor (a) along a transect (in red) above the 

Parcel dos Abrolhos in the WV02 image (b). The portion of the WV02 image is 

showed in a quasi-true color composition (R: 659 nm; G: 546 nm; B: 478 nm)  

  

 

After the sunglint correction, some stripes were evident in the image (Figure 7.8). An 

image without radiometric correction, collected by a pushbroom imager, normally 

presents some vertical strips caused by calibration distortions among the detectors of the 

sensor. The application of such correction causes the banding and streaking to virtually 

disappear in the image, but once it is performed, the radiometric corrections are not 
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reversible. The image here used was already radiometrically corrected. However, some 

problems in this irreversible processing could be enhanced after the sunglint correction. 

The streaking effect is not an artifact of this correction, but it was already dissembled in 

the image and evidenced after the sunglint correction.  

 

Figure 7.8 – Vertical stripes in the WV02 image at 478 nm, enhanced after sunglint correction. 

 

7.3.1.3. Bathymetry map 

The bathymetric map obtained from the application of Stumpf et al. (2003) algorithm to 

the WV02 scene is shown in Figure 7.9. All points deeper than 12 m were masked and 

are displayed in black. A low pass filter with a window size of 3x3 was applied to this 

map only for visualization purposes with noise reduction. Note that vertical stripes in 

several portions of the map are seen as well as some discontinuities in depth.  

In general, based on a visual inspection, the map showed a good representation of the 

topography of the area. The bathymetry shows a shallower central area vertically 

extended in the map that corresponds to the Parcel dos Abrolhos. Inside the Parcel dos 

Abrolhos, a large number of chapeirões is distributed with depths varying between 0.1 

and 6.5 m (Figure 7.10- point 2). In the center of some chapeirões the model retrieved 

invalid values. It is possible that some portions of shallow chapeirões were exposed 

during the WV02 causing these erroneous retrievals. Another possibility could be the 

presence of waves and foam at some tops of the reefs that could not be eliminated 

through the sunglint correction. In fact, Bertels et al. (2008) applied an algorithm to 

retrieve bottom depth from a hyperspectral image and appointed that in some parts of 

the reef crest it was not possible to retrieve depth where breaking waves were 

responsible for the total reflection of light.  
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Figure 7.9 – Bathymetric map of the Archipelago and Parcel dos Abrolhos, in the ACRB, 

Brazil, obtained through the application of the Stumpf et al. (2003) algorithm to 

a WV02 scene. Depths shown in the map vary between 0 and 12 m and are 

represented in blue scale. No data and land areas are represented in black. 

 



145 
 

Figure 7.10 – Bathymetric map of the Archipelago and Parcel dos Abrolhos, in the ACRB, Brazil (Down left). Number 1 and 2 

represent zooms focusing the Northern Archipelago (Number 1), and above an area with a large amount of isolated chapeirões in the 

Parcel dos Abrolhos (Number 2).  
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Between the Parcel dos Abrolhos and the islands, a deeper channel is observed, with 

depths around 12 m and where no chapeirões are present. The deepest parts of the scene 

are located in the westernmost portion and towards the northeast. Around the islands, in 

a smaller spatial scale, depths showed variations from 2 to 11 m, indicating an abrupt 

gradient. Even though the Stumpf et al. (2003) algorithm is considered insensitive to 

changes in bottom reflectance, in this work some discrepancies were observed when 

accounting for this type of variation in the substrate. Figure 7.10 - point 1 shows a clear 

example of this situation. Some clear circles are perceived as 2 to 3 m shallower than 

the surrounding areas. However, these features are actually located at the same depth 

with data collected in the field, and differences in the retrieved depth may be caused by 

contrasted differences in the bottom reflectance. Inside the circles, the substrate is 

highly reflective dominated by sand, while macroalgae dominated substrates that 

encircle these areas.  

Using different sets of 41 validation points, shallower than 12 m, the bathymetry model 

showed a low to medium adjustment (mean R
2
 equal to 0.43, RMSE 2.09) (Table 7.5). 

Besides the variations in bottom reflectance that could be responsible for the low 

performance in some parts of the map, errors in geopositioning could also be another 

source of error. The WV02 has a spatial resolution of 2 m and the bottom in this area is 

very patchy and heterogeneous, where chapeirões and other already mentioned features 

have small sizes. On the other hand, the mean error for the in situ collections of points 

using standard GPS range approximately at ±5 m. This means that the measured point 

could correspond to a window size of at least 3x3 pixels. Errors in bathymetry 

inevitably were propagated to the bottom reflectance retrievals. Other surveys to 

estimate accurate bathymetry data are indispensable to reduce uncertainties in the water 

column correction procedure. LIDAR imagery would be desirable due to its ability to 

produce a detailed grid of information in a reduced spatial scale, even to a centimeter 

scale.  
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Table 7.5 – 𝛽1 and 𝛽0 coefficients, R
2
 and RMSE obtained for the validation of different data 

sets of the bathymetric map. Bold numbers represent mean values between sets. 

1 0 R2 RMSE 
0.2835 6.915 0.3313 1.983 

0.3486 7.291 0.4470 2.016 

0.3688 6.536 0.4417 1.856 

0.3710 6.499 0.6030 1.769 

0.4004 6.300 0.3226 2.312 

0.4643 5.718 0.4782 2.085 

0.3317 7.315 0.2991 2.341 

0.4893 5.390 0.5040 1.994 

0.4838 5.580 0.4568 2.253 

0.4861 5.723 0.4494 2.326 

0.40275 6.3267 0.43331 2.0935 
 

 

7.3.1.4. Water column correction 

The overall performance of the water column correction was poor, especially for the 

bands longer than 600 nm. Most of the pixels at 608 and 646 nm had bottom reflectance 

retrieved values either lower than 0 or higher than 1. The best results were obtained at 

478 nm. This band had the lowest quantity of invalid pixels that had to be masked, as  

the water column effect is the lowest due to the high light penetration, evidenced by the 

lowest 𝐾𝑑 for this band (Table 7.2). 

Considering only the 478 nm band, the water column correction performed well in some 

portions of the image, enhancing the bottom features (Figure 7.11a-b). On the other 

hand, in other parts of the image the water column correction limited the use of those 

areas for the bottom type mapping, due to the low quantity of valid pixels retrieved by 

the model (Figure 7.11c-d). In Chapter 5 the importance of this step for the mapping of 

submerged substrates was deeply discussed. Despite that the Maritonena et al.’s 

algorithm (1994) showed the best results between the tested methods in Chapter 5, the 

performance of its application was still not satisfactory for the entire WV02 scene. 

Uncertainties in the 𝐾𝑑 and depths used as inputs of the model are the main reasons 

accounting for this underperformance. It was observed that the water column within the 

ACRB area presents important heterogeneities in small spatial scales. Hence, the 

utilization of a unique attenuation coefficient for the entire scene was certainly 

responsible for the retrieval of the invalid values of bottom reflectance. On the other 

hand, the bathymetry map used as input had a RMSE of 2.09 m. One must take into  
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Figure 7.11 – WV02 image at 478 nm in different portions of the ACRB: above the Parcel dos 

Abrolhos (a and b) and westward the Archipelago (c and d). Both portions are 

showed before water column correction were performed (a and c) and after 

correction of this effect (b and d).  
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account that this was the first work to map the Parcel dos Abrolhos area in the ACRB. 

The lack of a detailed bathymetric grid with a spatial resolution compatible with the 

WV02 image, made necessary the utilization of an algorithm to retrieve bottom depth 

from the image itself, which inevitably subjects the data to higher uncertainties. 

The main challenge for the submerged bottom mapping presented in this work, was 

undoubtedly the water column correction procedure. Unsuccessful retrievals of bottom 

reflectance in several WV02 bands relied in the lack of adequate input data. A possible 

solution to compensate for the errors in the depths used in the model input, could be the 

use a high resolution bathymetry map derived from LIDAR surveys across the ACRB. 

However, this could not compensate for the heterogeneities in the water column 

attenuation, which will still remain as a challenge. Another possibility could be the 

utilization of hyperspectral image, for which the Lee et al.’s inversion scheme (1999) 

can be applied, so that 𝑎 and 𝑏𝑏 coefficients can be retrieved in each pixel. One might 

suggest however, that even though the Lee et al.’s inversion scheme is proposed for 

hyperspectral image, since the WV02 has a better spectral resolution than other high 

spatial resolution orbital sensors with an adequate position of the bands for water 

quality studies (bands at 427, 478, 546, 608, 659, 724, 831 and 908 nm) the correction 

could be adapted for WV02 bands. Hence, further works should explore alternatives to 

adapt inversion schemes to multispectral data to improve the water column correction 

performance which is essential for bottom type mapping. 

7.3.2. ACRB Mapping 

Figure 7.12 depicts the bottom type map produced from the WV02 scene obtained on 

2012/02/14, and the total area of each class, as well as their cover percentage, are shown 

in Table 7.6. The inter-reef class was the most abundant, totalizing 129 km
2
 that 

correspond to 73 % over the total of the mapped area, followed by reefs, sand and 

macroalgae classes. It does not mean that macroalgaes were restricted only to 4.39 % of 

the area, but that they were the dominant group in these areas. In fact, macroalgaes were 

also present in the other three classes of bottom type and this group is probably the most 

representative in all substrates of the ACRB. Inter-reefs areas are relevant from the 

ecologic point of view since rhodoliths beds are located in this areas (AMADO-FILHO 
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et al., 2012). Inter-reefs areas, sand patches and reefs were the main features found in 

the study area and matches with findings showed by AMADO-FILHO et al. (2012).  

Despite of the low quantity of points for the validation and the confusion between sand 

and inter-reef areas, the reefs could be easily mapped even using one spectral band. This 

work shows the first map in the Parcel dos Abrolhos and Archipelago where the 

distribution of the reefs and the quantification of the area occupied by them were 

shown. The isolated reefs were spatially distributed in patches with different abundance 

among them. To facilitate the identification of these interspersed patches, Figure 7.13 

shows their location according to a visual inspection. From the Archipelago towards the 

east, after the deep channel a broad area with high concentration of reefs disposed in 

shape of arc can be observed (Patch 1) (Figure 7.14). Inside this arc, reefs were larger 

compared to other parts of the map and several of them were so close to each other that 

they seemed to be merged. Southwestward to this arc there was a narrow channel with 

scarce chapeirões that encircles patch 1 (Patch 2). The area southern to Patch 2, which 

is Patch 3, was characterized by spaced small reefs, followed by another area where 

chapeirões were once again very frequent (Patch 4). Some thin cracks with a NW-SE 

direction were also present in Patch 4. Another area with scarce reefs was Patch 5, and 

in the southeastest portion, another patch with a lot of reefs was identified as Patch 6. 

From the islands to the northern sector, an area with large reefs scarcely distributed and 

inter-spaced with macroalgae and sand was identified as Patch 7. In the northeast 

portion of the map, small reefs were homogeneously distributed in low frequency (Patch 

8).     
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Figure 7.12 – Bottom type map of the ACRB produced from the WV02 image. The "No data" 

class includes also land areas. 
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Table 7.6 – Area and percentage of occupation of each class of bottom type.  

  Reef Inter-reef areas Macroalgae Sand Deep water 

Area (km2) 21.93 129.63 7.79 15.78 2.14 

Area (percentage) 12.37 73.13 4.39 8.9 1.2 

 

The accuracy achieved for the bottom type map was high, with an overall accuracy of 

88.23 % and a Kappa index of 0.81 (Table 7.7). It is important to recall that errors in 

geopositioning could also be present associated to the in situ GPS records of the 

geographical coordinates, which could lead to mismatches in the map validation, 

reducing accuracy. The main confusions were between reef and inter-reef areas and 

between macroalgae with reef or sand. These discrepancies between the mapped and 

ground-truth data were observed mainly in the proximities of the Archipelago, where 

most of the classes were present. On the contrary, above the Parcel dos Abrolhos, reef 

and inter-reef areas were easily separated, for both reflectance values as for the size of 

features.  

Some sites that were used for the validations were registered in 2013, whereas the 

imagery was collected in 2012. Thus, this information was used for the accuracy 

assessment of the maps under the premise that the benthic coverage of these sites was 

invariant along one year (between 2012 and 2013). According to Andréfouët et al. 

(2003), this could be questionable based on the history of the site and type of 

perturbations. Nevertheless, the area mapped in this work may be considered stable in a 

temporal scale of one year. No direct human impacts are observed there, since it is 

comprised in a protected area where tourism is controlled and extractive activities are 

forbidden. Furthermore, no natural hazards were observed between 2012 and 2013, 

causing coral bleaching or massive mortality events. Thus, it is reasonable to use the 

entire set of validation sites (of 2012 and 2013) in the accuracy assessment of the WV02 

mapping. 
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Figure 7.13 – Patches with different patterns of spatial distribution of coral reefs in the ACRB. 
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Figure 7.14 – Zooms over different portions of the bottom type map of the ACRB, that 

correspond with different spatial patterns of reef distribution. 
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Table 7.7 – Confusion matrix for the classified WV02 image. The overall accuracy and Kappa 

index are also provided. 

  

Real Substrate 
 

 

  

Reef Sand Inter-reef Macroalgae Row Totals 
Producer 
accuracy 

A
ss

ig
n

ed
 c

la
ss

 

Reef 
14 0 1 0 15 93.33% 

Sand 
0 1 0 0 1 100.00% 

Inter-reef 
0 0 2 0 2 100.00% 

Macroalgae 
2 1 0 13 16 81.25% 

 
Column Totals 

16 2 3 13 34  

 User accuracy 
87.5% 50.0% 66.7% 100.0%   

 Overall accuracy: 
88.23%      

 Kappa index: 
0.81      

 

In the North of the islands, approximately in the center of the map, a disruption in the 

sand class was observed. This abrupt delimitation of the class does not seem a natural 

feature, but an artifact of the imagery, since there is no sharp change in bathymetry. 

Observing the bathymetric map, a vertical stripe was coincident with the delimitation of 

the sand class, thus, a radiometric problem could probably be responsible for this 

discontinuity. During our two field works, this wide area of sand, northern to the 

Archipelago, was not visited and there are no records of the bottom type, both for 

training or validation. This area was classified as sand according to the higher 

reflectance values compared with the neighbor inter-reef areas to the east and similar 

reflectance values found in specific features (“randall zones”) that were visited near the 

islands. Other areas with interesting features that were mapped in the northwest of the 

scene, also could not be validated in this work due to the lack of validation points. A 

greater quantity of validation points, better distributed in the entire scene is required for 

a more robust validation. Literature shows a wide variety in the number of validation 

points used to create confusion matrixes, varying from 35 to more than 500 sites (e.g., 

PURKIS, 2005; BENFIELD et al., 2007; CALL et al., 2003; ANDRÉFOUËT et al., 

2003; ANDRÉFOUËT; DIRBERG, 2006; FEARNS et al., 2011). According to 

Congalton (1991) at least 50 validation points for each class are required for the 

accuracy assessment. However, Andréfouët (2008) mentioned the difficulty for 

researchers in remote reef areas to follow an accuracy assessment scheme comparable to 
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those conducted at sites with easy access and historical knowledge, especially where 

works are conducted for the first time. Many works have actually been developed for 

decades in the ACRB. However, generally these works have been conducted focusing 

on ecological dynamics in punctual areas both in the coastal and external arcs, but they 

lack of a broad spatial representation of the ecosystem. From the point of view of 

remote sensing requirements in terms of field sampling, the ACRB could be considered 

almost unexplored. New validation data in the ACRB should follow recommendations 

of Andréfouët (2008) and be collected in transects to diminish the errors caused by 

misclassification or mis-geopositioning. The spectral ravel of benthic communities in 

the ACRB (discussed in Chapter 6), the quantity of points used for validation and the 

availability of only one spectral band after the low performance of the water column 

correction, were responsible for the simplicity in the definition of only 4 classes of 

bottom type. It is expected that a more exhaustive inspection in the field, visiting 

different sites in the study area, will provide not only a more robust accuracy 

assessment, but also the accomplishment of a more detailed map, with a higher number 

of classes.  

A particular feature detected in the scene corresponded to randall zones or haloes, which 

are areas around coral patches that are kept clear of vegetation by herbivorous fish or 

invertebrates such as sea urchins (RANDALL, 1965; MCMANUS et al., 2000). These 

zones have ecological interest since they can provide evidence of the status of the reefs. 

In reefs under intensive fishing pressure, haloes tend to disappear or be strongly 

reduced, accompanied by macroalgae growth close to the reef. On the contrary, in 

pristine environments or where fishing is highly controlled, broad haloes around the 

reefs are expected to be observed. Figure 7.15 shows these features in the WV02 image 

and in field photographs taken at sites around the Archipelago. Because of the contrast 

in the reflectance between sand, reef and macroalgae, and the spatial dynamics of these 

areas, even using one unique band and given the spectral confusion of benthic classes, 

randall zones can be easily identify by remote sensing. A large number of randall zones 

were found in the northern, western and southern sectors from the islands. The entire 

WV02 scene is located in the Abrolhos National Marine Park where fishing activities 

are forbidden. Hence the temporal monitoring of randall zones by remote sensing can 

bring information about the controls of herbivorous fish populations and the 
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effectiveness of fishing restrictions in this area. Reefs located in the center of randall 

zones are different from the chapeirões found in the Parcel dos Abrolhos. In the Parcel, 

the inter-reef matrix is deep and the reefs are disposed in columns, such that there is a 

rapid increase in depths at the sides of the reefs, while the reefs belonging to patches 7 

and 8 (according to the zonation presented in Figure 7.13) are shallower and depths 

increases more gradually towards the surroundings.   

  

 

Figure 7.15 – Portion of the WV02 image at 478 nm northern to the islands (Lower left). The 

red square is observed in a zoom for a better identification of features (Upper 

left). The same feature identified in the image is showed in a subaquatic picture 

(Middle rigth). The three parts of these features (Reef, Randall Zone and 

Macroalgae) are more detailed in pictures on the lower and upper right. 
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8 CONCLUDING REMARKS, RECOMENDATIONS AND FINAL 

CONSIDERATIONS 

Bottom type maps over a broad quantity of coral reef environments have been produced 

worldwide using remote sensing data. Despite the potential of optical images to provide 

information of the seabed, some limitations caused by environmental factors, such as 

the water column effect, and by the target characteristics itself, expressed in the spectral 

complexity of the benthic communities, were addressed in this work. The deep 

knowledge of these limitations is required to draw proper conclusions, either about the 

ecosystem functionality or for the delineation of adequate management plans in these 

environments.  

The first challenge to extract information of submerge targets, studied in this work, was 

the water column effect. Water column correction is a required step to compensate for 

the differences in depths between different portions of an image and the heterogeneities 

of the OACs present in the water column. The first methods proposed in literature were 

the simplest and easiest to apply, using solely band ratios as inputs and outputs of the 

model. Despite their limitations, they are still the most frequently used algorithms. More 

complex algebraic algorithms have been developed to estimate the bottom reflectance in 

shallow environments, but they require the use of in situ field data for adequate 

retrievals. Nevertheless, they are the only methods capable of estimating bottom 

reflectance. For this reason, improvements and validations of this group of algorithms 

should be encouraged. Most of the recent algorithms have been based on matching the 

pixel spectra with simulated spectra from a library. While these algorithms produce 

satisfactory results, their output is a categorical map and their performance is dependent 

on the availability of realistic bottom reflectance data sets built in the library. Basically, 

the choice of the method to apply is dictated by the availability of the input data and the 

desired outcome in terms of the output variable (e.g., reflectance ratios, categorical 

maps or bottom reflectance) and the accuracy based on the scientific study envisioned.  

Among all the methods developed up to date, none is really capable of correcting for the 

water column effect properly in the entire visible spectrum. Uncertainties in retrieving 

the bottom reflectance from above-water spectra increase proportionally with depths 

and the concentration of optically active water constituents. In clear waters with low 
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CDOM concentration, the uncertainties augmented towards the red spectral bands. 

While in environments with high CDOM concentration, uncertainties increased both 

towards the blue and the red spectral ends. Even in the best conditions of clear waters 

and shallow depths, the uncertainties in the bottom reflectance retrievals were still not 

completely independent of depth as they were also depended on the wavelength, and 

bottom type of the substrate. The algorithms applied in the present work, minimized the 

differences between similar bottom types located at different depths. In all cases, some 

knowledge of the water column constituents, as well as depths and the spectral behavior 

of the substrate, was required to act as an input during the application of a method or to 

evaluate its performance. In cases where above-water hyperspectral information was 

available, Lee et al. (1999) inversion method was an alternative that performed well 

retrieving bottom reflectance up to 600 nm, in areas shallower than 5 m. This method is 

advantageous since it allows to retrieve both depth and bio-optical information for each 

spectrum to be corrected. When working with an image, this means that all this 

information is retrieved for each of the pixels. Lee et al. (1999) inversion method also 

compensate for biases associated with the instrument used to collect radiance 

measurements, which explained in part, its good performance when applied to in situ 

hyperspectral data. In the ACRB, the correction of the water column effect represented 

the main challenge when using above-water spectra to study the benthic communities or 

to map the sea bottom. Waters in the ACRB were characterized as Case-2 waters (at 

least for the summer campaigns analyzed in the present work), and showed strong 

spatial heterogeneities, which demanded accurate measurements of absorption and 

backscattering coefficients, as well as  depths, to obtain accurate bottom reflectance 

spectra. The adaptation of the Lee et al. inversion technique to be applied to 

multispectral data for high resolution satellite applications, should be encouraged for 

further works. LIDAR surveys, complementary to the WV02 information, are desirable 

to be obtained in the study area, which can help in different steps, either to be used as 

input in the forward model to retrieve bottom reflectance or for the validation of 

bathymetry retrievals derived from optical remote sensing data.  

The second challenge faced in this work was the spectral entanglement of benthic 

targets. Spectral information of the benthic communities that could be considered ideal 

in the point of view of remote sensing, was used in the present study. This information 
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was collected over sites with shallow depths (lower than 5 m), without atmospheric 

interferences, because radiometry was collected in situ, over the entire visible spectra 

with narrow bands. Bio-optical information at each site was also collected at the same 

time of the radiometric measurements. Despite that the environmental noises contained 

in the collected reflectance spectra were effectively reduced applying filters and 

correction schemes, and that reasonable bottom reflectance values up to 600 nm were 

possible to retrieve, the benthic communities in the ACRB with subtle differences in 

coverage were not possible to be spectrally separated. This implies that monitoring 

programs may demand more frequent field surveys, since remote sensing could not 

capture subtle changes in the coverage of benthic classes. The number of samples 

analyzed was too low for a robust identification of diagnostic bands or spectral regions 

that allowed a finer differentiation on the level of biological communities. However, 

even if some spectral features were found using a larger pool of data, they should not be 

so intensively present in any spectra, due to the spectral mixture intrinsic to the benthic 

communities. Depending on the characteristics of the benthic communities inhabiting 

the coral reefs, as well the optical properties of the water column, the utilization of a 

large number of thematic classes to perform a bottom type map using remote sensing 

data could entail to low mapping accuracies. 

In this work, the bottom characteristics of the Parcel dos Abrolhos within the ACRB, 

was inspected for the first time using high spatial resolution remote sensing data. Due to 

the spectral confusion of the benthic communities and the low performance of the water 

column correction applied to the WV02 image, a reduced number of thematic classes 

was chosen for the bottom type mapping. The isolated reefs covered an area of 

approximately 22 km2 that corresponded to 12.4% of the total area. Chapeirões were 

distributed almost in all the studied area, formed by patches of different bottom types, 

covering different areas. Macroalgae was the most abundant class in the scene, and was 

concentrated around the Archipelago and inter-reef areas. A greater quantity of ground 

points are needed for a more robust map validation and should be collected in further 

works, covering all the area imaged by the WV02 sensor at the ACRB. 

The present work was a first attempt to explore the potential of remote sensing 

applications to map the bottom types of the coral reefs of the ACRB using high 

resolution imagery. High challenges were pointed out, mainly associated to the water 
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column correction and spectral mixture of the benthic communities. The main 

recommendations pointed out are the improvements of water column correction models 

adapted for multispectral high resolution imagery and a greater effort of field campaigns 

in the Abrolhos Coral Reef Bank to characterize the spectral properties of the benthic 

assemblages and their typical distribution, as well as a finer characterization of the 

water column properties, (including winter campaigns), and a fine resolution 

bathymetry map that may be provided by LIDAR surveys. Building a comprehensive in 

situ data base covering the ACRB, further works may improve benthic type mapping 

using high resolution imagery for ecosystem functioning studies, to monitoring 

environmental changes and for management strategies of the National Park.            
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APPENDIX A 

A.1 Lee et al.’s Inversion Method 

Lee et al.’s algorithm proposes that remote sensing reflectance measured at the surface 

is the sum of water column and bottom contributions. In this algorithm, attenuation (𝑘) 

is given by the absorption and backscattering coefficients.  

 

𝜌𝑅𝑆(0−) = 𝜌∞
𝑅𝑆(0−) (1 − 𝑒

[−(
1

𝑐𝑜𝑠 𝜃𝑠
+

𝐷𝑢
𝐶

𝑐𝑜𝑠 𝜃𝑣
)𝑘 𝑧]

) +
1

𝜋
𝜌𝑏𝑒

[−(
1

𝑐𝑜𝑠 𝜃𝑠
+

𝐷𝑢
𝐵

𝑐𝑜𝑠 𝜃𝑣
)𝑘 𝑧]

      (A.1) 

 

Absorption coefficient (𝑎) is the sum of phytoplankton (𝑎𝑝ℎ𝑦𝑡𝑜), pure water (𝑎𝑤), 

CDOM and detritus (𝑎𝑔) absorptions. 𝑎𝑤 values can be obtained in Pope and Fry 

(1997). 𝑎𝑝ℎ𝑦𝑡𝑜 can be expressed using a single-parameter model: 

 

𝑎𝑝ℎ𝑦𝑡𝑜 = [𝑎0 + 𝑎1 𝑙𝑛 𝑃]𝑃                                       (A.2) 

 

where 𝑃 is 𝑎𝑝ℎ𝑦𝑡𝑜 at 440 nm and 𝑎0 and 𝑎1 are empirical coefficients (LEE et al., 1999). 

The 𝑎𝑔 can be estimated as: 

 

𝑎𝑔 = 𝐺𝑒[−0.015 𝑛𝑚−1(−440)]                                      (A.3) 

 

where 𝐺 corresponds to 𝑎𝑔 at 440 nm. 

The total backscattering coefficient (𝑏𝑏) can be considered as 𝑏𝑏𝑝 + 𝑏𝑝𝑢𝑟𝑒 𝑤𝑎𝑡𝑒𝑟. In this 

equation, 𝑏𝑝𝑢𝑟𝑒 𝑤𝑎𝑡𝑒𝑟 corresponds to backscattering by water molecules and its values 
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can be taken from Morel (1974). The particle backscattering coefficient (𝑏𝑏𝑝) can be 

expressed as: 

 

𝑏𝑏𝑝 = 𝑋 (
400


)

0.5

                                                 (A.4) 

 

where 𝑋 is 𝑏𝑏𝑝 at 400 nm. The slope 𝑌 was estimated according to the Quasi-Analytical 

Algorithm (QAAv5) (Lee et al., 2002). In this, 𝑌 is a relation between 𝜌𝑅𝑆(0−) at 440 

and 555 nm (Equation A.5). 

 

𝑌 = 2.2 {1 − 1.2 𝑒
[−0.9 

𝜌𝑅𝑆(0−)(440)

𝜌𝑅𝑆(0−)(555)
]
}                                                 (A.5) 

 

In the inversion scheme, an optimization technique minimizes the error (𝑒𝑟𝑟) between 

measured 𝜌𝑅𝑆 and modeled �̂�𝑅𝑆. The values of 𝑃, 𝐺, 𝑋, 𝜌𝑏(550) and 𝑧 that minimize 

𝑒𝑟𝑟 are considered as the real ones.  

 

𝑒𝑟𝑟 =
[∑ (𝜌𝑅𝑆−�̂�𝑅𝑆)

2675
400 +∑ (𝜌𝑅𝑆−�̂�𝑅𝑆)

2830
750 ]

0.5

∑ �̂�𝑅𝑆675
400 +∑ �̂�𝑅𝑆830

750
                                 (A.6) 
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