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Abstract

Using a nonlinear set of equations which describes the excitation of a purely tran-
verse slow electromagnetic wave by a relativistic electron beam we have shown that the
system runs from chaotic behavior to a regular stable state due to crisis phenomenum
and from stabilized soliton and repeated stabilized explosive solutions to a temporal
chaos.These behaviors suggest that the primary mechanism for the saturation of the
explosive instability is not only the cubic nonlinear frequency shift as pointed out by
many authors until now.The inclusion of the the velocity perturbation in the beam
charge initial equilibrium state leads the system to these strange behaviors.

1 - INTRODUCTION

The generation of high-power coherent radiation using a straight relativistic electron beam in
dielectric-filled waveguides has attracted considerable interest, recently. The devices based
on this effect, such as the high efficiency Cerenkov oscillators and amplifiers, have been
a persisting goal in the scientific community since very high frequency oscillations can be
obtained using a relativistic or even nonrelativistic electron beam(1,2]. The dynamics of par-
ticles and fields can be described statistically by a group of sample electrons through the
Hamilton-Jacobi and Maxwell equations, kinetic Vlasov theory or by collectively through
the fluid model. These descriptions provide the main relevant properties of the nonlinear
effects due to the interaction of a free-electrons with electromagnetic fields. However, present
theoretical results do not fully cover all the possible regimes of the stimulated scattering and
mechanism of their nonlinear stabilization. Recently, Bogdanov, Kuzelev and Rukhadze[3]
have analyzed a nonlinear mechanism for the excitation of a purely electromagnetic wave by
a rectilinear electron beam involving a resonant excitation of second harmonics on the beam
space-charge wave. They have shown that this excitation is explosive if the nonlinearity is
quadratic. Considering the nonlinear frequency shift they pointed out that cubic nonlinearity
is the primary mechanism for saturating the explosive instability. In this letter, we examine
this effect, using the collective variable description for free-electron emitters proposed by
Bonifacio et al.[4], on the nonlinear excitation of an electromagnetic wave interacting with
a relativistic electron beam. By numerical simulation using a Runge-Kutta subroutine we
have found soliton[5-8], chaos(9-12), crisis[13] solutions and, also, the well known explosive
instability solution given in Ref.[3,5]. In our model these solutions demonstrate the coexis-
tence of coherent temporal structure (soliton, explosion and repeated stabilized explosions)
and temporal chaos. The chaotic behavior is diagnosed by the Fourier power spectrum and
one-dimensional non-inversible return map(12], quite similar to the Lorenz return map. All
these results are completely different from those described in Ref. [3]. We have found that
the primary mechanism for the saturation of the explosive instability can also come from
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the introduction of a charge particle velocity perturbation from the initial equilibrium state.
Due to the sensitivity of the dynamical behavior of the system on the control parameters
and on the initial conditions, the explosive instability can saturate in a different way from
that considered in the present literature. The crisis phenomenun(13], as a consequence of the
small change on the control parameters, leads to an unsaturated explosive instability, which
in this case will be saturated by the nonlinear frequency shift, as one expects, in agreement

with Refs.[3,5].
2 - DYNAMICAL EQUATIONS

The nonlinear set of equations which describes the excitation of a purely transverse slow
electromagnetic wave (EMW) by a relativistic electron beam is:
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are defined as “energy-momentum” functions due to the space-charge wave interacting with
an electromagnetic wave. These functions play the fundamental role on the system defined
above. The constant K(0) is defined as uljugocos $o(0), where uyo,uz are the wave am-
plitudes at time 7 = 0 and ®o(r) = 2¢; — ¢; is the relative phase; u; and u; are the
wave amplitude at time 7;v = /2(9% — 1) X (w./w1),ws = WZ/e, Pj = V2 ckbv;/Beydw,
is the normalized canonical momentum, G, is the normalized electron beam speed, <, is the
relativistic factor, w? = wf/B2vje,w} = 4mg’no/m is the squared beam-plasma frequency,
6; = V2ckBy/wp and T = wyt/+/2 is the normalized time. In the limits of v — oo, (P;) = 0
and (P?) = 0 the system reduces to a system of equations quite similar to equations derived
in Ref.[3]. Since in real physical systems these parameters have finity values, even small
ones, we can obtain different solutions of those presented in Ref.[3]. This is the situation
that we have realized the numerical simulation to obtain all the necessary information about

the system for different values of the control parameters.
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3 - NUMERICAL RESULTS

We fix initial conditions u;o = 1072, uz = 10-23 chosen in order to avoid numerical singular-
ity, ®o(0) = 0,(P;)o = 0 and (P?); = 0. Using v = 1.18720 the system presents a repeated
stabilized explosive solution as shown in the Fig.01-(a). For v = 1.18721 and keeping the
same initial conditions for field amplitudes and beam parameters we get a stabilized soliton
solution[5] as given in Fig.01-(b). For » = 1.5 and keeping the same initial conditions for
field amplitudes and beam parameters we get an unsaturated explosive instability as given
in Fig.01-(c). The numerical computation has shown that the increasing of v to a threshold
value for definiteness v, = 5.55338 the time evolution of the system suffers many bifurcations
leading it to a chaotic behavior, with unknown route at the present time. Fig.01-(d) shows
the time evolution for the wave amplitude uy(7) for v = yy,. Fig.01-(e) shows the Fourier
power spectrum of u;(7) for v = vy,. This picture shows a large broad band spectral bahavior
typical of chaotic system. Fig.01-(f) shows the maxima points uy(n + 1) x uy(n) ocurring
during 3000 interactions for v = vy,. This Poincaré map(12], quite similar to the Lorenz map,
which all maxima appear to lie on a curve, shows the existence of a strong dissipation in the
system which leads to chaotic oscillations on the wave amplitudes. The intersection of the
diagonal u(n + 1) = w;(n) means that there is a fixed point for a dynamical equilibrium of
the system.

Since our system is very sensitive to very small changes on the initial conditions for the field
amplitudes, u1o and wuzo, with relative phase ®,(0) and on the beam controlled parameters
(Pj)o and (P?)o, which are related to the injected beam energy and to the initial energy
spread, we have further run the numerical simulation for different values of these input pa-
rameters. We observe that the dynamical behavior of the system changes from chaos to
explosive solution through crisis, and so on, according to the values of these parameters. To
finish the analysis we can say that the primary mechanism for saturating the instabilities
on the system is not only a frequency shift, due to the cubic nonlinearity, as pointed out by
many authors in the wave-wave interaction. With the inclusion of the velocity perturbation
on the initial equilibrium state of the beam particles many and well defined different solutions
for the system can be obtained depending on the control parameters, even if the relativistic
beam is modulated on the initial state of the first harmonics. So, one can say that many
computer simulation shall be done in order to well understand this dynamical system, quite
sensitive to the input parameters. This will appear on future publication.
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Figure 1: Numerical solutions of Egs. (1)-(3). We fix initial conditions w10 = 107%,u5 =
10-23 chosen in order to avoid numerical singularity, ®5(0) = 0,(P;)o = 0 and (P})o = 0.
(a) for v = 1.18720 the system presents a repeated stabilized explosive solution; (b) for
v = 1.18721 the system presents a stabilized soliton solution; (c) the time evolution for
the wave amplitude u;(7) for v = 5.55338; (e) the Fourier power spectrum of u;(r) for
v = 5.55338; (f) for v = 5.55338, the maxima points u1(n + 1) x u1(n) ocurring during 3000
interactions. In the Fig.01-(a)-(c), the curve that describes the time evolution of the wave
amplitude u,(7) starts at 10~2. The second curve describes the time evolution of the wave
amplitude uy(7).
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Abstract: A nonlinear analysis for a new dcig-
ned FEL oscillator is performed to calculate the
optimized efficiency of energy extraction from a
relativistic electron beam generated by RF accele-
rator. The value of the efficiency is presented for

a tapered wiggler FEL oscillator.

High power, tunable waveguide Free-electron la-
ser in the region of millimeter wavelength has been
recently studied by many researchers, due to new
dynamics features that affect the tuning capabi-
lity, the mode sensitivity, and the short pulse ope-
ration at long wavelength. At the Instituto de Es-
tudos Avancados (IEAv) we are proposing a novel
design of a waveguide FEL which is of great inte-
rest in applications as isotope separation, Electron
Cyclotron Resonant Heating (ECRH) of plasma
in advanced magnetic fusion configuration and ra-
dar system operating at millimeter wavelength.
Compared with radar at conventional longer wa-
velengths, superior target imaging would be ob-
tained with enhanced ability to discriminate bet-
ween different types of objects. This new desig-
ned tapered FEL operates in a Compton regime
with bunched electron beam produced by R.F. ac-

celerators. The present paper considers a free-

168

electron configuration which aims to decrease the
voltage requirement while keeping large output
power and achieving a high eunergy extraction effi-
ciency. This configuration presents a short period
wiggler (A, ~ 3.2¢m) in order to reduce the requi-
red electron beaw energy in the FEL interaction.
To have a strong FEL interaction in a small period
wiggler, all the electrons must be at a small dis-
tance from the wiggler compared with the wiggler
period.

Several issues arise in a long wavelength FEL
driven by a RF accelerator as a result of the short
electron bunch duration. When the bunch length
is comparable to the operating wavelength A,. a
considerable amount of cohereut emission is ex-
pected even with no feedback in the resonator [1
- 4]. Since the growth of FEL pulse is strongly af-
fected by the slippage, we can provide this strong
interaction considering that the slippage length of
the coherent radiation is smaller than the electron
pulse length. The effect of the coupling between
the radiation and particles is given by the pon-
deromotive wave generated by the beating of the
wiggler and radiation fields. The ponderomotive
wave effect is obtained in the FEL bouncing fre-

quency which is roughly proportional to the pon-



