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Abstract: Human activity and natural climate trends constitute a major threat to coral reefs 

worldwide. Models predict a significant reduction in reef spatial extension together with a 

decline in biodiversity in the relatively near future. In this context, monitoring programs to 

detect changes in reef ecosystems are essential. In recent years, coral reef mapping using 

remote sensing data has benefited from instruments with better resolution and 

computational advances in storage and processing capabilities. However, the water column 

represents an additional complexity when extracting information from submerged 

substrates by remote sensing that demands a correction of its effect. In this article, the basic 

concepts of bottom substrate remote sensing and water column interference are presented. 

A compendium of methodologies developed to reduce water column effects in coral 

ecosystems studied by remote sensing that include their salient features, advantages and 

drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to 

simulated data and actual remote sensing imagery and their performance is compared.  

The available methods are not able to completely eliminate the water column effect, but 

they can minimize its influence. Choosing the best method depends on the marine 

environment, available input data and desired outcome or scientific application.  

Keywords: bottom reflectance; remote sensing; attenuation coefficient; water column 

constituents; submerse substrate 
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1. Introduction 

Coral reefs are the most biodiverse and productive ecosystems in marine environments [1]. Several 

studies have shown that these ecosystems appear to be the first to respond to global climate changes, 

such as increased sea surface temperature (SST) and ultraviolet radiation (UV) and acidification of 

seawater that results from higher levels of atmospheric CO2 concentration. SST increases can lead to a 

loss of symbiotic relationships between corals and zooxanthells and cause coral bleaching events.  

In response to ocean acidification, a decrease in the biodiversity of these ecosystems can be expected [2]. 

Additionally, variation in sedimentation rates caused principally by increases in deforestation can 

cause negative feedbacks. Because of its sensitivity, coral reefs are considered to act as biological 

indicators of global climate change [3]. In this context, monitoring programs to detect changes in coral 

reef biodiversity and coral bleaching are essential.  

As in other natural environments, remote sensing approaches to acquiring data in coral reef 

ecosystems are the most cost-effective and allow for synoptic monitoring of large areas, including 

places with difficult access [4]. In recent years, studies on coral ecosystems by remote sensing have 

increased considerably because of a greater availability of orbital sensors with better spatial and 

spectral resolutions and the development of different methodologies in digital classification processes. 

Orbital high spatial resolution sensors such as IKONOS and Quickbird (4 and 2.4 m, respectively), 

high spectral resolution sensors (e.g., Airborne Visible/Infrared Imaging Spectrometer—AVIRIS) and 

other airborne sensors with both high spatial and spectral resolutions (e.g., Compact Airborne 

Spectrographic Imager—CASI, Portable Hyperspectral Imager For Low Light Spectroscopy—PHILLS, 

Advanced Airborne Hyperspectral Imaging Sensors—AAHIS) have been used successfully in coral 

reef studies [5–8], among many others. These technologies have produced improved mapping accuracy 

compared to other multispectral sensors traditionally used, such as LANDSAT with intermediate 

spatial resolution.  

Bottom reflectance (ρ ) is the central parameter in the remote sensing of coral reefs and, depends 

on the physical structure and chemical substrate composition [9]. ρ  in coral reef studies has been 

mainly used for the following:  

- Identification of coral bleaching events, which are frequently used as a proxy for coral reef 

health [10]. Bleached corals can be differentiated from healthy corals in their reflectance 

spectrum because the zooxanthells that are lost are associated with pigment depletion and color 

change [11–13]. Despite its potentiality, it can be complicated to observe by remote sensing and 

depends on the prompt imagery of the area because dead corals are rapidly colonized by algae, 

with a spectral behavior similar to zooxanthells; 

- Mapping of different assemblages of benthonic species by using different techniques, such as 

methods based on spectra similarities or Object-Based Image Analysis (OBIA) [8,14–17], 

among others. In the latter, knowledge of reflective bands can be introduced, which has resulted 

in improved mapping accuracy;  

- Application of spectral mixed indexes to resolve benthic mixtures. This technique has been used 

in terrestrial environments where the three main fractions considered were vegetation, shadow 

and soil. In reef environments, it was applied with some success using the fractions algae, coral 

and sand [7,18,19]; 
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- Application of methods such as derivative analysis in quasi-continuous spectra allowing 

detection of diagnostic features for discriminating between bottom types [3,20,21]. 

However, in some situations, the actual bottom reflectance spectra are not required. These situations 

occur when the objective of the work is to solely produce a bottom type map of a coral reef from an 

individual image using either supervised or unsupervised classification algorithms. In these cases, 

spectra arising from each mapped class are not valid for descriptive and/or comparative purposes.  

Although remote technologies have a great potential in studies of the sea bottom, extracting the 

reflectance spectrum from the data of orbital optical sensors is complex. Several processes affect the 

satellite signals, which include four main contributions that should be properly treated. The first 

corresponds to photons that interact with the atmosphere but do not reach the water surface. This is an 

inherent problem for any type of terrestrial target studied by remote sensing. Nevertheless, in oceanic 

environments, atmospheric interference should be carefully considered because Rayleigh scattering 

caused by gas molecules that constitute the atmosphere is higher in shorter wavelengths where light 

has a deeper penetration in the water. The second contribution corresponds to photons directly or 

diffusely reflected by the air-sea interface according to Fresnel laws. The specular reflection of direct 

sunlight is commonly referred to as the sunglint effect. The amount of energy reflected by the surface 

depends on the sea state, wind speed and observation geometry (solar and view angles), and in images 

with very high spatial resolution (lower than 10 m), it causes a texture effect that introduces bottom 

confusion and distortions in reflectance spectrum [9,22–24]. The third contribution corresponds to 

photons that penetrate the ocean and interact with water molecules and other constituents of the water 

column, but do not reach the bottom. The fourth contribution corresponds to photons that have 

interacted with the bottom and contains information about its reflectance properties. Removing the 

interference of the atmosphere and surface, the first two contributions, to arrive at the signal backscattered 

by the water body and bottom requires applying specific procedures (atmospheric correction schemes) to 

the satellite imagery. 

In this study, we leave aside the problem of atmospheric correction and focus on the separation 

between the signals from the water column and seabed. Among other utilities, this type of correction 

allows a better discrimination between bottom classes and provides increased accuracy in the 

classification of digital images [25]. The presentation is organized in three main sections: (i) summary 

of the main conceptual aspects that refer to water column interferences in shallow submerged bottoms;  

(ii) compendium of the main methodologies to reduce the water column effect in coral ecosystem studies 

by remote sensing. Some of the reviewed methods use the TOA signal directly, without specific or prior 

atmospheric correction; and (iii) application of selected techniques and inter-comparison methods to 

evaluate their performance to retrieve the bottom reflectance. 

2. Some Definitions and Concepts in Ocean Color Remote Sensing 

2.1. Light Penetration in the Water Column  

A passive optical sensor in space measures the top-of-atmosphere reflectance (ρ ) (adimensional). 

Various processes affect the TOA signal, namely scattering and absorption by the atmosphere, Fresnel 

reflection, backscattering by the water body, and bottom reflection. After crossing the atmosphere to 
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the surface, two distinctions can be made between optically deep water that correspond to water that 

does not have an influence of the bottom and optically shallow water that is where the remote sensing 

signal integrates the contribution of the bottom and water column. Water reflectance of the optically 

deep water (ρ )  and the shallow water (ρ ) , and bottom reflectance (ρ )  (adimensionals) are  

defined as:  ρ = π , ρ = π , ρ = π
 (1) 

where  is the water-leaving radiance in the presence of the bottom,  is the water-leaving radiance 

for an infinitely deep ocean,  is the radiance reflected by the bottom, and  and  are the 

downwelling irradiance at the surface and bottom, respectively. In Equation (1), the bottom and the 

water body are considered as Lambertian reflectors. 

Note that to avoid considering anisotropy of the reflected light field, a commonly used quantity is 

the remote sensing reflectance (ρ ), expressed in sr−1. It is defined as:  ρ =  (2) ρ  is not stricto sensu a reflectance because it has units of sr−1. If the water body is Lambertian, then ρ  and ρ  differ by a factor of π.  

Reflectance may also be expressed in terms of irradiance. In this case, it is called irradiance 

reflectance ( ) (adimensional) and is formally defined as: =  (3) 

where  and  are upward and downward irradiances, respectively. Depending on the atmospheric 

correction model applied, results will be in terms of radiance (e.g., water-leaving radiance) or 

reflectance (e.g., water reflectance or remote sensing reflectance). 

In the path between the water surface and marine bottom, electromagnetic radiation interacts with 

Optically Active Constituents (OAC) by absorption and scattering processes. Both processes occur 

simultaneously in the water column and can be defined by the beam attenuation coefficient ( ,m ) as 

the sum of the absorption ( , ) and the scattering ( , ) coefficients. The coefficients ,  and 

 are Inherent Optical Properties (IOP) that depend on the water column characteristics and do not 

depend on the geometric structure of the light field [26]. 

Once solar irradiance penetrates the water surface, it decreases exponentially with depth ( ) 
according to the Beer-Lambert Law and is a function of wavelength (λ):  = ( )  (4) 

where  and ( ) are the downwelling irradiance at depth  and just below the water surface, 

respectively. 	(m ) is the diffuse attenuation coefficient of the downward irradiance defined in 

terms of the decrease of the ambient downwelling irradiance ( ) with depth that comprises photons 

heading in all downward directions [26]; (λ)	varies vertically with depth, but in ocean color remote 

sensing it is generally used as an average over the first attenuation depth, that is referred to in this 

work. Unlike ,  and ,  is an Apparent Optical Property (AOP) that depends on water column 

characteristics (scattering and absorption properties) and the geometric structure of light fields.  
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From in situ measurements of the vertical profile of ,  can be estimated as the slope of the 

linear regression in a plot of (ln )	 	  over the depth range of interest. Other approaches that 

more accurately obtain 	values may be found in Kirk [27]. 	can be also estimated from remote 

sensing data. For example, Lee et al. [28] provide an algorithm that performed well even in Case-2 

waters (those waters influenced not just by phytoplankton and related particles, but also by other 

substances that vary independently of phytoplankton, notably inorganic particles in suspension and 

yellow substances [29–31]. The algorithm is based on estimates of certain IOP,  and backscattering ( ) coefficients obtained from remote sensing using the Quasi-Analytical Algorithm (QAA) [32].  

Figure 1a shows the light attenuation in Case-1 waters with very low chl-a concentration (0.01 mg·m−3) 

for different wavelengths. In such waters phytoplankton (with their accompanying and covarying 

retinue of material of biological origin) are the principal agents responsible for variations in optical 

properties of the water [29–31]. Attenuation increases with λ such that light in the red region has a low 

penetration, and for this reason in submerged substrate mapping by remote sensing only the visible 

region is used.  increases as the concentration of OAC in the water column increases, making 

bottom detection more difficult. In low chl-a concentration waters (0.10 mg·m−3) 3.8% of the irradiance 

at the water surface penetrates until 100 m depths, but if chl-a concentrations rise a 10 fold, attenuation 

increases disproportionally and this light percentage occurs at only 14 m in depth (Figure 1b).  

In Case-2 waters with moderate concentration of minerals and CDOM (chl-a = 0.5 mg·m−3, (400)	= 0.3 m−1, minerals concentration = 0.5 g·m−3), light penetration decreases to less than  

10 m depth in the blue region (400 nm) (Figure 1b).  

Figure 1. Light decay modeled along water column expressed as percentage of incident 

light as function of depth (m). (a) Curves represent different wavelengths (nm) in an 

environment considered as Case-1 water, where chl-a concentration is 0.01 mg·m−3;  

(b) All curves represent light at 400nm but in different kind of environment: Case-1 waters 

(chl-a = 0.1 mg·m−3); French Polynesia Case-1 waters ( 	= 0.14 m−1); Case-2 waters in 

Abrolhos Coral Reef Bank (ACRB), Brazil ( 	 = 0.18 m−1); Case-1 waters  

(chl-a = 1 mg·m−3); Case-2 waters (chl-a=0.5 mg·m−3, (400)	= 0.3 m−1, minerals 

concentration = 0.5 g·m−3).  

 

A maximum depth exists for which a submerged bottom can be detected by optical remote sensing. 

According to Gordon and McCluney [33], in optically deep waters, the effective penetration depth of 
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imagery (commonly called ) is the layer thickness from which 90% of the total radiance originates; 

this depth is approximately: ≅ 2.3
 (5) 

Therefore, if the target of interest is located below , the water column correction would be 

severely compromised or not able to correct the water column effect. This would be caused by not 

enough photons arriving to the bottom and returning to the surface. According to  decays, the 

maximum depth at which a substrate can be detected increases. If the objective is to map a substrate, 

for example, at 10 m depth,  should be equal or lower than 0.10 m−1. To map deeper areas, the water 

should be clearer. The maximum depth at which a substrate can be detected increases as  decreases. 

These depths are further reduced in turbid waters. 

2.2. Surface and Bottom Reflectance Relation  

The reflectance (ρ ) registered at surface with ρ  may be related to the water column reflectance 

following Equation (6) [34]: ρ = ρ (1 − ) + ρ  (6) 

where ρ  refers to the water reflectance from optically deep waters i.e., not influenced by the bottom. 

This reflectance may be approximated by the reflectance of adjacent optically deep waters. Equation (6) 

indicates that the contribution or the second term to the right-hand side is larger, i.e., the detection of 

the bottom signal is easier, when  and  are smaller. Note that the coefficient 2  in Equation (6) 

assumes, for simplification, that the diffuse attenuation for downwelling irradiance is equal to the 

vertical diffuse attenuation coefficient for upward flux. 

Therefore, different substrates (e.g., coral sand, brown algae and green algae) can be easily 

distinguishable from each other by their spectral behavior when they are at the surface. If the substrates 

are placed under a clear water column of 1 m thickness, the reflectance will decrease across all spectra, 

especially at longer wavelengths. This situation would be exacerbated with increments of the  

bottom depth and, at 20 m, it will be possible to differentiate the substrate type just below 570 nm.  

If substrates are located in more turbid waters with moderate concentration of Coloured Dissolved 

Organic Matter (CDOM), their differentiation will be only possible in the green region due to high 

absorption of CDOM in the blue. Therefore, the remote sensing reflectance should be corrected for the 

water column effect to minimize the confusion between bottom types caused by differences in depth 

and OAC. 

3. Water Column Correction Algorithms 

All the water correction algorithms reviewed in the following require data that have been 

radiometrically corrected/calibrated and masked for land and clouds. Most of them also require 

previous atmospheric corrections. The algorithms consider the bottom as a Lambertian reflector and 

the terms reflectance and albedo of the bottom are used interchangeably. They also consider that the 

signal measured at the surface (being , ,  ) can be separated into two additive components: the 

water column and the bottom. 
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Algorithms differ in their ways of estimating partial contributions to the surface signal and we 

propose grouping them according to their methodological approach. Acronyms, abbreviations and 

symbols used in this text are made explicit or explained in Appendices 1 and 2. The algorithms are 

summarized in Table 1, including the approach, characteristics, input data, main equations and output. 

3.1. Band Combination Algorithms 

Algorithms in this group can be applied to multispectral data and assume that bottom radiance in 
band  ( , )  is an exponential function of depth and attenuation coefficient in this band ( , ) .  

Given that depth in a pixel is constant for all bands, these algorithms attempt to linearize the relation 

between radiance in two bands  and  and water depth [35,36]. The first algorithm was proposed by 

Lyzenga [35,36] and other derivations have been made and are presented here. Some algorithms use 

, and although the best estimations of this parameter are obtained from in situ data, different 

approaches to estimate  from satellite data have been made (Figure 2). 

Figure 2. Different strategies proposed to obtain diffuse attenuation coefficient ( ) from  

a remote sensing image. These methodologies work with samples of radiance in pixels  

where depth is known. (a) Lyzenga [35]; (b) Tassan [37]; (c) Sagawa et al. [38];  

(d) Conger et al. [39]. 
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These algorithms start with  in shallow areas and the subtraction of , , the deep water 

radiance. ,  accounts for atmospheric influence and water column scattering in deep water. 

Validity of this procedure for atmospheric correction is limited and sometimes the image to be 

corrected does not include optically deep waters. An alternative to this procedure could be performing 
an explicit atmospheric correction on  and ,  and replace − ,  by − . 

3.1.1. Lyzenga’s Algorithm 

Lyzenga’s algorithm [35,36] is currently one of the most popular approaches [5,16,17,40–47], 

among others and the use of this methodology for water column correction has resulted in increased 

mapping accuracy by digital classification processes [25,48–50]. This is a relatively simple algorithm 

in which the local depth of the entire scene is not required. The main assumptions are that:  

(i) differences in radiances between different pixels for the same substrate are due to differences in 

depth; and (ii)  is constant for each band. The first step is to select the pixels samples for the same 

bottom at different depths and plot ln , − ,∞, 	 	 ln , − ,∞, . The slope 

of the regression corresponds to a proxy of the attenuation coefficient ratio , ,⁄  that is a constant 

value for any substrate. As result, a new image composition of depth-independent composition of corrected 

radiance in bands i and j (pseudo-color band) is generated. Figure 2a, adapted from Mumby and Edwards’ 

scheme [51] and Yamano’s diagram [52], represents the method proposed by Lyzenga [25]. Because the 

efficiency of the method relies at least in part on estimating of K , K ,⁄  calculated from the scatter plot 

of corrected radiance  versus corrected radiance , chosen samples should correspond to depths for 

which the remote sensing signal still receives bottom information. This means that for estimating the 

coefficient ratio in short wavelengths bands (blue and green), bottom depth should be between >0 and 

15 m at most. If the ratio needs to be estimated at longer wavelengths (in the red region), bottom depth 

should be shallower, between >0 and 5 m, because of smaller light penetration in the red. 

This algorithm does not retrieve substrate reflectance, instead, the results are a relation between 

radiances in two spectral bands without a depth effect in ( − 1) bands. The algorithm assumes 

vertical and horizontal homogeneity in optical properties. This method is applicable only in waters 

with high transparency, and its performance depends on the wavelength. Into the entire visible region, 

this algorithm produces accurate results until 5 m depth and may be suitable until 15 m depth for bands 

in the blue and green wavelengths [36]. Lyzenga [36] applied his algorithm to airborne multispectral 

data and spaceborne Multispectral Scanner (MSS)/LANDSAT data. The validation did not include 

comparisons with measured reflectance using a radiometer but with percentage of reflectance 

estimated from color intensity, in pictures registered in 9 homogeneous areas between 3 and 5 m in 

depths. The remote sensing data corrected with the algorithm yields reflectances with a standard error 

between 0.018 and 0.036 for the airborne data and MSS/LANDSAT data, respectively. 

Mumby et al. [25] applied the Lyzenga model in CASI to Thematic Mapper (TM)/LANDSAT, 

MSS/LANDSAT and Multi-/Satellite Pour l’Observation de la Terre sensors (XS/SPOT) images and 

then classified the images with and without water column corrections. They recognized that in the 

CASI image, the water column correction improved the accuracy of the bottom map by 13% in the 

detailed habitat discrimination, but not in the coarse discrimination. For TM/LANDSAT images,  

the map accuracy was significantly increased in both, the coarse and fine discriminations.  
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For MSS/LANDSAT and XS/SPOT, the method produced only a single band index using both bands 

in the visible. The loss of one dimension could not improve the accuracy, even after correction of the 

deep water effect. In contrast, Zhang et al. [17] tested the effect of application of Lyzenga’s algorithm 

in an orbital hyperspectral image of AVIRIS sensor but no accuracy improvement was observed in the 

map of habitat types. The authors suggested that the low performance of the procedure is because their 

study area does not present the same substrate in a wide range of depth, which is necessary to obtain 
accurate values of , ,⁄ . Therefore, this technique could not be adequate to application in any kind 

of reef environment. In cases like this, where the same type of substrate only occurs in a narrow range 
of depths another possibility could be estimation of , ,⁄  using downward irradiance profiles 

recorded in situ [44]. Hamylton [53] applied Lyzenga’s algorithm to a CASI image with 15 spectral 

bands. She used 28 different band combinations, and even though the optimal combination depended 

on depth and characteristics of each area, she suggested to:  

- Maximize the distance between spectral bands used to obtain 	 ; 

- Use bands where the light penetrates in all depth range and avoid using bands after 600 nm as a 

result of the low light penetration in this region; 

- Use bands with a certain degree of attenuation in the considered depths range to obtain an 
accurate , ,⁄ . 

3.1.2. Spitzer and Dirks’ Algorithm  

Spitzer and Dirks [54] developed three algorithms analogous to the one developed by Lyzenga [36] 

specifically to MSS-TM/LANDSAT and High Resolution Visible/SPOT (HRV/SPOT) sensors.  

The bands in the visible region of these satellites were renamed as: 

(i) Band 1 (Blue region): Band 1/TM (450–520 nm); 

(ii) Band 2 (Green region): Band 4/MSS (500–600 nm), Band 2/TM (520–600 nm), and Band 

1/HRV (500–590 nm); 

(iii) Band 3 (Red region): Band 5/MSS (600–700 nm), Band 3/TM (630–690 nm), and Band 2/HRV 

(610–680 nm). 

The sensitivity of the algorithm to the water column and bottom composition and depth was tested. 

The  which relates Bands 2 and 3 was limited to shallow waters because bands in the  

green and red bands in this algorithm have lesser penetration in water. Both  (that consider 

Bands 1, 2 and 3) and  (which uses Bands 1 and 2) can be used in deeper regions because they 

consider the blue band. While both  and  can be applied in substrates composed of 

sandy mud, the  can be used in substrate composed of vegetation and sand. In the three cases, 

the main limiting factor was the water turbidity [25]. Similar to Lyzenga’s algorithm, they do not  

retrieve substrate reflectance, but the results relate the radiances in two or three spectral bands without a  

depth effect. 
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Table 1. Summary of models reviewed in this paper considering methodological approach, data spectral resolution, data required, model 

results and other observations. 

Reference Approach Spectral Resolution Required Input and Main Equations Assumptions/Applicability Algorithm Output 
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must be applied in clear water environments. 
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l ρ , , , , ,  in each pixel of the scene ρ (0 ) = ρ∞ (0 ) 1 − 	 + 1π ρ 	
 

≈ 1,03(1 + 2,4 ) , ; ≈ 1,04(1 + 5,4 ) ,  = ( ); = +  

Assumes vertical and horizontal homogeneity. 

The model uses detailed information of the 

optical properties of the water column. Semi-

analytic model. 
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For each water layer: ρ , Kd, z, bp, f, βw(90°, λ0), ψ  and ψ  ρ = ρ (0 ) − ρ (0 ) ρ (0 ) = [ ]	[ ] − 1−2 	 −2πβ (90°, λ ) λλ . cosψ + 0.8353 cos ψ
− 2 1 −(1 + − 2 cosψ)  

Can be used if the water column is vertically 

heterogeneous and composed by multiple 

layers. Within each layer, the optical properties 

are homogeneous. Analytical model. 
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Measurements of optical properties, range of depths in area and substrate reflectance occurring 

in the scene. Data of the geometric conditions of the illumination and image acquisition. Any 

software that can generate the spectra for the spectral library. 

For the first application in an area, it can take 

long time to generate the spectral library. 

Categorical map of 

bottom type, OAC 

concentration, z 
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Measurements of all bottom reflectance occurring in the scene. Any software that can generate 

the spectra for the spectral library. 

For the first application in an area, it can take 

long time to generate the spectral library. 

Categorical map of 

bottom type, OAC 

concentration, z 
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ρ , substrate reflectance of the main types occurring in the scene ρ = + +  

Long processing time to generate spectral 

library. The result is not categorical but a 

simplification of the main types of substrates 

occurring in the area. Useful for areas with low 

diversity. 

ρ , OAC concentration, z 
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ρ , substrate reflectance of main substrate types occurring in the scene 

In L99, corresponds to: ρ = , 	 + 1 − , ρ  

Modification of inversion scheme of L99 but 

consider that bottom is a linear combination of 

two types of substrates. 
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ALUT algorithm optimizes the processing time 

to subdivide the parameters space. 
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DN, images of the same sensor and area for different dates perfectly co-registered. Samples of 

low and high albedo for all dates. 
Model assumes the samples are constant in time. 

Normalized time series  

of images 
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ρ , previous geomorphologic analysis 
Useful in reefs where the substrate types and 

geomorphologic zones are strongly related. 

Categorical map of 

bottom type 
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3.1.3. Tassan’s Algorithm  

Tassan [37] modified Lyzenga’s method through numerical simulations for application in environments 

with important gradients in turbidity between shallow and deep waters. Its sequential application can 

be described according to the following steps: 

- Estimate ´ = ln , − ,∞, , for two bands ,  in pixels from two different substrates  

(e.g., sand and seagrass or high and low albedo, respectively). ,∞,  corresponds to optically 

deep TOA radiance, with low turbidity, and ,  corresponds to shallow TOA radiance, with 

high turbidity;  
- Plot ´  versus ´  for the two substrates and estimate the slope of the linear regressions. Because 

the slopes of the two lines are different, they did not express a ratio , ,⁄  (Figure 2b); 

- Perform statistical analysis ´ = ´ − , ,⁄ ( 	 ) ´  to separate the sand 

pixels in the shallow waters of seagrass and deep waters pixels; 
- Perform statistical analysis ´ = ´ − , ,⁄ (ℎ ℎ	 ) ´  to separate the 

seagrass pixels.  

The result of the algorithm is a relation between two bands; however the real reflectance spectrum 

is not retrieved. In this work, the algorithm was not applied to real data, so no quantification of its 

performance was provided. 

3.1.4. Sagawa et al.’s Algorithm  

Sagawa et al. [38] developed an index to estimate bottom reflectance based on Lyzenga’s  

method [35,36] that could be applied in environments with low water transparency. For its application, 

the depth and attenuation coefficient are required. Depth data of various pixels on a homogeneous 

substrate (sand) allowed estimation of the attenuation. The regression between the radiance and depth 

of these pixels was calculated (Figure 2c) and the slope of the linear equation corresponded to [ 	]. 
In this equation,  is a geometric factor that considers the path length in the water column and can be 

estimated from the angular geometry.  

The reliability of this algorithm depends directly on the reliability of Lyzenga’s algorithm [36] in 

which the attenuation coefficient is constant over the entire scene and independent of the substrate 

type, which may be valid only within small areas. The authors emphasize that the accuracy of the 

bathymetric map is important for obtaining reliable results. The algorithm application in Case II and III 

waters, according to Jerlov water types [61] (both correspond to waters with low transparency), 

increased the accuracy of the classification from 54%–62% to 83%–90%. However, the work of 

Sagawa et al. does not produce an estimation of algorithm efficiency for retrieving bottom reflectance. 

3.1.5. Conger et al.’s Algorithm  

Although Lyzenga’s algorithm allows for the removal of the depth effect, after its application, it is 

difficult to interpret the physics of the pseudo-color images generated by the algorithm. Conger et al. [39] 

proposed linearizing the spectral radiance with depth by application of a principal component analysis 

(PCA) to estimate the coefficient that allows the signal in each spectral band to be rotated (Figure 2d). 
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The first component explains the higher variability and in this case, represents the signal attenuation 

that results from increasing depth. The second component provides a coefficient that allows the 

logarithm of spectral band i to be rotated. This procedure generates depth independent data while 

maintaining the variability caused by small bottom differences.  

The algorithm was applied to a multispectral Quickbird image. As result, depth independent 

pseudo-color bands were obtained that can be calibrated to obtain the bottom albedo, which was 

performed by Hochberg and Atkinson [62]. Once the application was individually performed for all 

bands, there was no limitation on their number or width. However, as a result of the low penetration in 

water of the red wavelengths, this method was not effective for long visible wavelength bands.  

This algorithm assumes vertical and horizontal homogeneity in the water column optical properties and 

small albedo variability between samples of the same substrate. Only a visual inspection of the three visible 

bands of the scene before and after application of the method was performed to evaluate performance. 

3.2. Model-Based Algebraic Algorithms 

Algorithms in this group require measurements of different water body parameters (e.g., absorption 

and scattering coefficients) which determine the behavior of light within a water column. Most of  

the models were not developed to estimate bottom reflectance from surface reflectance measurements, 

and in general, no validation is provided. Nevertheless, they should be inverted if all other parameters 

were known.  

These algorithms utilize distinctive characteristics of the water column, and parameters used in each 

method are represented in Figure 3. In the model equations, the parameters are wavelength dependent; 

for brevity, argument λ was omitted. 

For the water column correction of multi-spectral satellite images, in situ hyperspectral data used  

to estimate the parameters required by any model (e.g., , , , etc.) must be first integrated over  

the spectral bands of the sensors [63]. In most cases, the bottom depth is also required. Passive  

remote sensing in visible bands can be useful when deriving a bathymetric map in shallow clear  

waters [23,64,65], among others. Also, estimations of the bathymetry using airborne LIght Detection and 

Ranging (LIDAR) in the blue-green wavelengths can provide highly resolved bathymetric surfaces and 

offer much greater depth penetration than passive technologies [66]. 

3.2.1. Gordon and Brown’s Algorithm 

Gordon and Brown [55] proposed an empirical algorithm that uses three main parameters: , that 

corresponds to photons that do not strike the bottom;  that represents the contribution of photons to 

 that strike the bottom once for ρ = 1; and , the ratio of the number of photons that strike the 

bottom twice by the number that strike once for ρ = 1 (Figure 3a). They depend on the optical depth τ = ( ) , single scattering albedo ( = ⁄ )  and scattering phase functions and were 

provided in Gordon and Brown’s work [67]. Phase functions were defined according to the photon 

path in a water body using Monte Carlo simulations. This algorithm requires some knowledge of the 

medium characteristics, such as  and , however, it was not tested to retrieve the bottom reflectance 

and its performance was no provided.  
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Figure 3. Starting from a remote sensing image above shallow waters, several algorithms 

can be applied to obtain bottom reflectance. Note that each approach uses distinct inputs. 

Different boxes represent different algorithms (a) Gordon and Brown [55]; (b) M94;  

(c) Bierwirth et al. [34]; (d) Purkis and Pasterkamp [57]; (e) L99; (f) Yang et al. [59]. 

 

3.2.2. Maritorena et al.’s Algorithm 

Maritorena et al. [56] developed a model of the water surface reflectance in shallow waters ( ) 
that can be inverted to derivate substrate albedo (ρ ) from surface measurements. Unlike Gordon and 

Brown [55], Maritorena et al.’s algorithm (hereafter referred to as M94) is a more convenient method 

based on measurable properties of the water column (Figure 3b). In their algorithm, the irradiance 

reflectance of shallow waters ( ) below the surface is equal to the deep water reflectance ( ) plus 

substrate contrast (ρ − )  after correction for the depth effect (using the term [ ] ). The 

algorithm’s ability to retrieve model  was satisfactorily validated with both Monte Carlo simulations and 

in situ measurements. Nevertheless, it was not tested in an inverse manner to obtain the ρ . 
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3.2.3. Bierwirth et al.’s Algorithm 

In contrast with other methods in this group, Bierwirth et al.’s algorithm [34] does not require  as 

input, but only needs ρ (0 ) and . The method produces results for each pixel; however, it does 

not retrieve the real bottom reflectance. Derived and real bottom reflectances (ρ  and ρ ) can be 

related by a factor ( ∆ ), where ∆  corresponds to an intrinsic methodological depth error. This error 

is different between pixels but constant between different bands of the same pixel. This means that the 

properties of the real reflectance can be staggered by the same constant for each band, which varies 

between pixels. Thus, the spectral hue for each pixel will be preserved, regardless of variations in 

depth. The authors obtained ρ  for the visible bands of a TM/LANDSAT image. For visualization, 

the ρ  values were resampled between 0 and 255. In a composition red-green-blue (RGB) system of ρ , : ρ , :	ρ , , the observed colors are depth independent. The algorithm was tested successfully and 

represents a valuable tool for management and analysis of coastal regions and submerged substrates. 

The authors note that accurate estimates of water column parameters are required and that the model 

assumes horizontal homogeneity, which may not be valid for certain regions. 
If a bathymetric map of the reef is available, this methodology offers an additional utility by 

producing a fusion to both images. The ρ , : ρ , :	ρ ,  composition can be transformed to an  

intensity-hue-saturation (IHS) color system. The intensity can be replaced by the bathymetric map, and 

the layers composition must be transformed again to the RGB system. As result, a fusion image is 

produced where the bottom reflectance color is preserved and the intensity shows the depth structure of 

the image (Figure 3c). The orbital image and bathymetric map should be of the same spatial resolution.  

3.2.4. Purkis and Pasterkamp’s Algorithm  

Unlike the other algorithms discussed here, Purkis and Pasterkamp’s algorithm [57] considers the 

refractive effect of the water surface (corrected by the multiplicative factor 1/0.54). Hence, the input 

of the algorithm is remote sensing reflectance above the surface (0 ) (Figure 3d). Validation was 

performed with the radiometric data measured above and below the water over a sand seafloor.  

The model was able to reproduce in situ data with a root mean square (RMS) equal to 0.017. The water 

column algorithm was applied to a TM/LANDSAT sensor image with different processing levels:  

(i) homogeneous depth for the entire reef assuming a flat topography; (ii) with a modeled topographic 

profile; and (iii) depths measured in field. The digital classification showed a higher accuracy for  

the third case, because of the higher quality of the depth data. Thus, the authors concluded that a 

bathymetric survey with the spatial resolution compatible with the image spatial resolution is required 

to produce a map of benthic habitats with sufficient accuracy to be used in quantitative analyses, 

management or time series studies.  

3.2.5. Lee et al.’s Algorithm 

M94 [56] parameterized attenuation in the water column using a unique parameter .  

Lee et al. [68,58] however, considered that the attenuation coefficients for the upward and downward 

direction were different and suggested a simple method of estimating them as a function of their IOPs. 

Lee et al.’s algorithm (hereafter referred to as L99), was developed for hyperspectral data, using  
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a water reflectance model based on the quasi-single scattering approximation [69]. Diffuse attenuation 

coefficients are parameterized as a function of total absorption ( )  and backscattering ( )  
(Figure 3e). The inversion scheme retrieves information about water column and bottom properties 
from spectral data, namely absorption coefficients at 440 nm of phytoplankton ( (440)),	and 

gelbstoff and detritus (400) , particle backscattering coefficient at 400 nm (400) , bottom 

reflectance at 550 nm ( ) and . However, the authors did not compare in situ bottom reflectance with 

those retrieved by the algorithm, but they only used in situ values to validate the algorithm for 
coefficients (440), (440) and . Some studies have applied the inversion scheme of L99 to 

obtain the bottom reflectance, depth and water column properties simultaneously [70–72]. In  

this scheme, the bottom reflectance ( ) is defined as ρ = ρ , where ρ  is the albedo shape 

normalized at 550 nm. Lee et al. [71] only considered the shape of the sand albedo; Lee et al. [70] also 

considered the spectral shape of seagrass; whereas Goodman et al. [72] used four types of bottom: sand, 

coral, algae and a flat spectrum. Validations of bottom reflectance included in these studies were 

limited. Lee et al. [70,71] only showed the retrieved bottom reflectances at 550 nm in the form of a 

histogram or map without comparing them with the ground truth. Goodman et al. [72] compared bottom 

reflectance retrievals with in situ reflectance only at 550 nm. They found reflectance estimates are within 

the range of in situ measurements for the majority of the 12 sand substrates used in the validation.  
Goodman and Ustin [19] used L99 in both inversion and forward models. First, they inverted the 

model to obtain the bathymetry and water constituents for all of the pixels from an AVIRIS image.  

In this step, the bottom reflectance of sand was considered. They found that results were similar 

regardless of the bottom reflectance spectrum used as input. Once the water constituents and 

bathymetry were obtained, the authors used this information in a second step as input to the L99 in the 

forward method together with the reflectance curves of the coral, sand and algae to create end members 

to apply an unmixing scheme. The unmixing model results were evaluated from depths of 0–3 m and the 

map accuracy was 80%. The bottom reflectance was also validated at 550 nm for 16 homogeneous 

sites, and the offset was +10%. 

Mishra et al. [73] applied L99 [58] to correct a multi-spectral IKONOS image. Because of the 

limited number of spectral bands of this sensor, the original algorithm was simplified. Application was 

effective and showed that the differences in radiance between shallow and deeper areas were 

minimized. The corrected image showed all areas dominated by sand with approximately the same 

albedo. Only a visual examination of the image after the water column correction was performed.  

After classification of the corrected image, the map accuracy was 81%. 

3.2.6. Mumby et al.’s Algorithm  

Mumby et al. [74] applied a simple model to correct a CASI image of the French Polynesian values. 

Their model only considered the reflectance at the surface ( ),  and depth for each point of the 
image, and bottom reflectance was obtained as ρ = . The  was obtained by the same 

approach as Lyzenga’s, by using the slope of the natural logarithm of reflectance for a uniform 
substratum (sand) against the depth from ground-truth maps. Derivative analyses were applied to ρ  

spectra, but a validation of the model performance to correct the water column was not provided. 
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3.2.7. Yang et al.’s Algorithm  

Unlike the other methods included here, Yang et al. [59] developed an algorithm in which the water 

column is considered multi-layered (Figure 3f). This algorithm can be applied to hyperspectral data 

and considers water column attenuation and scattering components, both water molecules and other 

OACs (e.g., phytoplankton and CDOM). The authors applied the algorithm to radiometric data 

collected in situ. For application to orbital or airborne images, a bathymetric map is required. 

Retrieved values by this algorithm were consistent with in situ measured data (fit between retrieved 

and measured data of R2 = 0.94). Thus, the algorithm proved to be a robust tool applicable for natural 

heterogeneous environments that can properly remove the water column influence. However,  

its application is not simple because thorough knowledge of the environment under study is required to 

determine the attenuation and scattering coefficients of the OACs and volume scattering functions in 

each layer of the water column. In addition, the method can be computationally expensive depending 

on the number of layers. This methodology is suggested for application in environments with strong 

water column stratification.  

3.3. Optimization/Matching Algorithms 

Hyperspectral data provides information almost continuous in the visible region that can be able to 

differentiate between submerged substrates. However, when any of the previous procedures to  

correct water column effect is applied to images with high spectral resolution, the results are 

computationally heavy. Another approach that can be used involves simulating the spectra for different 

water column characteristics and mapping the spectra similarities with the simulated spectral library. 

The result is a substrate map independent of the water column effect (Figure 4). In other words, the 

water column effect is “added” to the substrate’s underwater spectra and is used for different 

environmental conditions. Further, classification is performed by assigning to each pixel a substrate  

type that corresponds to the spectrum in the library that best fits with those in the image. Depending on 

the proposed algorithm, OAC concentrations and bathymetric map are simultaneously derived. 

Generation the spectral library requires actual bottom reflectance measured in situ. For this reason,  

all types of substrate reflectances in all possible combinations occurring in the scene must be  

accurately represented. 

Other approach applicable only to hyperspectral data is the inversion scheme in which, using 

successive runs, measured and simulated reflectance spectra are minimized. Environmental conditions 

(in this case absorption and backscattering coefficients, depth, bottom reflectance) for which the errors 

are minimal are considered as the real ones.  

For either LUT or inversion methods, the simultaneous retrieval of all the properties (bottom 

reflectance, depth and water constituents) does mean that the accuracy of each estimated property is 

highly dependent on the retrieval results for the other properties [75]. The relative effect of each of 

them depends on the water depth and clarity.  
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Figure 4. Graphic representation of the approach using Look Up Table matching to 

generate bottom type map without effect of water column. 

 

3.3.1. Louchard et al.’s Approach  

Louchard et al. [6] created the spectral library simulated in Hydrolight software using the reflectance 

of the main bottom types present in the study area, estimations of IOP, in situ measurements of upward 

radiance ( ) and downward irradiance ( ), geometric data of the conditions of illumination, image 

acquisition and range of depth found in the area. The authors also considered Raman scattering.  

They then applied a minimum distance method to relate the simulated spectra with the spectra of a 

PHILLS image. This classification methodology generated a thematic map of the substrate without the 

effects caused by the water column. The authors noted that a good correspondence was found between 

the classification result and ground truth map, but they did not provide an objective quantification of the 

accuracy of the substrate type map. The method failed to differentiate dense seagrass from the pavement 

communities (gorgonians, sponges, hydrocorals, brown and green algae) in areas deeper than 8 m. 

3.3.2. Comprehensive Reflectance Inversion based on Spectrum Matching and Table Lookup (CRISTAL) 

In contrast to Louchard et al.’s approach, Mobley et al.’s approach [76] does not require field data 

and a priori assumptions regarding the water depth, IOPs, or bottom reflectance do not have to be 

made, rather, they are simultaneously extracted from the hyperspectral image. In this approach,  

pre-computed look-up tables (LUT) are used that include simulated spectral databases generated in 

HydroLight software for different pure substrates and several combinations of them, in varying depths, 

OACs in the water column, IOPs, sky conditions and geometry of data acquisition. A total of  

41,590 spectra were simulated. The authors only evaluated the method performance by visual 

interpretation and found that it was successfully applied to a PHILLS image because all variables 

extracted from the LUT application were consistent with the ground truth. This methodology assumes 

that the ρ  spectrum is accurately calibrated and the spectral library represents all of the 

environmental variability found in the image. Unlike most of the methodologies, the simulated spectra 

include inelastic scattering (Raman). If this is not the case, retrieval errors may be large. 
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3.3.3. Bottom Reflectance Un-Mixing Computation of the Environment Model (BRUCE)  

Klonowski et al. [77] proposed an adaptation of L99 inversion method [58] to simultaneously 

retrieve the substrate type and depth from the reflectance collected by the airborne HyMap imaging 

system (126 bands and 3.5 m of spatial resolution), on the Australian West Coast. In their work, they 
expressed ρ  as a linear combination of sediments ( ), seagrass ( ) and brown algae reflectances ( ). Spectral curves of 10 substrate types were used as the input to the model: the six pure substrates 

of the most frequents in the area (two types of sediments, two types of seagrass and two types of 

brown algae) and four combinations of them. 
For each pixel, the seven unknown parameters (440),	 (440), (440), , ,  and 

 are varied to minimize the residual between simulated and measured spectra. As result, three 
substrate weighting coefficients ( , , ) are obtained. These coefficients are reflectance scaling 

factors that represent, after normalization, the proportional coverage by an individual substrate class [78]. 
They were used to assign the color composition:	  to channel red,  to channel green and  to 

channel blue. The performance validation was performed visually by comparing the mapped substrate 

with the video records for 25 points of the image, and the authors found a high level of consistency. 

Although 10 bottom reflectance spectra originating in pure and mixed substrates were considered, in 

the validation, only 5 classes were considered according to color in the composed image, so different 

resultant colors might yield the same combination of bottom types and vice versa.  

Fearns et al. [78] applied the BRUCE method in an image collected by the airborne hyperspectral 

HyMap sensor in the same shallow area. They retrieved proportions of the three classes in each pixel: 

sand, seagrass and macrophyte species. Map validation was performed to one section of one of the 

flight lines, and levels of classification success varied according to type of coverage: sand = 52%, 

seagrass = 48% and brown algae = 88%. The authors suggested that the presence of seagrass at low to 

medium densities in sand areas could swamp the sand signal and be responsible for low accuracy of 

the sand class. Higher success to classify brown algae could be related to lower depths where algal 

habitats were located.  

3.3.4. Semi-Analytical Model for Bathymetry, Un-Mixing and Concentration Assessment (SAMBUCA) 

Brando et al. [79] modified the inversion scheme proposed by L99 [58] to retrieve the bathymetry 

together with the OAC concentrations (chl-a, CDOM and suspended particles) and bottom type. 

Unlike L99, SAMBUCA accounts for a linear combination of two substrate types. When solving for 

more than two cover types, SAMBUCA cycles through a given spectral library, retaining those two 

substrata and the estimated fractional cover which achieve the best spectral fit. The authors were 

interested in retrieving bathymetric information, and some parameters of the water column were fixed 

in advance using information collected in field. Based on the types of bottom present in the study area, 
they only considered brown mud and bright sand. Thus, ,  is the proportion of the bottom 

covers. The authors used either least squares minimum (LQM), spectral shape matching function or a 

hybrid formulation of them to estimate the optimization residuum. Their paper proposed a novel 

method to improve the bathymetry retrieval by combining the optimization residuum with a substratum 
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detectability index (SDI). Therefore, their focus was to retrieve depths, and they did not provide 

measurements of performance in retrieving substrate composition. 

3.3.5. Adaptive Look-Up Trees (ALUT) 

Hedley et al. [80] proposed an algorithm that optimizes both the inversion scheme and matching 

between the simulated and measured spectra to reduce the time required for its application.  

The Adaptive Look-Up Trees (ALUT) algorithm proposed a more efficient subdivision of the 

parameter space (any parameter of interest) once the real range of variability is known. Consider 

changes in the reflectance as a function of depth. It can be observed that in the first depths small 

changes can lead to greater diminution in measured reflectance. However, at greater depths, small 

changes lead to lesser impacts in the measured reflectance. Therefore, the ALUT algorithm proposes a 

more detailed subdivision of the depth in shallow areas than in deeper ones. Additionally, Hedley et al. 

used the matching algorithm Binary Space Partitioning (BSP) tree, which is more efficient than an 

exhaustive search algorithm.  

They used the ALUT approach with the inversion method L99 [58] considering that bottom 

reflectance spectrum could be one of 78 different curves resulting from the linear mixture of 13 most 

common substrate types (sand, live and dead coral, algae and seagrass). The method appears to be a 

promising alternative for rapidly running the water column correction. They obtained high accuracy 

when retrieving depths from satellite images. However, Hedley et al. only compared depths retrieved 

by the model with depths measured by sonar, and they did not provide an estimation of the efficiency 

of retrieving bottom reflectance or substrate type compositions. They indicated that their method could 

have a high level of error when many parameters are derived together.  

3.4. Water Column Correction to be Used Only for Multi-Temporal Studies 

To detect changes in images from the same sensor in different periods, an inter-calibration between 

the images is useful. As in all of the temporal studies, co-registration between images must be rigorous 

because the spatial misregistration can introduce false indications of change. According to Equation (1), 

if the reflectance of the same invariant target shows differences between two dates, these differences 

might be caused by the acquisition geometry of a scene, water column and/or atmospheric effects. 

However, prior atmospheric corrections are not required. One option is the application of a  

“pseudo-invariant feature” (PIF) technique [10,81] wherein bright and dark pixels (e.g., white beach 

sand and seagrass substrate, respectively) called PIF pixels, are extracted from all images. Any image 

can be selected as the reference (Image a) and the other images (Image b) are normalized to be 

compatible radiometrically with Image a. For this conversion, the digital number (DN) of PIF pixels of 

Image b are plotted versus those of Image a (Figure 5a) in each band. Fitting a linear equation to this 

plot defines a gain and offset to normalize Image b. This method works under the assumption that PIF 

pixels are constant over space and time. This type of methods has the advantage of being inexpensive, 

requiring a small amount of processing time and depending little on data availability 

A similar normalization was used by Michalek et al. [82] where the image used as the reference 

(Image a) showed the highest and widest data range in its histogram. Image b was modified to be 
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compatible radiometrically with Image a (Figure 5b). The authors examined pixel samples that 

appeared similar in natural color in both images, such as bare soil, mangrove forest and deep water.  

Figure 5. (a) Diagram to obtain of gain and offset values to normalized image as function 

of a previous one, according to Elvidge et al. [10] approach; (b) Diagram to obtain of gain 

and offset values to normalize an image as function of a previous one, according to 

Michalek et al. [82] approach.  

 

3.5. Bertels et al.’s Approach 

After unsuccessful application of L99, Bertels et al. [60] selected another approach to minimize the 

class confusion caused by the depth effect in CASI images of a coral reef area. They classified an 

image previously divided by the five geomorphologic zones found in the scene. For the 

geomorphologic zone mapping, they applied a minimum noise fraction (MNF) analysis to remove 

redundant spectral information and used the first five bands. Then, independent classifications 

according to its geomorphology were applied under the assumption that each geomorphologic zone has 

different depth and associated benthic communities. A post-processing was finally performed to merge 

the classes between the different zones. The method was only validated their method in the fore reef 

and obtained an accuracy of 73%. No bottom reflectance spectrum is retrieved by this method, which 

can only be used in reefs with a determined configuration where the substrate types and geomorphologic 

zones are strongly related. 

4. Inter-Comparison of Methods 

Bejarano et al. [83] applied two methods to minimize the water column effect. They selected 

Lyzenga’s and Mumby’s algorithms for the blue and green bands of an IKONOS image to correct the 

water column effect. After applying the algorithms, they created a habitat map through an 

unsupervised classification. The overall accuracy obtained from Lyzenga’s method was 56%, whereas 

the Tau coefficient (which characterizes the agreement obtained after removal of the random 

agreement expected by chance) was 0.43. However, using the individual bands corrected by the 

Mumby’s algorithm, the overall accuracy was 70% and the Tau coefficient was 0.62. 
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Dekker et al. [75] provided the first exhaustive study to compare optimization/matching algorithms 

to retrieve the bottom reflectance simultaneously with bathymetry and water constituents with high 

spectral and spatial resolution of airborne images. Their study was conducted at the Rainbow Channel, 

Moreton Bay (MB) (Brisbane, Australia) using images obtained from the airborne hyperspectral CASI 

sensor, and at Lee Stocking Island (LSI), (Bahamas) using a PHILLS image. LSI has very clear water 

conditions, whereas the water column at MB is characterized by spatial heterogeneities. The methods 

tested were SAMBUCA (using a combination of two substrates), BRUCE (using a combination of 

three of the most common substrates: sediment, vegetation and coral), CRISTAL (using different 

substrate combinations, with 39 bottom spectral curves for LSI and 71 for MB) and ALUT (using all 

possible combinations of the same substrates from SAMBUCA). Validations were performed 

exclusively between 0 and 3 m in depth. Two approaches were used to evaluate the models’ 

performance in retrieving the bottom type. The first approach compared the in situ spectrophotometric 

measures of ρ  for the most common bottom types with some points in the images that contained these 

substrates. The second approach, applied only to the MB area, used reflectances retrieved for each 

method to produce 2 maps: (i) four classes of seagrass percent cover and (ii) benthic cover and 

substrate types. Both types of maps were compared with field data. For the first type of validation, 

only a qualitative adjustment was performed. At LSI, all of the methods retrieved the shape and 

magnitude of the seagrass spectra, but only ALUT fit the coral shape, and all methods underestimated 

the sand reflectance. At MB, the results were slightly worse for each substrate type. For both study 

areas, no method except ALUT reproduced the reflectance peaks and depressions associated with the 

seagrass spectra. For the second type of validation, the overall accuracies of the seagrass coverage 

maps were the reference map at 89%, ALUT at 79%, BRUCE at 84%, CRISTAL at 83% and 

SAMBUCA at 59%. The overall accuracies of the benthic substrate maps were the reference map at 

89%, ALUT at 78%, BRUCE at 79%, CRISTAL at 65% and SAMBUCA at 52%. Broadly speaking, 

the best results were obtained for the most complex and locally parameterized methods, such that there 

was a more accurate retrieval of reflectance spectra shape and higher map accuracy. ALUT, CRISTAL 

and BRUCE allowed more detailed retrievals, whereas SAMBUCA was limited to only 3 possible 

components. The authors noted that effective atmospheric and air-water interface corrections are 

required to retrieve reliable ρ . In terms of practicality, ALUT and BRUCE were the fastest methods 

considering both the preprocessing and processing times, followed by CRISTAL and the SAMBUCA.  

In this section of the article, we present results of a limited inter-comparative analysis of three 

methods, M94 [56], L99 [58] and CRISTAL [76], with the two first belonging to the second group and 

the last one to the third group. We did not test any method included in the first group because they 

produce an index that involves two spectral bands instead of reflectance, i.e., they are not directly 

comparable in terms of performance with the methods of other groups. Methods proposed by M94 and 

L99 are similar, yet they differ in that M94 uses an AOP ( ) to characterize the water column while 

L99 uses two IOPs (  and ). These two methods were created to simulate (0 ) or (0 ) in 

shallow waters. They were not tested previously to obtain  from (0 ) or (0 ). The last method 

(CRISTAL) is a new approach that has the potential to correct the water column. We chose this 

method as a representative of the third group, and previous studies have already compared different 

methods of this group [75]. The inter-comparison was accomplished using simulated spectra and 

multispectral data obtained from the WorldView-2 (WV02) sensor.  
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4.1. Application and Comparison of Selected Methods: Simulated Spectra 

Simulations were performed using the WASI v.4 software [84]. Three types of bottoms were  

used in the simulations: coral sand, brown algae and green algae [56]. Four depths were considered:  

3, 5, 10 and 15 m. Four types of water were defined as representative of the variation of conditions in 

the water column in coral reefs (Table 2). To define the water constituents, the literature was reviewed 

to determine the range of variation of chl-a, CDOM absorption ( ) and sediments concentration 

in coral reefs environments. These parameters vary between chl-a: 0.01–9.21 mg·m−3; ay(440):  

0.0017–0.24 m−1; and sediments: 0.8–2.2 mg·L−1. The viewing angle was set to nadir (0°). The solar 

zenith angle was set to nadir, but the code does not use a relative azimuth angle. In total, 48 situations 

were considered from the combination of 3 bottoms, 4 depths and 4 waters (3 ∙ 4 ∙ 4). In WASI,  

we simulated the (0 ), (0 ), , ρ (0 ), ρ (0 ) and  coefficients. The selected algorithms 

were applied to the 48 simulation spectra of (0 ). 
Table 2. Water characteristics of the four different types of water used to simulate surface 

reflectance in shallow waters. 

Water 
Type 

chl-a  
(µg·L−1) 

aCDOM (440) 
(m−1) 

Suspended Particles Type I 
(mg·L−1) 

Suspended Particles Type II 
(mg·L−1) 

ad (440) 
(m−1) 

n 

Water-a 0.01 0.0017 0.01 0 0 −1 

Water-b 1 0.0316 1 0.8 0 −1 

Water-c 3 0.15 3.5 2.2 0.2 0 

Water-d 9 0.3 10 1 0.5 0 

M94 was applied to the 48 simulated spectra of (0 ) using Equation (7). We excluded in the 

analysis the cases where ρ  contribute to (0 )  with less than 0.5% (Equation (8)) or when ρ 	  behaved exponentially. In all cases, a bottom contribution to the (0 ) modeled signal 

could be found even when the bottom was deeper than :  

	 = (0 ) − (0 ) + (0 ) (7) 

%	 	 	 = ( − (0 )) 	(0 ) ∙ 100 (8) 

Uncertainties in retrieving the bottom reflectance for each wavelength were estimated as: = − ∙ 100 (9) 

L99 was applied using Equation (10). ρ (0 ) , ρ (0 )  and a coefficients spectra were used. ρ (0 ) and ρ (0 ) were converted to below water using Equation (11). 

ρ 	 = π ρ (0 ) − ρ∞ (0 ) 1 −
 (10) 

ρ (0 ) = ρ (0 )0.5 + 1.5 ρ (0 ) (11) 
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The backscattering coefficient is not an output of WASI software. Hence, the  coefficients were 

obtained according to Gege [76]: 

= 0.00144	m−1	 500 −4.32 + hl_ (0.0006m2g−1 ∙ hl_ −0.37) + 0.0042m2g−1 500  (12) 

where  is the concentration of suspended particles of Type II and  is the exponent of 
backscattering by small particles. We also excluded values of ρ  for which bottom 

contributions were lesser than 0.5% (Equation (13)) or where the results of the model showed an 

exponential behavior: %	 	 	 = π ρ ∙ ( ) 	ρ ∙ 100 (13) 

Uncertainties in retrieving the bottom reflectance for each wavelength were estimated using 

Equation (9).  

Because estimating the parameters used as input in any model involve errors, there are other output 

uncertainties related to this source. A sensitivity analysis can measure the impact of uncertainties for a 

parameter on a model result. This type of analysis shows the parameters for which more attention 

should be paid, because errors in their estimation can cause a significant and non-proportional response 

in the results. In the analysis, ρ 	   estimated using M94 and L99 from (0 ) or ρ (0 ) 
modeled in WASI constituted the baseline retrieval. Each parameter ( , ,	 , ρ∞ (0 ),  and ) 

was then varied between −95% and 100% to evaluate the impact on the ρ 	 . Sensitivity was 

expressed as follows:  (%) = |ρ − ρ |ρ 100 (14) 

where ρ  corresponds to the value obtained from the baseline retrieval, and ρ  to the corresponding 

value after modifying the parameters. This analysis was performed for some extreme cases: Water-a 

and water-d; sand and brown algae; 3 and 10 m depth. Results were evaluated at 450, 550 and 650 nm.  

The CRISTAL method was applied to noisy reflectance spectra. 5% of uncorrelated noise was 

added to the 48 ρ (0 ) spectra. Other ρ (0 ) spectra were also used, and they correspond to various 

combinations of the three bottoms (coral sand, green algae and brown algae) at 16 depths  

(1–16 m) and water column constituents (chl-a: 0.01, 0.02, 0.1, 0.2, 0.3, 0.9, 1, 1.1, 2.5, 2.8, 3, 3.1, 3.2, 

8, 8.5, and 9 µg·L−1; aCDOM(440): 0.0017, 0.00269, 0.0074, 0.1, 0.15, 0.2, and 0.25 m−1; concentration 

of suspended particles Type II: 0, 0.5, 0.8, 1, 2, 2.2, and 2.5 mg·L−1). In total, 26,352 spectra were 

generated and included in the spectral library. The classification technique Spectral Angle Mapper 

(SAM) [85] based on the geometric proximity of two spectra was applied. 

For the baseline retrievals using M94 and L99, a gradual loss in bottom contribution was observed 

for increases in the OAC concentrations and depth. This occurred because when the depth increased, 

the optical path was augmented, and there were more chances for a photon reflected by the bottom to 

be absorbed before arriving to the surface. All types of water showed bottom contribution when they 

were located at 3 m depth. When the bottoms were located at 5 m in water-d, they only had a small 

contribution to surface reflectance (up to 2% depending on the type of substrate) after 470–500 nm.  

In contrast, the bottom at 10 m only had contributions from the clearer waters (types a and b) and, in 
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water-c, they were lower than 1% in certain portions of the spectrum. At 15 m, the bottom signal 

arrived to the surface in the entire visible spectrum only in waters-a and -b up to 600 nm. Additionally, 

the bottom contribution depended on the physicochemical and biologic characteristics of the substrate. 

If the bottom is more reflective, it is expected that more photons will come from the bottom and an 

additional quantity of them will have a chance of crossing the water column and arriving to the 

surface. For example, for a twice as reflective bottom, its contribution to the surface signal will be 

higher than for a less reflective bottom, although it will not be proportional.  

At some depths, retrievals using M94 displayed anomalously high values when the term  

tended to zero (e.g., high ). Therefore, in waters-a to -c an exponential behavior was observed only 

in the red region. However, for water-d, this situation was observed also in the blue in response to 

increasing  by CDOM absorption. Retrievals using the L99 also exhibited an exponential behavior 

in some cases. Generally, this behavior was found when the term  was lower than 0.0002.  
Note that in the baseline retrievals, , , , , ρ∞ (0 ), ρ  and (0 ) are known and fixed in 

advance. Therefore, if the M94 and L99 were used instead of the WASI software to generate (0 ) or ρ (0 ) , ρ 	  would have been exactly the same as ρ  in the shallow and clearer waters. 

Differences between the real and retrieved bottom reflectance by both models are essentially due to 

differences between the model used by WASI and the tested models. In many cases, M94 could 

retrieve the shape of the ρ  spectra from the surface spectra simulated with WASI software (Figure 6). 

As expected, the algorithm had a better performance in shallower depths and clearer waters. For 

example, at 5 m depth, the model produced good results up to 700 nm with average of uncertainties  

of 7% (results are a bit degraded above 600 nm) but performance became degraded above 600 nm 

when the depth was 10 m (average of uncertainties 44%). The performance was further degraded in 

water-c and -d, being possible to retrieve ρ  only in some section of the spectrum depending on the 

depth, with mean uncertainty of 35%. However, L99 showed a slightly lower performance than M94 

(mean uncertainty at 10% for water-a, 5 m; 28% for water-a, 10 m, between 600 and 699 nm) and 

tended to underestimate the bottom reflectance, especially after 600 nm (Figure 6). This algorithm was 

able to retrieve the shape of the algae spectra in most cases between 400 and 600 nm in water-a and -b at 

5 m and below 600 nm in water-c at 10 m. If (0 ) was used as the starting point for both models and 

if (0 ) was divided by π to obtain ρ (0 ) according to L99 [58], closer values were obtained 

between the results of both models. 
Reflectances, absorption and backscattering coefficients simulated by WASI software were slightly 

noisy. In cases where the water reflectance was lowest (red and blue regions in the most turbid waters) 

this noise was magnified and explains some noisy behavior in the retrievals for certain waters and 

regions of the spectrum (Figure 6). 
The M94 [56] yields errors up to 66% in the clearest waters (water-a) in the range 400–499 nm, 62% in 

the range 500–599 nm, and 91% in the range 600–700 nm, depending on the bottom depth. The figures 

become 66%, 21%, and 36%, respectively, when using the L99 [58], which indicates reduced 

uncertainties as a result of differences in radiative transfer modeling. When waters are more turbid 

(water-b, -c and -d), the errors generally increase. In the most extreme case (water-d), the errors could 

be as high as 300% for both models, depending on the portion of the spectrum and bottom depth.  

In general, there was no pattern associated with uncertainties because they were simultaneously related 

to the optical path length (2K ∙ z) and bottom reflectance in a non-linear way.  
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Figure 6. Bottom reflectance below water versus wavelength (nm) retrieved using L99  

(in blue) and M94 (in red), compared with real bottom reflectance. In lines, there are 

results for the same type of substrate and depth. In columns, there are results for the same 

kind of water.  

 

For M94, however, uncertainties at the shallowest depth appeared to be more sensitive to the 

variability of the optical path length for the three types of bottoms. For optical path length increases, 

uncertainties were more related to the reflectance at the water surface. Using L99, uncertainties were 
not sensitive to a unique input, optical path length, ρ , ρ (0 ) or ρ∞ (0 ), which made it more 

difficult to predict the model performance in a particular environment. The pattern of uncertainties was 

also dependent on the bottom reflectance. For example, for the brown algae bottom, uncertainties were 

not related to a sole factor. In contrast, uncertainties were explained mainly by the optical path length 

when the bottom was sand.  
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Both algorithms showed similar sensitivity to variation in individual parameters (Figures 7 and 8). 

L99 exhibited a similar response pattern to  coefficient than M94 to the  because  was so low 

than its contribution to water attenuation was negligible in comparison with . At 450 and 550 nm, 

models sensitivity showed a linear response in all of the parameters in the clearest water and 

shallowest situations.  

Figure 7. Sensitivity analyses for parameters of M94: ∞,  and . Values correspond to 

sensitivity (in %) defined in Equation (14). Results are arranged by parameter and 

wavelength (450, 550 and 650 nm).  

 

This response was symmetric at 450 nm considering either underestimation or overestimation in the 

parameters, and as length path increased, the algorithms exhibited increased sensitivity. In situations 

where substrates were located below a smaller path length in water (small  or , and ) models 

seemed insensitive to  or ρ . In contrast to deep water reflectance, attenuation and depth, e.g., the 

parameters acting in the exponential term, had an asymmetrical response according to underestimation 

or overestimation for long path length (high attenuation and/or ). This occurred because an increase 

on ,  or  reduces exponentially the denominator in Equations (7) and (10). Considering variations 

in either of the parameters, the algorithms showed an exponential behavior in their sensitivity to 

overestimations in the most turbid water (water-d). For example, overestimations lower than 50% 

impacts the retrievals by more than 300%. At 650 nm, not one situation showed a linear behavior in 

sensitivity to  and . The response patterns were similar than at 550 nm; however at  

650 nm sensitivity was higher. Both algorithms were insensitive to  or ρ  variations at 650 nm in 
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the clear and shallowest water, while model sensitivity increased non linearly in deeper and more 

turbid waters.  

Figure 8. Sensitivity analyses for parameters of L99: ρ∞, ,  and . Values correspond 

to sensitivity (in %) defined in Equation (14). Results are arranged by parameter and 

wavelength (450, 550 and 650 nm).  

 

Comparing the most reflective bottom (sand) with a lesser reflective bottom (brown algae), 

algorithms was less sensitive for sand. In the clearest and shallowest situation (water-a, 3 m), both 

methods seemed to be robust. However, sensitivity was higher when water path length increased.  

As the bottom contribution becomes larger, the effect of water column is less important reducing 

sensitivity. Analogously, according OAC concentration or depth increase, contribution of bottom to surface 

reflectance decreases while water column contribution increases. It means that small errors in estimating all 

parameters (attenuation, depth and deep water reflectance) can translate into large ρ  errors.  

Although errors in the modeling could be a large factor for accurate retrievals, some conclusions 

can be drawn from the analysis. In general uncertainties are higher when optical path length is higher 

and sensitivity associated with both algorithms is also higher in this case. Depending on depth and , 
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it is not always possible to retrieve a bottom signal or the retrieved signal might be subject to a great 

degree of uncertainty. This means that it is essential to know the environment under study to evaluate 

if the algorithm is properly recovering the bottom reflectance or if it is creating an artifact. Validation 

of the water column correction is desirable when using in situ bottom reflectance; however, it can be 

difficult to measure in the field. In addition, measurements of the bottom reflectance used to be 

performed very close to the target to minimize water interference, and the resulted IFOV is very small. 

Considering that the substrate in coral reefs can be highly heterogeneous, punctual measurements are 

not representative of larger areas (1–900 m2 depending on the configuration of the remote sensor); 

therefore, an understanding of light behavior in water as well as of the study area, such as the water 

column characteristics and real bottom reflectance at some locations, are required to be able to 

interpret such measurements properly.  

Using the CRISTAL method, each of the 48 ρ (0 ) spectra was associated with the others in the 

spectral library whose SAM value was the minimum, and both spectra as considered as corresponding 

to the same bottom. Therefore, the result of this method was a categorical classification. The accuracy 

obtained was: 81%, for brown algae, 88% for green algae and 94% for sand. There was some 

confusion between the three classes (Table 3) that occurred in water-c and -d, which were optical 

complex Case-2 waters. This technique showed a satisfactory result, and therefore has the potential to 

be used to correct images. Nonetheless, several considerations are important. First, when the  and 

depth increase, the same spectra should be obtained at the surface for different bottoms. As example, in 

Figure 9 two ρ (0 ) spectra were modeled in water-d at 5 m depth, for a sand bottom and the other for 

brown algae, with 5% uncorrelated noise for the latter. If the noisy pattern of the brown algae spectrum is 

neglected, both curves showed the same shape. Second, the technique requires measurements of the 

bottom reflectance of all of the bottoms present in the area and in all combinations in which they might 

occur. If these inputs do not represent all of the variety present in the field, the technique will not 

retrieve the real type of bottom in a pixel. In this work, we used the exact same pure substrates that we 

wanted to retrieve, which means that we used the most favorable conditions in constructing our 

spectral library. The confusion could be higher if different combinations of substrates are used.  

Table 3. Confusion matrix obtained for CRISTAL method using the SAM classification algorithm. 

Assigned Class 

Sand Green Algae Brown Algae 

Real Substrate 

Sand 15 0 1 16 
Green Algae 1 14 1 16 
Brown Algae 1 2 13 16 

17 16 15 48 

While the three methods tested here can be used to correct the water column effect, it is not simple 

to compare the performance of M94 and L99 with CRISTAL model because the output is different. 

While the first two retrieve a numerical value of the bottom reflectance without the effect of the water 

column, the CRISTAL method produces a categorical result. When applied to an image, the M94 and 

L99 methods will result in a matrix with continuous values in each spectral band, whereas the 

CRISTAL method will produce a map with classes of bottoms. The choice of the method depends on 
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different factors, such as the objective of the work, available input data, type of data (multi or 

hyperspectral), time of processing, etc. Whatever the chosen method, it must have some in situ data to 

perform the water column correction.  

Figure 9. Simulated remote sensing reflectance (sr−1) above water as a function of 

wavelength (nm) in shallow waters (5 m depth) with chl-a = 9 µg·L−1, aCDOM(440) = 0.3, 

suspended particles Type I = 10 mg·L−1, suspended particles Type II = 1 mg·L−1 and 

ad(440) = 0.5. The blue curve corresponds to brown algae substrate, while the red one 

represents coral sand substrate including 5% of uncorrelated noise.  

 

4.2. Application and Comparison of Selected Methods: Remote Sensing Data 

In this section, we intend to correct some spectra extracted from a WV02 scene using M94 and L99. 

The CRISTAL method was not used because we did not have actual bottom reflectances, which are 

required to simulate the spectral library. The WV02 image was captured on 14 February 2012 between 

coordinates 17°54'9.38''–18°3'22.71''S/38°35'43.25''–38°45'38.17''W and corresponds to a portion of 

the Abrolhos Coral Reef Bank, Brazil (Figure 10). In this area depths vary between 2 and approximately 

25 m and some reef structures show a typical mushroom shape whose tops have a diameter between  

20 and 300 m [86]. 

The WV02 sensor collects radiance in 8 spectral bands centered at 427, 478, 546, 608, 659, 724, 

831, 908 nm and its nominal spatial resolution is 2 m. The image was atmospherically corrected using 

the package ATCOR2 available in PCI Geomatica v.10.3.2, and visibility was set at 43 km. The scene 

was also corrected for sunglint effects [22]. We obtained bathymetric information for 117 points inside 

the scene, provided by the Brazilian Navy. These points were homogeneously distributed in the scene 

and depths were corrected to a tidal height at the time of the imagery. Spectral curves of the surface 

reflectance (adimensional) (ρ (0 )) were extracted in the same pixels where we had depth data. 

Several samples in deep areas were carefully selected, and mean values were calculated for each band. 

These values were used as input to both algorithms to represent the deep water reflectances.  
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We collected hyperspectral profiles from 349.6 to 802.6 nm of ,  and scattering in 700 nm 

quasi-concomitant with the imagery (between 27 February 2012 and 29 February 2012). Profiles were 

registered between the surface and bottom in the deepest areas of the scene (20–25 m) at different 

times of the day and for 2–3 replicates of the profile.  (µW·cm−2·nm−1) and  (µW·cm−2·nm−1·sr−1) 

measurements were obtained using HyperOCR sensors connected to a Satlantic Profiler II.  

Figure 10. Quasi-true color composition (R: 659 nm; G: 546 nm; B: 478 nm) of a portion 

of the Abrolhos Coral Reef Bank, Brazil, around the archipelago, captured by WV02 

sensor in 14 February 2012. Pink dots show distribution of depth points in the area (Right);  
Red square in image Landsat TM-5 (R: 660 nm; G: 560 nm; B: 458 nm) captured in  

29 May 2006 shows location of study area respect to coast (Lower left); Location of study 

area in South America (Upper left).  

 

The Satlantic Profiler II also has an ECO BB3 sensor that measured the backscattering coefficient 

in the water column. All data collected with the Satlantic Profiler II were processed using Prosoft 
7.7.16 software to obtain:  profiles; ρ 	at 440 and 555 nm; and  at 700 nm. The hyperspectral 

 along the water column was averaged for each profile excluding measurements in the 5 first meters 

because the  showed a noisy pattern, mainly caused by waves and bubbles. Then, a mean (λ) 
value between all profiles was obtained. Additionally, water samples were collected in field  

between 13 February 2012and 3 March 2012 and filtered following NASA protocol [87] to obtain the 
chl-a concentration and absorption coefficients of the detritus ( ) and phytoplankton ( ). We 

used WASI software in the inverse manner to retrieve . In this sense, the  spectrum was used 

as an input and chl-a concentration was fixed at 0.48 mg·m−3 according to our estimates in the field. At  
last,  was obtained as the sum of , ,  and  [88].  was derived through the QAA  

method [31] using the ρ  at 440 and 550 nm registered with the Satlantic Profiler II. It was validated 
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using  at 700 nm measured in situ.  was estimated as the sum of  and  [89]. The 

hyperspectral data of ,  and  were integrated over the spectral bands of WV02 up to 700 nm. 

We corrected 117 spectra from the WV02 image for which we had depth information. M94 and L99 

were applied using Equations (7) and (10) respectively. The inputs for M94 were , , (0 ) and ρ (0 ). The above surface reflectances were converted to below water reflectances using Equation (11). 
The inputs for L99 were , , , ρ (0 ) and ρ∞ (0 ). The above-water surface reflectances obtained 

from atmospheric corrections were divided by π to convert them to remote sensing reflectances, with 

the surface considered as Lambertian, and converted to below-water reflectances. Above remote 

sensing reflectances were also converted to below-water reflectances (Equation (11)). 

Figure 11. Maximum range of wavelength in which a substrate (composed by coral  

sand, green and brown algae) located at different depths can be detected with remote  

sensing techniques.  

 

To analyze the bottom retrieval for both methods, we first excluded values for which the algorithm 

was invalid (0 > ρ 	 > 1). Then, we excluded values where typically no bottom contribution 

to surface reflectance was expected. The bottom contribution to surface reflectance depends on bottom 

reflectance itself. Since we did not have real ρ  in our area, others simulations were performed in the 

WASI software considering a standard bottom constituted by 1/3 coral sand, 1/3 brown algae and  

1/3 green algae. The bottom was simulated at 28 different depths between 1 and 28 m in a water 

medium with the same parameters estimated for the day of WV02 imagery. The bottom contribution 

was estimated through Equations (8) and (13), and both algorithms were slightly different in their 

estimation. For each depth, we calculated the mean range of wavelengths for which the bottom 

contribution at the surface was received. Figure 11 shows the shrinkage in wavelength range according 

to depth increase. The water column characteristics in our study area were similar to the water-b 

simulated in Section 4.1. Hence, we also excluded values where exponential behavior was expected 

according to our previous results. 
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ρ 	  by L99 showed a higher percentage of invalid values at all depths. For example, 

between 9 and 11 m depth M94 retrieved 0%–16% invalid values, whereas L99 failed between 9% and 

88%. Considering 13–16 m depth, the M94 retrieved invalid values in 25%–58% of the cases, whereas 

Lee’s model retrieved 24%–100% invalid results. Therefore, for the selected imagery, the M94 seemed 

to show a better performance than the L99. 

Although all surface spectra in the shallow water seemed similar, they were influenced by the 

bottom because deep water showed a lower spectrum than shallow water. As the bottom depth 

increased, the surface spectrum had reduced magnitude and approximated the deep water spectrum. 

However, similar spectra for the surface water when the bottom was located at different depths can be 

explained by the differences in bottom reflectance. Indeed, depth points were clearly located above 

areas with different bottom characteristics (Figure 12a). These differences can be observed as slight 

discrepancies in ρ(0 ) spectra (Figure 12b). If bottoms located at very distinct depths showed uniform 

reflectance patterns, it meant that they were not of the same kind of bottom and exemplified the 

importance of applying water column corrections. After M94 was applied, the ρ 	  of these 

spectra showed a divergence, not only in their shape but in their magnitude (Figure 12b). Note that 

substrates at similar depths (at approximately 7 m) exhibited similar magnitudes in ρ 	 . 

Moreover, substrates at 3.79 and 7.29 m in Figure 12 are located above the top of the reefs and are 

expected to have similar composition in a biological community dominated by corals, turf and crustose 

algae [90–92]. Likewise, according to a visual inspection, points at 7.39 and 10.09 m are expected to 

be composed of the same type of substrates: sand and macroalgae. In fact, retrieved spectra in each 

pair of locations showed the same shape, which suggested the same type of bottom. Nonetheless,  

it seems that the algorithm can properly retrieve the shape of a spectrum in some bands but fail to 

retrieve its correct magnitude. ρ 	  through Lee’s algorithm presented a peak in the shortest 

wavelength (427 nm) followed by an abrupt decay toward the longer wavelengths (Figure 12b).  

Only bottoms at the shallowest points exhibited a similar shape as the M94 retrieval. In this case,  

an increase in ρ 	  was also observed according to bottom depth increase.  

Several uncertainty sources may cause increasingly large biases in retrieved bottom reflectance as 

depth increases. For example, ,  and  were not estimated exactly at the time of the imagery, and 

this can introduce errors in results. As we observed in the sensitivity analyses in Section 4.1, 

uncertainties in these inputs can have an important impact in retrievals and they can be related to the 

depth. Besides that, all reflectance models are based on the exponential decay of light. In the first 

meters of the water column, the  profile showed a noisy pattern because of environmental factors 

such as waves, bubbles, OAC stratification, and fluctuations of the surface [93–95]. It means that light 

could not perfectly decay exponentially, in particular considering shallow depths such as in  

this analysis. If the light decay is not exactly exponential, the algorithms will tend to retrieve  

skewed bottom reflectances as the depth increases. The spectral shape of ρ 	  from both 

algorithms showed maximum values in shorter wavelengths, where the attenuation coefficient was 

lower. The natural substrates (e.g., sand, algae, corals, mud) do not have this type of reflectance curve, 

revealing that algorithms failed to retrieve the bottom reflectance below 500 nm. Above 600 nm, there 

are no differences between shallow and deep waters, indicating that there is no contribution of the 

bottom in these bands even in the lowest depth.  
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Figure 12. (a) Zoom in different portions of WV02 image in quasi-true color (R: 659 nm; 

G: 546 nm; B: 478 nm). All images have exactly the same contrast and are in the same 

scale. Pink circles show location of depth points and their values are indicated;  

(b) Reflectance below water versus wavelength (nm) captured by WV02 sensor above the 

four points located in (a) and above deep water; (c,d) Bottom reflectance below water 

versus wavelength (nm) retrieved by M94 and L99, respectively.  

 

Accordingly, the bands between 400 and 600 nm can contribute to the bottom differentiation. In this 

sense, the WV02 has an advantage over other orbital sensors with high spatial resolution because it has 

4 bands inside this interval. The models apparently fail to simulate properly water reflectance at the 

surface above shallow bottoms and acting attenuation processes appear to be different in nature than in 

the simulations for models developed until now. Comparing the retrievals by both algorithms, an 

overestimation by Lee’s algorithm can be observed (Figure 13).  
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Figure 13. Bottom reflectance retrieved using L99 versus M94 retrieval from WV02 

image. Each plot corresponds to a different wavelength (427, 478, 546, 608 and 659 nm). 

Straight lines correspond to proportion 1:1. 

 

However, both retrieved exactly the same value at 546 nm in all depths, which was precisely in the 

band where there was the lowest percentage of invalid values. The overestimation by L99 could 

correspond to an exponential behavior. Notice that N is higher at 546 nm because the invalid values 

were removed from the shorter and longer wavelengths. To correct simulated spectra in an orbital 

multispectral image, M94 was more efficient. This method is also advantageous because it uses a lower 

quantity of inputs. Methods requiring a large number of input parameters may produce worse results 

because of uncertainties in estimating each parameter that propagate to the results. Goodman et al. [72] 

noted that pre-processing steps, such as atmospheric and sunglint corrections, are important because 
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they could have a large impact on the results of the L99 method, especially when large amounts of 

cross-track sunglint is present in an image. To obtain better results, these authors also suggested using  in 

the equation for bottom reflectance ( =	 / , the ratio of upwelling irradiance to upwelling radiance 

at nadir) instead of using π. 

5. Discussion 

In recent years, the number of studies of coral reef ecosystems using remote sensing has increased 

substantially. However, they require the use of correction algorithms for the effects produced by the 

water column to compensate for those caused by the depth and optically active constituents.  

The application of an appropriate algorithm for correcting the water column effects and accurately 

analyzing the input data, along with the development of new algorithms, will result in radiometric data 

with minimal water column effects that increase the accuracy of the mapping of reef ecosystems. 

Water column corrections minimize the confusing effects caused by different depths in scenes but do not 

eliminate this effect. At long wavelengths and depths, it is difficult to retrieve the bottom reflectance 

because of large light absorption by the water molecules. In the following, we further discuss the main 

algorithms available for water column correction, emphasizing advantages and drawbacks.  

Lyzenga’s algorithm [35,36] almost does not require the field data of the water column, which are 

difficult to obtain, especially in lesser studied reefs. For this reason and because it was one of the first 

algorithms, it is by far the most applied. However, it only can be applied in clear waters. The result is a 

relation between bands that can be useful for bottom type mapping but not for other purposes when 

reflectance spectra are required, also impeding its validation. Spitzer and Dirks [54] produced 

applications of the Lyzenga algorithm for LANDSAT and SPOT satellites that are better for some 

situations depending on depth and substrate type. However, the limitations are the same as with 

Lyzenga’s method. In cases such as MSS/LANDSAT and SPOT-XS sensors, this could mean reduced 

results to a unique band. To isolate the index between two spectral bands, Conger et al. [39] proposed 

a helpful solution that can only be applied in bands located in short wavelengths, because of the deeper 

penetration of light in this region. Analogously, another possibility to be explored in particular areas 

could be using different points across a scene with the same depth and over the same substrate. Using 

differences in trajectory extensions caused by the viewing configuration,  could be estimated.  

Tassan [37] and Sagawa et al.’s algorithm [38] gave alternatives to Lyzenga’s algorithm to 

overcome the requirement of clear water. While Tassan’s algorithm produces a band-relation index, 

Sagawa et al.’s algorithm produces a derivation of bottom reflectance in each band; however, 

bathymetric information is required in the entire scene. The previous methods allow  to be obtained 

from the same image and do not need in situ measurements in the water column.  

Despite their limitations, the methods discussed so far could be good starting points for coral reefs 

that are being studied by remote sensing. Conversely, Bierwirth et al.’s algorithm [34] only needs  

measured in field and does not require a bathymetric map. The result is a derivation of real reflectance 

that is different from the previously mentioned methods because it is band independent. Bertels et al.’s 

approach [60] does not correct water column effect but is an alternative that can also be useful in 

particular cases in initial studies. The empirical algorithm from Gordon and Brown [55] is based on 

Monte Carlo simulations and requires some knowledge of the  and  parameters in the water column, 



Sensors 2014, 14 16919 
 

 

but they are not input parameters. In comparison to empirical algorithms, analytical and semi-analytical 

algorithms use in situ measurements as inputs. Within semi-analytical methods, M94 [56] proposed a 

simple method that uses a limited number of measured parameters as inputs and the shape of retrieved 

bottom reflectance adjust well with measured ones when the study area is located in waters with low OAC 

concentration. This method tends to underestimate this output parameter. Purkis and Pasterkamp [57] 

introduced a multiplicative factor that accounts for the effects on the water surface because the bottom 

reflectance resulting from the application of this model is evaluated above the surface. L99 [58] and 

Yang et al.’s algorithm [59] require a greater number of in situ measurements. The first one takes into 

account several processes that occur in the water column to constitute a realistic model and observation 

geometry. The second one [59] appears to be robust in retrieving the reflectance spectra and allows for 

the incorporation of vertical and horizontal heterogeneity associated with depth; therefore, it is a more 

realistic algorithm. The algorithm that requires the most quantity of inputs parameters is its counterpart, 

and for each layer of the water column, a thorough understanding of the environment is required. It can 

also be computationally heavy.  

Different methods have been developed for passive sensors for both multi and hyperspectral 

resolutions. Simpler correction methods have been developed for multi-spectral data of a few bands 

and consider clear water with vertical and horizontal homogeneity. For this reason, image correction 

fails when it is applied to deep or turbid waters. However, these methods have great potential because 

they only require a small amount of in situ data and may be useful in some regions. On the other hand, 

newer methods allow considering higher environmental variability in water column related with depth. 

Although coral ecosystems are in clear water environments, horizontal heterogeneities in water 

transparency can often occur. This means that the light attenuation may have some degree of spatial 

variability, especially in shallower areas. Thus, sometimes using a single attenuation coefficient in an 

entire scene, often obtained for deep water, can be inappropriate. For this reason, the assumption of 

horizontal homogeneity is a limitation for all of the models. New methods for water column correction 

should consider this variability. A viable alternative would be to break the image into homogeneous 

areas for the application of different attenuation coefficients or different water correction methods. 

Another input required in most methods is the depth. Hereby, the availability of accurate bathymetry 

that is normalized by the tide height for the time of the image collection and with a spatial resolution 

match is a requirement to obtain a satisfactory result. Few methods consider inelastic scattering 

(Raman) and none take into account the fluorescence of the phytoplankton and CDOM. However, in 

some situations, these processes may have important contributions, and their inclusion in the models 

can improve the fit.  

Optimization/matching algorithms start with a hyperspectral surface reflectance and are inverted or 

matched with a spectral library to simultaneously obtain depth, OAC in water and bottom type in each 

pixel. For this reason, this group of models is capable to account for horizontal heterogeneity in the 

water. The different approaches mainly differ in the type of creation of the spectral library, matching 

algorithms and the type of composition of bottom. The simplest method in this group is Louchard et al.’s 

approach [6], which only retrieves bottom types and bathymetry for known parameters. Because a 

wide variety of bottom reflectance spectra measured in situ is used in creation of spectral library, the 

model was capable of retrieving several substrate classes. The CRISTAL method requires a significant 

time to construct the spectral library but has the following: it offers a large range of bottom types to be 
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retrieved, and no assumptions about the water column characteristics are performed. Precisely because 

of that, ambiguous results can be generated by this approach in turbid or deeper waters. To retrieve the 

real bottom reflectance, these methods are strongly dependent on bottom reflectance spectra used as 

input to generate the spectral library. BRUCE and SAMBUCA are inversion methods derived on the 

algorithm by L99 [58]. They only use two or three substrate types because they were initially applied 

in areas with a small diversity of the bottom, and after their application, the proportion of each bottom 

type in every pixel is retrieved. The ALUT algorithm proposes to divide the range of variation of the 

parameters in an efficient way. Therefore it offers a fast application that promises accurate results. 

Whatever the method used in this group, an error in an estimating any parameter could lead to errors in 

the others.  

After carefully investigating each method, the question that inevitably arises is what is the best 

method? The answer is not simple and each method has its advantages and limitations and can work 

properly in certain environments or potentially fail. For example, some methods assume homogeneity 

in the distribution of constituents of the water column while others can consider heterogeneities in the 

water between pixels. But inputs and outputs also differ between algorithms. Benefits and disadvantages 

of each technique have been discussed when describing individual algorithms, when commenting on the 

comparative analysis made (previous and those accomplished as part of the present study), and 

summarized at the beginning of the discussion. Hence, the best correction model to be chosen depends 

on the environment and sensor characteristics, mapping purposes and available in situ data. When a 

new work is being planned, acquisition of remote sensing images can be planned and field data 

collection can be designed. In this situation, water column corrections could be chosen in advance, for 

which a critical comparison of the performance of methods would be desired. Nevertheless, in an 

attempt to produce this comparison, we found certain restrictions. Most of the algorithms did not 

provide a validation of their retrieval or each author validated their method in a different way. Some of 

them evaluated the adjustment between the simulated and measured bottom reflectance, using different 

statistics parameters (R2, R, RMS) or by visual comparison. Others scarcely inspected the scene 

visually after application of the water column correction algorithm, whereas others did not show 

whether the water column correction improved the mapping accuracy. Comparisons between the map 

accuracy can also be subjective because it depends on a number of classes, sensor configurations, 

classification algorithms and environmental characteristics of the area, among others. For this reason, 

works such as Dekker et al.’s [75] that produce an objective inter-comparison between different 

methods are required for the process of selecting an appropriate method and are strongly encouraged.  

This work also provides a simple comparison between methods based in radiative transfer models. 

Their application showed that the algorithm performance varied with depth, OAC concentration and 

type of bottom. Even considering the homogeneous water column in an image, different performance 

of water column correction algorithms is expected between pixels according to the substrate and depth. 

It is an aspect that has to be included when mapping accuracy is developed. For example, validation 

points should be distributed in an area to be representative of all conditions found in a scene.  

Using simulated spectra, our results showed that in clear waters and depth lower than 10 m it is possible 

to retrieve moderately accurate bottom reflectance, and they are consistent with Dekker et al. [75]. 

When retrieving bottom reflectance from the WV02 image, results seemed to be more degraded. 

However, the lack of actual bottom reflectance measured in situ impeded a quantitative estimation of 
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their accuracy. Although L99 inversion scheme [58] was previously applied with success to retrieve 

the water coefficients, it was developed considering a homogeneous reflective substrate. Its efficiency 

was lower for retrieving bottom reflectance. Even when M94 failed to retrieve the bottom at longer 

wavelengths, it showed a higher performance and can be easily applicable with just a few inputs. 

Algorithms are still not capable of completely separating the water from the bottom reflectance, and 

because the performance of models is depth dependent, they do not yield accurate bottom reflectances 

and do not eliminate completely the effect of depth. 

With more in situ data that are known from the water column, it is expected that a more realistic 

situation could be simulated and better results would be obtained. In the ideal condition, it would be 

desirable to know all of the IOPs from the water column, depth, and atmospheric conditions across the 

entire scene at the time of the image acquisition together with a significant quantity of points of bottom 

reflectance spectra to validate the results. Thus, what is the advantage in using remote sensing if so 

much data are required for reliable and accurate results? First, remote sensing offers an extent of 

spatial and simultaneous data collection that cannot be achieved with other approaches. Second, an 

initial effort is required at the beginning when a new area is explored; areas that are more well-known 

and higher quantities of available data increase the reliability of a model and require fewer ground 

truth as model inputs. An endeavor to determine the water characteristics (e.g., , IOPs, OAC 

concentrations) in an area across time should be rewarded with the successful application of water 

column corrections. Once these parameters are known, they could be used in other studies at the same 

season of year if they do not coincide with extreme weather or biological events, such as occurrence of 

hurricanes, phytoplankton bloom events or spawning events. 

Coral reefs active remote sensing is a complement to passive remote sensing multispectral and 

hyperspectral data for bottom mapping in coral reefs because fluorescence signals from LIDAR 

measurements can be used to estimate the water column characteristics, bathymetry and habitat 

complexity [96]. Fluorescence signals also provide information to differentiate between dead and 

healthy coral. In addition to retrieving bathymetry, active remote sensing offers the opportunity to 

estimate different AOPs and IOPs from fluorescence and polarization measurements from airborne 

platforms [97,98]. 

6. Conclusions 

Water column correction is a required step extracting information from shallow bottoms using 

remote sensing optical images. Among all the methods developed to date, none are generally capable 

of correcting for the water column effect properly in the entire visible spectrum. Even in the best 

conditions, it is not possible to be completely depth independent because uncertainties depend on the 

wavelength, bottom depth and type of bottom. In all cases, some knowledge of the water column 

constituents, depth, and spectral behavior of substrate is required as input during the execution of a 

method or to evaluate its performance after application. 

The first proposed algorithms were the simplest and easy to apply as a band ratio. Their limitations 

notwithstanding, they are still the most frequently used algorithms. More complex algebraic algorithms 

have been developed to estimate the reflectance in shallow environments that require more field data. 

They are the only methods capable of estimating bottom reflectance. For this reason, improvements 
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and validations of this group of algorithms should be encouraged. Most of the recent algorithms have 

been based on matching pixel spectra with simulated spectra from a library or inversion algorithms. 

While these algorithms produce satisfactory results, their output is a categorical map and their 

performance is dependent on realistic bottom reflectance data sets. Basically, the choice of method to 

apply is dictated by the available input data and the desired outcome in terms of output variable and 

accuracy based on the scientific study envisioned.  
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Appendix 

Appendix A1. Acronyms and abbreviations used in this review. 

AAHIS Advanced Airborne Hyperspectral Imaging Sensors 

ACRB Abrolhos Coral Reef Bank 

ALUT Adaptive Look-Up Trees 

AOP Apparent Optical Property 

AVIRIS Airborne Visible/Infrared Imaging Spectrometer 

BRUCE Bottom Reflectance Un-mixing Computation of the Environment model 

BSP Binary Space Partitioning 

CASI Compact Airborne Spectrographic Imager 

CDOM Coloured Dissolved Organic Matter 

chl-a Chlorophyll-a concentration 

CRISTAL Comprehensive Reflectance Inversion based on Spectrum matching and Table Lookup 

DN Digital Number 

HRV High Resolution Visible 

IHS Intensity-Hue-Saturation 

IOP Inherent Optical Properties 

LIDAR Light Detection And Ranging 

LQM Least Squares Minimum 

LSI Lee Stocking Island, at Bahamas 

LUT Look-Up Tables 

MB Moreton Bay, at Brisbane, Australia 

MNF Minimum Noise Fraction 
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MSS Multispectral Scanner 

OAC Optically Active Constituents 

OBIA Object-Based Image Analysis 

PCA Principal Components Analysis 

PHILLS Portable Hyperspectral Imager For Low Light Spectroscopy 

PIF Pseudo-Invariant Feature 

QAA Quasi-Analytical Algorithm 

RGB Red-Green-Blue 

RMS Root Mean Square 

SAM Spectral Angle Mapper 

SAMBUCA Semi-Analytical Model for Bathymetry, Un-mixing and Concentration Assessment 

SDI Substratum Detectability Index 

SPOT Satellite Pour l’Observation de la Terre 

SST Sea Surface Temperature 

TM Thematic Mapper 

TOA Top-of-Atmosphere 

UV Ultraviolet 

WV02 WorldView-2 sensor 

XS Multi-spectral 

Appendix A2. Symbols used in this review. 

Symbols Description Units 

a Total absorption coefficient m−1 

aCDOM Absorption coefficient of CDOM   

ad Absorption coefficient of detritus  

ag Absorption coefficient of CDOM and detritus m−1 

 Absorption coefficient of phytoplankton pigments m−1 

 Absorption coefficient of pure water m−1 

b Scattering coefficient m−1 

 Backscattering coefficient m−1 

 Backscattering coefficients of suspended particles m−1 

 Backscattering coefficients of seawater m−1 

 Substrate weighting coefficients for brown algae 

 Substrate weighting coefficients for seagrass 	 Substrate weighting coefficients for sediments 	 Beam attenuation coefficient m−1 	 Distance Sun-Earth at the day of imagery km 
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Appendix A2. Cont. 

Symbols Description Units 
 Mean distance Sun-Earth km 

 Length optical path factor from substrate 

 Length optical path factor from water column 

 Downwelling irradiance W·m−2·sr−1·µm−1 
 Downwelling irradiance below surface W·m−2·sr−1·µm−1 
 Sub-aquatic downwelling irradiance at bottom depth W·m−2·sr−1·µm−1 
 Solar downward irradiance W·m−2·sr−1·µm−1 

 Upward irradiance W·m−2·sr−1·µm−1 
 Average of the cosine of the scattering angle for phase scattering function ,  Fractional cover of substrates brown mud and sand within each pixel 

hb Constant suitably chosen to tuning the algorithm in the appropriate range 

 Diffuse attenuation coefficient of downward irradiance m−1 

 Radiance W·m−2·sr−1 

 Bottom radiance W·m−2·sr−1 Lw	 Water-leaving radiance for shallow waters W·m−2·sr−1 

 Upward radiance W·m−2·sr−1 
 Radiance at the Top-of-Atmosphere W·m−2·sr−1 ,  Radiance at the Top-of-Atmosphere for deep water W·m−2·sr−1 

 Water-leaving radiance for deep water W·m−2·sr−1 

mi 
Constant that includes the solar irradiance, transmittance of the 

atmosphere and water surface refraction.  

 Exponent of backscattering by small particles 

 Number of spectral bands 

 Geometric factor that considers length path in water column m 

 Ratio of the subsurface upward irradiance to radiance conversion factor 

 Irradiance reflectance 

 Irradiance reflectance in band i of shallow water 

 Brown algae irradiance reflectance 

 Sediments irradiance reflectance 

 Seagrass irradiance reflectance 

 Irradiance reflectance of shallow water 

 Photons that do not strike the bottom 

 Photons that strike the bottom once 

 Irradiance reflectance of deep water 

 
Ratio of the number of photons that strike the bottom twice by the 

number striking once, cited in Gordon and Brown 1974  
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Appendix A2. Cont. 

Symbols Description Units 
 Atmospheric transmittance 

 Depth m 

 Effective penetration depth of imagery m [z − 0] Thickness of water layer	between depth ( ) and surface (0) m β (90º, λ ) Volume scattering function for pure water, at the reference wavelengths 

350 and 600 nm (Morel 1974) 
m−1·sr−1 ∆  Intrinsic methodological depth error, Bierwirth et al. (1993) m ρ  Bottom reflectance ρ  Remote sensing reflectance of bottom sr−1 ρ  Remote sensing reflectance of deep water sr−1 ρ ,  Bottom reflectance in band i  ρ  Reflectance of brown mud  ρ  Reflectance of sand  ρ  Reflectance of shallow water  ρ  Remote sensing reflectance sr−1 ρ  Reflectance at the Top-of-Atmosphere  ρ  Reflectance of optically deep water  ρ  Reflectance of shallow water  θ  Water-sensor angle rad θ  Solar zenith angle rad λ Wavelength nm λ  Wavelength selected from the reference wavelength table (Morel 1974) nm 

ψ  

Scattering angle between the forward direction of the incident beam and 

the straight line connecting the detector and the scattering point C1. C1 

corresponds to intersect between water layer surface and beginning of 

sensor swath, which depends on field of view (FOV) 

rad 

ψ  

Scattering angle between the forward direction of the incident beam and 

the straight line connecting the detector and the scattering point C2. C2 

corresponds to intersect between water layer surface and end of sensor 

swath, which depends on field of view (FOV) 

rad 

0  Just below surface 0  Just above surface 
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