
Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF

ATTITUDE AND VIBRATION CONTROL OF A SATELLITE 
WITH A FLEXIBLE SOLAR PANEL USING LQR TRACKING 

WITH INFINITE TIME 

Carlos Henrique Gustavo Hassmann, hassmann@terra.com.br
National Institute for Space Reserarch (INPE) – Space Mechanics and Control Division (DMC)
Av. dos Astronautas, 1758 – P.O.Box 515, 12201-940 – São José dos Campos, SP, Brazil.

André Fenili, fenili@dem.inpe.br; fenili@unitau.br
National Institute for Space Reserarch (INPE) – Space Mechanics and Control Division (DMC)
Av. dos Astronautas, 1758 – P.O.Box 515, 12201-940 – São José dos Campos, SP, Brazil
and Visiting Professor in University of  Taubaté (UNITAU) – Department of  Mechanical Engineering
Linear and Nonlinear Vibration Laboratory (Coordinator)
Rua Daniel Danelli s/n  (Campus da Juta)  –  CEP: 12060-440  –  Taubaté, SP – Brasil.

Abstract. The objective of this work is to investigate the control of the attitude angles and the suppression of the 
vibration of the solar panel of a satellite in circular orbit around Earth .It is considered only the maneuver of the the 
satellite around its center of  mass. The mathematical model for the complete system is derived using  the lagrangean 
formalism. The control law considered is the LQR with infinite time (algebraic Ricatti equation) and the states are 
controlled in order to stay as close as possible of a specific set of reference states (tracking problem). The optimal 
gains are obtained considering only the linear part of the governing equations. The gains obtained in this way are then 
used to control  the complete nonlinear model. Since LQR is a linear controller (and besides its robustness), one does 
not  consider here great velocities and deflections which can transform the nonlinear mathematical  model into a 
strongly nonlinear one.
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1. INTRODUCTION

Communications satellites require high pointing accuracies for the antennas so that they may provide the desired 
coverage on the earth’s surface. This requirement is achieved through an attitude control system which maintains the 
spacecraft, its orientation in space, within the allowable limits (Agraval, 1986). Numerical simulations of the attitude 
determination problem were developed by  (Moro, 1983). The satellites, however, might have appendices (like a solar 
array) whose dynamics may affect the attitude behavior. 

Solar panels are largely used in space applications and are important structures in systems like satellites and even in 
large space structures like the International Space Station (Wertz, 2002). The vibration control of these structures are a 
critical issue since it can excite other parts of the main structure. For example, the vibration of a solar panel can break 
down the attitude control of a spacecraft, conducing all the mission to a failure. Many and different methods can be 
used for this control problem. Neural nets, for instance, were investigated for satellite attitude control by (Carrara, 
1997).

The objective of this work is to investigate the control of the attitude angles of a satellite and, at the same time,  
suppress the vibration of a beam-like flexible solar panel during some regular maneuver. The mathematical model of 
the system will be derived using the lagrangean formalism. Linear curvature is considered for the flexible beam. 
However, the interaction between the rigid and the flexible variables makes the complete system nonlinear. The control 
law adopted here is the Linear Quadratic Regulator (LQR) considering infinite time (Athans and Falb, 2007; Kirk, 
2004; Stengel, 1994). No noise is considered here. No measurement and no real data are used in this work either. This 
paper is just a first approach to the problem. For the numerical simulations one uses the C language and the Matlab 
environment.

LQR is a linear controller but present some robustness to weak nonlinear perturbations in the linear model to be 
controlled (Fenili and Arantes, 2006). In this paper is not considered great angular velocities and neither large beam 
deflections which can transform the nonlinear mathematical model under investigation into a strongly nonlinear one. In 
this last case, the LQR control is prone to fail.

2. GOVERNING EQUATIONS OF MOTION

2.1. Geometric Model

The analysis developed here is planar. The satellite main body is geometrically modeled as a rigid body in the 
format of a box (only plane XY is considered here) whose sides measure one meter each, as illustrated in Fig. 1. At this 



box is clamped a flexible beam-like solar panel with 0.005 m x 0.15 m cross section and 1.2 m long. This beam is 
modeled as a Euler-Bernoulli beam and linear curvature is considered here. 

The reference frame XY in Fig. 1 represents the inertial frame. The frames x1y1 and x2y2 are local reference frames. 
The inertial frame has its origin in the center of mass of the main body of the satellite. 

Figure 1. Geometric model

2.2. Mathematical model

The mathematical model for the main body and for the flexible solar panel clamped to it is obtained through the 
lagrangean formulation.

The beam deflection variable, v(x,t), is discretized using the expansion:
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The admissible functions i (x)Φ  are given by (Craig, 1981):
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i i
i

i i

cosh(a L) cos(a L)
α

senh(a L) sen(a L)
+

=
+

   (3)

Considering the property of ortogonalization of the modes of vibration of the beam, it can be assumed that if i j=
one has:

L
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(x) (x)dx 1Φ Φ =∫              (4)

and if i j≠  one has:

L
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(x) (x)dx 0Φ Φ =∫                  (5)

This property will be used after the energies (kinetic and potential) of the system are defined. From here to the end 
of this work one will write iq (t)  and i (x)Φ  simply qi and iΦ  and ( )ν x,t  simply as v.
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The Lagrange’s equations associated to the problem investigated here are given by (Meirovitch, 1998):
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where θT  is the torque on the satellite responsible for attitude correction (coming, for example, from a momentum 
wheel) and L =T–V is the lagrangean. From here one considers i = 1 (one mode expansion in Eq. (1)). 

For the complete system, the total  kinetic energy T is given by Tsatellite + Tpanel  or 
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where
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Expanding v in Eq. (8) (coming from Eq. (9)) according to Eq. (1), using Eq. (2) and the ortogonalization property 
presented in Eqs. (4) and (5) and finally solving the integrals which do not depend on the admissible functions one 
obtains:
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The potential energy stored in this system is of elastic type (no gravitational effects are considered) and is given by
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The same expansion as given in Eq. (1) is used in Eq. (11). Making to the potential energy the same operations 
executed before for the kinetic energy, the discretized lagrangean of the system is given by:

2 3
2 2 2 2 2 2 2 2 2

cube 2 5 5 1 1 1 4 1 1 1 1 1 1 1 1 1
1 L LL I θ C θ L C θ C θq α C θ C θq β C θ q C q C q ω
2 2 3

= + + + + + + + −& & & & & & && & & (12)

where:
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Substituting Eq. (12) in Eqs. (6) and (7) results the governing equations of motion given by:
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In Eqs. (13) and (14), the variable θ  represents the angular displacement of the main body of the satellite, the 
variable q1 represents the time behavior or the deflection of the beam-like solar panel, cubeI represents the moment of 
inertia of the main body of the satellite about the inertia frame located at its center of mass (CM) and beamI  represents 
the moment of inertia of beam cross section about the neutral line. 

2.3. State space form

The governing equations of motion given by Eqs. (13) and (14) are now written in state space form. The state vector 
is defined as:

{ }T
1 2 3 4x x , x , x , x=                                                                                                                                                   (15)
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Using the vector defined in Eq. (15), the governing equations of motion in state space form are written as:
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Equations (16) and (17) can be written in matrix form as:
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Multiplying Eq. (18) on the left by the inverse of the first matrix in this same equation, one will have:
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Considering small deflections for the beam and small velocities, Eq. (19) assumes the form (Fenili and Arantes, 
2006):

{ } [ ]{ } [ ]{ }x A x B u= +&                (20)

where
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3. THE LQR CONTROL LAW (STEADY STATE APPROACH)

The Linear Quadratic Regulator (LQR) is a controller widely used to control linear systems and some (weak) 
nonlinear system because of its reliability and robustness properties (Fenili and Arantes, 2006). Of course there is a 
limit for using this method to control nonlinear systems since the gains (for finite or infinite time) are obtained 
considering that the mathematical model for the dynamical system under investigation is linear. In the case presented 
here, and due to the nature of the system treated here, this limitation occurs in the angular velocity of the satellite. For 
high angular velocities, the LQR law can not control the system anymore. Of course the satellite does not develop such 
velocities in attitude correction, what is the same to say that the system analyzed here can be controlled in all possible 
real situations. The nonlinearities are present but act like small perturbations.

The LQR strategy is based on defining a cost function which must be minimized (Stengel R.F., 1994,). By 
minimizing this function one obtains a matrix of optimal gains to be used for feedback. 

The LQR tracking control makes the system follow (or track) a desired trajectory over the entire time interval using 
a closed loop control law (Lewis, 1986). The cost function for tracking control is given by:
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where
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( )dx t is the vector of reference states, ( )x t is the vector of system states and Q and P are positive semi-definite 
weighting matrices. In this work, one considers steady state control (or control for infinite time) and the gain matrix is 
constant. 

The optimum linear control law that minimizes the cost function J is given by (Stengel R.F., 1994,):

{ } [ ] [ ] [ ]{ } { }( )1 Tu R B K x s−= − +                               (26)

where K is a symmetric positive definite matrix that satisfies the matrix algebraic Ricatti equation given by
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and s is the solution of
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were matrices A and B are the matrices (21) and (22).

4. NUMERICAL SIMULATIONS

In the numerical simulations presented here one considers that all the states are at disposal for feedback. In practical 
applications, it is very rare that you can measure all the states (the ones associated to the elastic modes of the solar   
panel, for instance) and one needs an observer to estimate the unmeasured states from the measurements.

A fourth order Runge-Kutta with time step of 0.001 s is used to the numerical integration of the governing equations 
of motion. The values considered for the physical parameters in the numerical simulations are presented in Tab. 1. 

Table 1. Physical parameters

Parameter Description Value Unit (S.I.)
ρ Aluminum density 2700 3kg m

E Young´s modulus 110,7 10⋅ 2N m

1a Eigenvalue associated to the beam first 
mode of vibration

1,878 L -

beamI Moment of inertia of the beam cross 
section about the neutral axis

91,5625 10−⋅ 4m

cubeI Satellite’s main body moment of inertia 
about its center of mass 166 2kg m⋅

ω Beam first mode of vibration 18,0001 rad s

The weighting matrices considered here are:

[ ]

1000 0 0 0
0 1000 0 0

Q
0 0 100 0
0 0 0 100

 
 
 =
 
 
 

                                                                                                          (29)
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[ ] 1 0
R

0 1
 

=  
 

               (30)

Two situations are considered in the numerical simulations. The first situation comprises case 1 and case 2. The 
second situation comprises case 3. In cases 1 and 2 are simulated typical  situations of correction of attitude angles in a 
satellite. Usually the errors in pointing are not greater than three degrees in most satellites. The numerical simulation 
related to case 3 involves a great angular displacement and can be associated, for example, with some regular maneuver 
the satellite must realize in order to follow the sun. The basic idea here is to investigate the performance of the LQR 
controller when used to control weak nonlinear systems. 

The kind of control represented by cases 1 and 2 can be related in real applications to the control of momentum 
wheels for attitude correction. As seen in Tab. 2, different errors are considered for θ (initial and reference states). The 
control situation represented by case 3 can be related to the control of propellants used to change the satellite position in 
space. The variation of θ  is higher in this case.  

Table 2. Conditions for numerical integration

State Description Initial State Reference State Unit (S.I.)
x1: case 1 Variable θ 2.0 0.0 degrees
x1: case 2 Variable θ 3.0 0.0 degrees
x1: case 3 Variable θ 15.0 2.0 degrees

x2 , x3 , x4: cases 1, 2 and 3 Variables θ& , q and q& 0.0 0.0 rad s , m and m s
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Figure 1. Results for case 1.
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Figure 2. Control torque for case 1.
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Figure 3. Results for case 2.
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Figure 4. Control torque for case 2.
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Figure 5. Results for case 3.
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Figure 6. Control torque for case 3.

Figures 1 to 6 show satisfactory results. The actuator in not directly acting upon the beam (solar panel) and, for this 
reason, its vibration takes some time to fade. However, it can be verified in Figs. 1, 3 and 5 that its amplitude and 



velocity of deflection of the beam are converging to its desired states (zero deflection and zero velocity). In Figs. 2, 4 
and 6 the control torques are converging to zero too.

The amplitude of the deflection of the beam, q1, is small enough (in all the three cases) for the linear curvature 
assumption to be true.

5. CONCLUSIONS

The governing equations obtained in this work are nonlinear. The nonlinearities are weakly excited and the resulting 
weakly nonlinear governing equations are satisfactory controlled. To work with the LQR technique one needs a linear 
governing equation of motion. In this sense, small velocities and deflections are considered and the nonlinear governing 
equations are in this way linearized. The equilibrium states into which the control effort try to bring the system to are 
those related to the condition where all the velocities and panel deflections are equal to zero.

In the numerical simulations, two different situations were considered. In the first situation (cases 1 and 2) the 
deviation from the desired position is small and, therefore, for the time considered, sufficiently small angular velocities 
are developed. In this case, the final states are all zero. In the second situation (case 3), the angular deviation is greater 
(greater angular velocities involved) and the final state is not zero, but some desired angle different from zero. In both 
cases the desired final states are reached successfully.

Besides the fact that the control was designed not considering the nonlinearities, all the nonlinearities are considered 
in the numerical simulations and the LQR control is sufficiently robust to deal with them.
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