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A theory for the electron (and hole) g factor in multivalley lead-salt IV-VI semiconductor quantum wells (QWs)
is presented. An effective Hamiltonian for the QW electronic states in the presence of an external magnetic field is
introduced within the envelope-function approximation, based on the multiband kp Dimmock model for the bulk.
The mesoscopic spin-orbit (Rashba-type) and Zeeman interactions are taken into account on an equal footing
and the effective g factor in symmetric quantum wells (g∗

QW) is calculated analytically for each nonequivalent
conduction-band (and valence-band) valley, and for QWs grown along different crystallographic directions.

DOI: 10.1103/PhysRevB.91.085313 PACS number(s): 73.21.−b, 73.21.Fg, 75.70.Tj

I. INTRODUCTION

Since the development of the first semiconductor electronic
devices the lead-salt IV-VI semiconductor compounds have
attracted great interest both for their applications (as narrow
and direct gap materials for infrared lasers and detectors)
and for the interesting relativistic physics involved in their
electronic properties [1]. For example, the spin-orbit (SO)
interaction in these compounds is particularly strong and is
directly responsible for the opening of the fundamental gap
in the bulk [2], as well as for the pure Rashba splitting in
asymmetric quantum wells (QWs) [3]. IV-VI semiconductor
nanostructures have been successfully fabricated and applied
to different electronic devices [4–7]. More recently they have
been at the center of the research on the physics of topological
insulators and new spintronic devices [8,9].

However, the electronic structure of the IV-VI nanos-
tructures, specially in the presence of a magnetic field, is
not well known. In particular, the quantum confinement
effects on the g factor of the carriers (electrons and holes)
are not well understood and form the main focus of the
present contribution. Within the multiband envelope function
approximation, we present a simple theory for the electronic
states of IV-VI QWs in the presence of a magnetic field, with
analytical results for the g-factor tensor, as a function of both
growth and magnetic field directions. The approach recently
introduced to describe the g factor of carriers confined in III-V
QWs [10] is here extended to the case of multivalley and
anisotropic semiconductor structures. This work extends also
the simplified theory in Ref. [11] which is based on a mini-kp
approach and is specific for a longitudinal magnetic field and
longitudinal valley in a [111] QW.

We recall that the g factor is a fundamental physical quantity
which determines the spin splitting of the electronic states in
response to an external magnetic field (Zeeman effect). Due
to band-structure effects, for electrons (or quasiparticles) in
a semiconductor, the corresponding g factor is renormalized
from the bare value 2 and is referred to as the effective g

factor (g∗), in analogy with the effective mass m∗. In a QW,
g∗ is further renormalized by the confining potential, can be
tuned, and is a main parameter for spintronic applications.
Here we discuss the physics of such mesoscopic g-factor
renormalization in the case of IV-VI PbTe-like QWs.

II. EFFECTIVE HAMILTONIAN

We first derive an effective Hamiltonian for the electronic
states starting from the Dimmock kp model for the bulk
[2]. Considering the four equivalent valleys at the L point
as independent of each other and using a coordinate system
with the z axis along the main axis of the ellipsoidal valley, the
conduction (or valence) band can be described by the following
(energy-dependent) effective 2 × 2 Hamiltonian [12,13]:

Heff =
[
Eg

2
+ P 2

‖ k̂zγ k̂z + P 2
⊥k̂xγ k̂x + P 2

⊥k̂yγ k̂y

]
+ HSO,

(1)
with

HSO = P‖P⊥(γ [k̂y,k̂z] + [k̂y,γ ]k̂z − [k̂z,γ ]k̂y)iσx

+P‖P⊥(γ [k̂z,k̂x] + [k̂z,γ ]k̂x − [k̂x,γ ]k̂z)iσy

+P 2
⊥(γ [k̂x,k̂y] + [k̂x,γ ]k̂y − [k̂y,γ ]k̂x)iσz, (2)

γ = 1/(E + Eg

2 ), and, where the energy origin was set at the
middle of the gap (of width Eg), x and y are the transverse
directions, �σ the Pauli matrices vector, P‖ (P⊥) the usual
kp momentum matrix element parallel (perpendicular) to the
valley main axis, and (k̂x,k̂y,k̂z) the electron wave-vector
operator. Note that Heff is the Dimmock four-band model
projected into the conduction band and that it is written in a
form which facilitates the inclusion of both the magnetic field
and the band-gap variation in a QW structure. Note also that in
the bulk (and zero field), γ is constant, the envelope function
is simply ei�k·�r , the k-vector components are c numbers, and all
commutators above are equal to zero, so that one obtains the
well-known nonparabolic dispersion relation around the gap
of these narrow-gap semiconductors, described by the energy-
dependent effective masses m‖,⊥ = �

2

2P 2
‖,⊥

(E + Eg

2 ), i.e.,

E = Eg

2
+ �

2

2

(
k2
‖

m‖(E)
+ k2

⊥
m⊥(E)

)
, (3)

where k2
⊥ = k2

x + k2
y . In addition to the energy gap Eg , the only

parameters are P‖ and P⊥, which are fixed with the measured

band-edge effective mass m∗
‖,⊥, i.e., P‖,⊥ =

√
�2Eg/2m∗

‖,⊥,

and are assumed constant along the QW structure in the
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FIG. 1. Schematic illustration of the QW coordinate system, of
the L valleys projected into the QW plane for growth direction (z)
along both (a) [111] and (b) [100] crystallographic directions and
(c) of the oblique valley (the solid symbol) orientation.

envelope function approximation. A specular equation is
similarly obtained for the valence band. Such a model has
been shown to describe very well the band structure of the
lead salts near the fundamental band gap and is here used to
study the QW in a �B-field problem.

In a QW the lack of translation symmetry along the
growth direction, in general, breaks the valley degeneracy,
and it is convenient to use a new coordinate system where
now the z axis is along the growth direction (which, except
for the longitudinal valley in a [111] QW, is not parallel
to the valley main axis; see Fig. 1). So Eg = Eg(z) and
therefore γ = γ (z) [the center of the band gap is also allowed
to vary along the growth direction due to the band offset
described by a step function Q(z)]. In the cases of interest,
such a new QW coordinate system is obtained from the
valley system used above with a simple rotation around a
transverse direction (x), so that the components of a vector
�v are given by vx = vx ′ , vy = vy ′ cos(θ ) + vz′ sin(θ ), and
vz = vz′ cos(θ ) − vy ′ sin(θ ), where θ is the angle of rotation
and the valley system is now denoted by (x ′,y ′,z′), as sketched
in Fig. 1.

III. QUANTUM-WELL EFFECTIVE g-FACTOR TENSOR

In order to include the effects of an external magnetic
field �B, one then adds the Zeeman term of the bulk, i.e.,
1
2μ0[g‖Bz′σz′ + g⊥(Bx ′σx ′ + By ′σy ′ )], where g‖ and g⊥ are the
g-factor Dimmock parameters for the bulk conduction-band
valleys, which (as for the effective masses) are fixed with
the measured band-edge g factor g∗

‖,⊥, and makes also the

fundamental substitution k̂ → k̂ + (e/�) �A = −i∇ + (e/�) �A,
in the k-vector operator.

Following the classic work by Stern and Howard [14], we
use the gauge �A = (Byz − Bzy, − Bxz,0), set the envelope
function as F(�r) = eikxxF (y,z) (since Heff does not depend
on x), perform the unitary transformation defined by

F = e−iD(k̂y z−bxz
2/2)f

with

D = D(θ ) = (P 2
‖ − P 2

⊥) sin(θ ) cos(θ )

P 2
‖ cos(θ )2 + P 2

⊥ sin(θ )2

in order to eliminate the term linear in k̂y , and use also the
translation operator property

eiak̂y f (y) = f (y + a)eiak̂y .

After simple algebra, one obtains the following effective
Hamiltonian (as a sum of kinetic, mesoscopic potential,
Zeeman, and Rashba terms):

Heff = Hki + V (z) + HZ + HR, (4)

where V (z) = Eg(z)/2 + Q(z),

Hki = �
2

2

[
k̂z

1

m3
k̂z + (k̂y − bxz)2

m2

+ (kx + byz − bz(y + Dz))2

m1

]
(5)

(with �b = (e/�) �B, m1 = m⊥, m2 = cos(θ )2m⊥ + sin(θ )2m‖,
and m3 = m‖m⊥/(m⊥ cos(θ )2 + m‖ sin(θ )2)), where the en-
ergy and z-dependent effective masses are given by

m‖,⊥(E,z) = �
2

2P 2
‖,⊥

(
E + Eg(z)

2
− Q(z)

)
, (6)

the Zeeman term

HZ = μ0

2
�B ×

[
g̃0 + 4me

�2
(γSOg̃SO + z

∂γSO

∂z
g̃QW)

]
�σ , (7)

where the g̃s are the components of the effective g-factor tensor
(given below) and

γSO = P‖P⊥
E + Eg(z)

2 − Q(z)
;

finally

HR =
(

∂γSO

∂z

)
�BR(kx,k̂y) × �σ , (8)

with the effective k-dependent Rashba field given by

�BR = (−k̂y,(rs
2 + c2)kx,(r − 1)sckx),
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where, to simplify, we use c = cos(θ ), s = sin(θ ), and the
anisotropy parameter

r = P⊥
P‖

=
√

m∗
‖

m∗
⊥

.

As the main result, one gets the QW effective g-factor tensor
[Eq. (7)] given by the following three components:

g̃0 =
⎛
⎝g⊥ 0 0

0 g⊥c2 + g‖s2 (g‖ − g⊥)sc
0 (g‖ − g⊥)sc g⊥s2 + g‖c2

⎞
⎠ , (9)

g̃SO =
⎛
⎝1 0 0

0 rs2 + c2 (r − 1)sc
0 (r − 1)sc rc2 + s2

⎞
⎠ , (10)

and

g̃QW =
⎛
⎝1 0 0

0 rs2 + c2 (r − 1)sc
0 −(rs2 + c2)

(
y

z
+ D

) −(r − 1)sc
(

y

z
+ D

)
⎞
⎠ .

(11)
For example, the result for the bulk is simply recovered

by noting that in this case γSO is constant and, in the valley
coordinate system (i.e., with c = 1 and s = 0), one then has

g̃bulk =
⎛
⎝g∗

⊥ 0 0
0 g∗

⊥ 0
0 0 g∗

‖

⎞
⎠ , (12)

with

g∗
⊥ = g⊥ + 4me

�2
γSO (13)

and

g∗
‖ = g‖ + 4me

�2
γSOr, (14)

which are energy dependent and can also be written as
a function of the above-defined parallel and perpendicular
effective masses, i.e.,

g∗
⊥(E) = g⊥ + 2me√

m⊥(E)m‖(E)

and

g∗
‖ (E) = g‖ + 2me

m⊥(E)
.

Note that the Dimmock parameters g⊥ and g‖ correspond to
the remote bands contribution (including the bare electron
g-factor value ∼2) and that the III-V-like spherical symmetric
case is obtained only with gt = gl and r = 1.

It is the third term in Hz above, proportional to ∂γSO

∂z
, that

gives the QW contribution due to the mesoscopic quantum
confinement. As shown in Ref. [10] for GaAs QWs, the
QW effective g factor (g∗

QW) can conveniently be calculated
with perturbation theory. Using the ground state of H0 =
Hki( �B = 0) + V (z), one simply calculates 〈f0|HZ|f0〉 = H̄z,
where H0f0 = E0f0. Next, following the same scheme, we
consider the lead-salt QW effective g factors for different
growth directions and nonequivalent valleys. Such an approach
for the calculation of g∗

QW is simpler and more transparent

than that used before for the L-valley electrons in SiGe QW
structures [15].

IV. [111], [100], AND [110] QUANTUM WELLS

We now consider common symmetric QWs grown along the
[111] and [100] crystallographic directions and with interfaces
at z = ±L/2. For [111] QWs, the four equivalent L valleys
in the bulk split into one longitudinal and three oblique
ones, while for [100] QWs we deal with four degenerate
oblique valleys (see Fig. 1). In the expressions above, all
one has to do is to set (s = 0, c = 1) for the longitudinal
valley and for the oblique valleys (s = 2

√
2/3, c = 1/3) for

[111] QWs and (s = √
2/3, c = 1/

√
3) for [100] QWs. The

applied magnetic field is considered both longitudinal (along
the growth direction) and transverse (in the QW plane) and
the corresponding effective g factors g∗

QW,l and g∗
QW,t are

calculated.
For the numerical results and illustrative examples, PbSnTe/

PbTe QWs are considered with the following low-temperature
empirical parameters: EPbTe

g = 0.19 eV, m
∗,PbTe
‖ = 0.24me,

m
∗,PbTe
⊥ = 0.024me [12], g

∗(PbTe)
‖ = 58, g

∗(PbTe)
⊥ = 15 [16,17],

and EPbSnTe
g = 0.1 eV. The Dimmock parameters g‖ (=−24.3)

and g⊥ (=−11.4) are determined by g
∗(PbTe)
‖ and g

∗(PbTe)
⊥ ,

respectively, and assumed constant along the structure. A sym-
metrical 0.5 band offset is used. The unperturbed ground-state
energy Ei and corresponding envelope function f0 = fi(z)
for each nonequivalent valley, i.e., with i = l (longitudinal)
or i = o (oblique), are calculated exactly following standard
procedure as described in Refs. [10,12].

A. Longitudinal valley

For the longitudinal valley and longitudinal magnetic field
�B = Bẑ one gets the QW effective g factor simply given by
the bulk average, in perfect analogy to the III-V case, i.e.,

g∗
QW,l = 〈g∗

‖〉 = g∗
‖,w(El)Pw + g∗

‖,b(El)Pb, (15)

where Pj (=∫
j
|fl(z)|2dz) is the probability to find the electron

in the well (j = w) or in the barrier (j = b) (note that for the
longitudinal valley D = 0 so that for the longitudinal field,
there is no QW or interface contribution, i.e., from g̃QW). To
simplify the notation, from now on, as above, the energy-
dependent parameters are meant to be calculated at El or at Eo

depending on whether it is a longitudinal or an oblique valley
effective QW g factor (similarly, f0 stands for either fl or fo).

In Fig. 2, g∗
QW,l for electrons (or holes) in PbSnTe/PbTe

QWs is plotted as a function of the well width. For comparison
and as limiting cases, the energy-dependent bulk g factors for
both PbTe and PbSnTe are also plotted. See for instance that as
expected g∗

QW,l tends to the well bulk value and to the barrier
(PbTe) bulk value in the limits of L going to infinity and to
zero, respectively. Note also that these bulk energy-dependent
g factors decrease with increasing quantum confinement, as
opposed to the behavior observed in the III-V QW case.
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FIG. 2. Effective g factor for the longitudinal valley electrons in
PbSnTe/PbTe [111] QWs and longitudinal B field (along the growth
direction) as a function of the well width. The limiting (well and
barrier) energy-dependent bulk effective g factors are also plotted,
giving the effect of the QW confinement energy shift.

For a transverse B field, again analogous to the III-V QW
case, one gets

g∗
QW,t = 〈g∗

⊥〉 + 4me

�2

〈
z
∂γSO

∂z

〉
, (16)

which is the average bulk g factor plus an interface spin-orbit
contribution g∗

int given by

gint = −4me

�2
δγSO L |f0(L/2)|2, (17)

where δγSO = γ
(w)
SO − γ

(b)
SO . Recall that γSO is a step function

in z changing from γ
(w)
SO to γ

(b)
SO at the interface; |f0(L/2)|2 =

|f0(−L/2)|2 was also used. As in the III-V QW case, the
IV-VI longitudinal valley g∗

QW,t does not depend on the B-
field direction in the plane; therefore, the g-factor anisotropy
�g∗

QW = g∗
QW,l − g∗

QW,t in this case is simply given by

�g∗
QW = 〈g∗

‖ − g∗
⊥〉 − gint. (18)

Different from the III-V QW case, such IV-VI g-factor
anisotropy presents two contributions: a bulk average and
an interface one determined by the mesoscopic (Rashba-
type) spin-orbit interaction. Figure 3 shows the well width
dependence of such g∗

QW,t in a PbSnTe/PbTe QW. To compare
and access the different contributions to the QW g factor, which
include wave-function barrier penetration, confinement energy
shift, and interface SO interaction, the energy-dependent bulk
g factors and their average are also plotted. Note that in the
shallow wells here considered the interface contribution to the
g factor (gint) decays slowly with increasing well width.

B. Oblique valleys

For the oblique valleys instead the transverse g factor
does depend on the B-field direction in the QW plane. The
transverse magnetic field actually breaks the oblique valley
degeneracy, while the longitudinal field (i.e., along the growth
direction) does not. Considering the specific oblique valley
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FIG. 3. Effective g factor for the longitudinal valley electrons
in PbSnTe/PbTe [111] QWs and transverse magnetic field g∗

QW,t as
a function of the well width. For the different contributions to QW
g-factor renormalization (i.e., barrier penetration, confinement energy
shift, and interface SO contributions), the energy-dependent barrier
and well g factors, as well as the average bulk g factor, showing the
wave-function barrier penetration effect, are also plotted.

which sets the valley system in the above-used coordinate-
system rotation, for the longitudinal �B = Bẑ one gets

〈g0|Hz|g0〉 = μ0

2
B(g∗

zyσy + g∗
zzσz), (19)

with

g∗
zy = sc〈g∗

⊥ − g∗
‖〉 − (s2r + c2)D gint (20)

and

g∗
zz = 〈s2 g∗

⊥ + c2 g∗
‖〉 − sc (r − 1) D gint. (21)

Noting that D = 2
√

2(1 − r2)/(1 + 8r2) for [111] and D =√
2(1 − r2)/(1 + 2r2) for [100] QWs we then have explicitly

g∗
zy = 2

√
2

9

[
〈g∗

⊥ − g∗
‖〉 − (8r + 1)(1 − r2)

8r2 + 1
gint

]
, (22)

g∗
zz = 〈8g∗

⊥ + g∗
‖〉

9
− 8

9

(r − 1)(1 − r2)

8r2 + 1
gint, (23)

for [111] QWs, and

g∗
zy =

√
2

3

[
〈g∗

⊥ − g∗
‖〉 − (2r + 1)(1 − r2)

2r2 + 1
gint

]
, (24)

g∗
zz = 〈2 g∗

⊥ + g∗
‖〉

3
− 2

3

(r − 1)(1 − r2)

2r2 + 1
gint, (25)

for [100] QWs.
Due to the anisotropy (r �= 1), the oblique valleys are seen to

present an interface contribution to their effective g factor even
for a longitudinal magnetic field. In these structures, contrary
to the III-V QW case [10], such a longitudinal field does not
drive the electrons along a purely transverse cyclotron orbit in
real space. As a matter of fact, due to the valley anisotropy,
the electron velocity �v = 1

�
∇�kE(�k) has in general a component

along the magnetic field even when �k remains perpendicular to
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electrons in PbSnTe/PbTe [111] and [100] QWs as a function of
the well width.

�B. Again when g⊥ = g‖ and r = 1 the symmetrical III-V like
result is recovered. In Fig. 4, as a function of the PbSnTe/PbTe
QW width, the resulting longitudinal effective g factor for the
oblique valleys in both [111] and [100] QWs is plotted, given
by

g∗
o,l =

√
g∗2

zy + g∗2
zz

and which determines the Zeeman splitting �E (=μ0Bg∗
o,l).

Comparing Eqs. (22) and (23) for [111] QWs with Eqs. (24)
and (25) for [100] QWs, one can see that the larger g factor
obtained in the latter case is due to a larger weight of g∗

‖ , which
is larger than g∗

⊥ [see also sketch in Fig. 1(c)].
The last and most anisotropic situation is that of the oblique

valleys with a transverse B field, where the crystal growth,
the magnetic field, and the valley main axis are each along a
different direction; indeed in this case one gets

〈Hz〉 = μ0

2
B[cos(φ)g∗

xxσx + sin(φ)(g∗
yyσy + g∗

yzσz)], (26)

where φ is the in-plane angle between �B and x̂,

g∗
xx = 〈g∗

⊥〉 + gint (27)

[equal to the above longitudinal valley g∗
QW,t except that

here, as mentioned, the average of the bulk and the interface
contribution gint [Eq. (17)] is calculated with the oblique valley
unperturbed energy and envelope function] and

g∗
yy = [〈g∗

⊥ + 8 g∗
‖〉 + (8 r + 1) gint]/9, (28)

g∗
yz = 2

√
2[〈g∗

‖ − g∗
⊥〉 + (r − 1) gint]/9 , (29)

for [111] QWs, and

g∗
yy = [〈g∗

⊥ + 2 g∗
‖〉 + (2 r + 1) gint]/3, (30)

g∗
yz =

√
2[〈g∗

‖ − g∗
⊥〉 + (r − 1) gint]/3 , (31)

for [100] QWs.
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2, 4, 10, 20, 25, and 30 nm from the bottom to the top.

As an example, Fig. 5 shows the obtained oblique valley
transverse effective g factor

g∗
o,t =

√
cos(φ)2g∗2

xx + sin(φ)2
(
g∗2

yy + g∗2

yz

)
for [100] PbSnTe/PbTe, as a function of φ and for different
well widths. For [111] QWs one obtains very similar results,
with slightly smaller values (a difference much smaller than
that in Fig. 4 for the longitudinal field case). With varying L

we see the crossover between the bulk anisotropy in PbTe and
that in PbSnTe that give the limits of very small and very large
L, respectively.

To conclude it is interesting to note that a pure mesoscopic
g-factor anisotropy in IV-VI QWs can be seen with the so-
called transverse valleys in [110] QWs. In these QWs the four
L valleys split into two with the main axis in the QW plane,
the transverse ones, and two oblique ones. For the transverse
valleys we put c = 0 and s = 1 and for longitudinal magnetic
fields (i.e., along [110] ‖ ẑ) we get

g∗
QW,l = 〈g∗

⊥〉,
while for transverse B fields

g∗
QW,t =

√
C2(〈g∗

⊥〉 + gint)2 + S2(〈g∗
‖〉 + r gint)2,

where C = cos(φ) and S = sin(φ) with φ, as before, giving
the direction of the magnetic field in the QW plane. So that if
one rotates �B from ẑ to x̂ (φ = 0) one gets

�g∗
QW = g∗

QW,t − g∗
QW,l = gint,

with a maximum of �g∗
QW = 5.3 at L = 13.8 nm (the well

width dependence is similar to that shown in the bottom curve
of Fig. 3).

V. CONCLUSIONS

Summarizing, an envelope-function theory for the elec-
tronic structure of IV-VI semiconductor QWs in an external
magnetic field has been presented, with analytical results for
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the electron (or hole) effective g-factor tensor. Specific results
for QWs grown along [111], [100], and [110] crystallographic
directions and magnetic field along all directions are discussed.
The effective g factor in these structures is seen to be
renormalized by the confining mesoscopic potential through
the Rashba-type spin-orbit coupling. The results are compared
to the known III-V QW case and many differences are pointed
out. In particular the effective g factor for electrons confined
in IV-VI QWs is shown to be highly anisotropic not only
due to the magnetic field direction (with respect to the QW
growth direction) but also due to the misalignment between
the L-valley main axis and the growth direction, and to the

IV-VI L-valley intrinsic anisotropy. The obtained expressions
for the effective g-factor tensor are general and can be applied
to QWs made of any lead-salt (IV-VI) compound grown along
different directions, and should be useful also for spintronic
applications.
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