
sid.inpe.br/mtc-m21b/2015/09.08.18.24-TDI

A METHODOLOGY TO APPLY FORMAL
VERIFICATION TO UML-BASED SOFTWARE

Luciana Brasil Rebelo dos Santos

Doctorate Thesis of the Gradu-
ate Course in Applied Computing,
guided by Drs. Valdivino Alexan-
dre de Santiago Júnior, e Nan-
damudi Lankalapalli Vĳaykumar,
approved in Octuber 02, 2015.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34P/3K7T2BB>

INPE
São José dos Campos

2015

http://urlib.net/xx/yy

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Gabinete do Diretor (GB)
Serviço de Informação e Documentação (SID)
Caixa Postal 515 - CEP 12.245-970
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/6921
Fax: (012) 3208-6919
E-mail: pubtc@sid.inpe.br

COMMISSION OF BOARD OF PUBLISHING AND PRESERVATION
OF INPE INTELLECTUAL PRODUCTION (DE/DIR-544):
Chairperson:
Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)
Members:
Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT)
Dr. Amauri Silva Montes - Coordenação Engenharia e Tecnologia Espaciais (ETE)
Dr. André de Castro Milone - Coordenação Ciências Espaciais e Atmosféricas
(CEA)
Dr. Joaquim José Barroso de Castro - Centro de Tecnologias Espaciais (CTE)
Dr. Manoel Alonso Gan - Centro de Previsão de Tempo e Estudos Climáticos
(CPT)
Dra Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação
Dr. Plínio Carlos Alvalá - Centro de Ciência do Sistema Terrestre (CST)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon - Coordenação de Observação da Terra (OBT)
Clayton Martins Pereira - Serviço de Informação e Documentação (SID)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Serviço de Informação e Documentação
(SID)
Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID)
ELECTRONIC EDITING:
Marcelo de Castro Pazos - Serviço de Informação e Documentação (SID)
André Luis Dias Fernandes - Serviço de Informação e Documentação (SID)

pubtc@sid.inpe.br

sid.inpe.br/mtc-m21b/2015/09.08.18.24-TDI

A METHODOLOGY TO APPLY FORMAL
VERIFICATION TO UML-BASED SOFTWARE

Luciana Brasil Rebelo dos Santos

Doctorate Thesis of the Gradu-
ate Course in Applied Computing,
guided by Drs. Valdivino Alexan-
dre de Santiago Júnior, e Nan-
damudi Lankalapalli Vĳaykumar,
approved in Octuber 02, 2015.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34P/3K7T2BB>

INPE
São José dos Campos

2015

http://urlib.net/xx/yy

Cataloging in Publication Data

Santos, Luciana Brasil Rebelo dos.
Sa59m A Methodology to apply formal verification to UML-based

software / Luciana Brasil Rebelo dos Santos. – São José dos Cam-
pos : INPE, 2015.

xxviii + 168 p. ; (sid.inpe.br/mtc-m21b/2015/09.08.18.24-TDI)

Thesis (Doctorate in Applied Computing) – Instituto Nacional
de Pesquisas Espaciais, São José dos Campos, 2015.

Guiding : Drs. Valdivino Alexandre de Santiago Júnior, e Nan-
damudi Lankalapalli Vĳaykumar.

1. UML. 2. Formal verification. 3. Model checking.
4. SOLIMVA. 5. Formal methods. I.Title.

CDU 004.439

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Li-
cense.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/

“Your time is limited, so don’t waste it living someone else’s life.
Don’t be trapped by dogma - which is living with the results of other
people’s thinking. Don’t let the noise of others’ opinions drown out
your own inner voice. And most important, have the courage to

follow your heart and intuition. They somehow already know what
you truly want to become. Everything else is secondary.”

Steve Jobs

v

To my beloved family: my son Pedro, my husband Oiram,
and my parents Raymundo and Lucimar, who made me a

better person and are the real reasons for my happiness.

vii

ACKNOWLEDGEMENTS

It is so hard on just one page to be grateful for all who contributed to this job. It was
not only five years. It was the effort of a lifetime. All my experiences and learnings
were required and applied here. In advance, I apologize if I forgot to quote someone.

First, there could not be different. I want to thank my parents Raymundo and
Lucimar. They both really wanted to bring me into this world. Until today, they are
my examples of force, work, fight, and determination, because they were the first
to show me, with their own example, that if we work hard and steady, we achieve
success. They inspire me in times of trouble! I also thank my brothers, Fátima, Nenê,
Jackson, Jefferson, Dinha, and Lene, who always supported me, each one in their
own way. I can feel the pride and respect that you have for me. I love you all, thank
you! I would also like to remind my brother-in-law Edwaldo, that, in my earliest
memories, was the first of the family to encourage me to attend the best universities
in the country. Only a person with the soul of a poet like him to have that view
before all.

I would like to thank my advisors: Dr. Valdivino and Dr. Vijaykumar. Each one, in
their own way, were essential to the progress of this work. Thank you so much for
your friendship, confidence, seriousness, and support whenever it was necessary. You
both improved my qualities as a researcher and professor. I hope this partnership
will continue in the course of our lives.

I would also like to thank all my Graduate colleagues, in particular: Michelle, Sherfis,
Sabrina, Érica Souza, Érica Golvêa, Juliana Anochi, Juliana Balera, Diego, Marlon,
and Alessandro. Thank you so much for all moments of relaxation and joy. Special
thanks to my first pupil, Eduardo, who was essential in the development of this
work. I hope you decide to continue in Computing.

I want to thank Instituto Nacional de Pesquisas Espaciais (INPE) and CAPES, for
the financial support in this research.

And finally, thank you Oiram, my most precious friend, for being a great partner
and a perfect father for our son. I will never thank you enough for your patience and
dedication. You supplied all the needs of our family while I dedicated to my PhD. I
do love you... and thank you Pedro, now you will have your mom back just for you.

ix

ABSTRACT

Software development organizations aim to add quality to the created products,
especially those dealing with critical systems, which require high quality software.
Formal Methods offer a large potential to provide more effective verification tech-
niques. Besides, Formal Verification methods, such as Model Checking, are best ap-
plied in early stages of system design, when costs are low and benefits can be high,
increasing the quality of systems. Unified Modeling Language (UML) is widely used
for modeling (object-oriented) software, and its use is increasing in the aerospace
industry. Verification and Validation of complex software developed according to
UML is not trivial due to complexity of the software itself, and the several differ-
ent UML models/diagrams that can be used to model behavior and structure of the
software. This PhD thesis presents an extension of a methodology called SOLIMVA,
initially developed to generate model-based system and acceptance test cases con-
sidering Natural Language requirements artifacts (SOLIMVA 1.0), and to detect
incompleteness in software specifications by means of Model Checking (SOLIMVA
2.0). Such an extension generated SOLIMVA 3.0 which transforms up to three dif-
ferent UML behavioral diagrams (sequence, behavioral state machine, and activity)
into a single Transition System to support Model Checking of software developed
in accordance with UML. In SOLIMVA 3.0, properties are formalized based on use
case models or requirements expressed in pure textual notation. The translation
into the Transition System is done for the NuSMV model checker, but there is a
possibility in using other model checkers, such as SPIN. A tool, XML Metadata
Interchange to Transition System (XMITS), was developed to automate some steps
of SOLIMVA 3.0 methodology. The approach was applied to two real case studies
(embedded software) related to project under development at Instituto Nacional de
Pesquisas Espaciais (INPE). Defects were detected within the design of these soft-
ware systems showing the feasibility of the methodology. The main contribution of
this PhD thesis is the transformation of a non-formal language (UML) to a formal
language (language of the NuSMV model checker) towards a greater adoption in
practice of Formal Methods in software development.

Keywords: UML. Formal Verification. Model Checking. SOLIMVA. Formal Methods.

xi

UMA METODOLOGIA PARA APLICAR VERIFICAÇÃO FORMAL
A SOFTWARE DESENVOLVIDO DE ACORDO COM UML

RESUMO

Organizações que desenvolvem software objetivam produzir produtos de software
de qualidade, especialmente aquelas que lidam com sistemas críticos, que deman-
dam software de alta qualidade. Métodos Formais oferecem grande potencial para
prover técnicas de verificação mais efetivas. Além disso, métodos de Verificação For-
mal, como Model Checking, são aplicados de maneira mais eficiente nos estágios
iniciais do projeto de software, quando os custos ainda são baixos e os benefícios
podem ser altos, aumentando a qualidade dos sistemas de software. A Linguagem de
Modelagem Unificada (UML) é consideravelmente utilizada para modelar software
(orientado a objetos), e seu uso tem crescido na indústria aeroespacial. Verificação e
Validação de sistemas complexos desenvolvidos de acordo com UML não são tarefas
triviais, devido à complexidade do software em si, e a diversos diagramas/modelos
UML diferentes que podem ser usados para modelar o comportamento e a estrutura
do sistema. Esta tese de doutorado apresenta uma extensão de uma metodologia
chamada SOLIMVA, desenvolvida inicialmente para gerar casos de teste de sistema
e de aceitação baseados em modelos, considerando requisitos em Linguagem Natu-
ral (SOLIMVA 1.0), e para detectar não completude em especificações de software
utilizando Model Checking (SOLIMVA 2.0). Tal extensão gerou a SOLIMVA 3.0, a
qual transforma até três diferentes diagramas comportamentais da UML (sequên-
cia, atividades e máquina de estado) em um único Sistema de Transição de Estados
para possibilitar a aplicação de Model Checking em software desenvolvido de acordo
com a UML. Na SOLIMVA 3.0, as propriedades são formalizadas baseando-se nos
modelos de casos de uso ou em requisitos expressos em notação textual pura. A
tradução para o Sistema de Transição de Estados é feita para a ferramenta de Mo-
del Checking NuSMV, mas existe a possibilidade de se utilizar outras ferramentas,
como por exemplo, SPIN. Uma ferramenta, XML Metadata Interchange to Tran-
sition System (XMITS), foi desenvolvida para automatizar algumas atividades da
metodologia SOLIMVA 3.0. A abordagem foi aplicada em dois estudos de caso reais
(software embarcado) relacionados a um projeto em desenvolvimento no Instituto
Nacional de Pesquisas Espaciais (INPE). Foram encontrados defeitos nos projetos
desses sistemas de software, mostrando a viabilidade da metodologia. A principal
contribuição desta tese de doutorado é a transformação de uma linguagem não for-
mal (UML) para uma linguagem formal (linguagem de entrada da ferramenta de
Model Checking NuSMV), tendo como objetivo uma maior utilização, na prática, de
Métodos Formais no processo de desenvolvimento de software.

Palavras-chave: UML. Verificação Formal. Model Checking. SOLIMVA. Métodos
Formais.

xiii

LIST OF FIGURES

Page

2.1 Example of UML use case diagram and its description 12
2.2 Example of UML sequence diagram using combined fragment opt 13
2.3 Activity diagram for the use case Ordering 14
2.4 State Machine for the use case Ordering 17
2.5 View of a system verification. Baier and Katoen (2008) 18
2.6 Schematic view of Model Checking. Baier and Katoen (2008) 20
2.7 Visualization of semantics of some basic CTL formulae. Baier and Katoen

(2008) . 24
2.8 Version 1.0 of SOLIMVA methodology. SANTIAGO JÚNIOR (2011) . . 29
2.9 Version 2.0 of SOLIMVA methodology. SANTIAGO JÚNIOR (2011) . . 30

3.1 Version 3.0 of SOLIMVA methodology 41
3.2 Extending SOLIMVA: contribution of this PhD thesis 42
3.3 TS generated from the SD of Figure 2.2 51
3.4 TS generated from the AD of Figure 2.3 54
3.5 TS generated from the SMD of Figure 2.4 57
3.6 Possible situations to generate the unified TS and its respective gvs . . . 59
3.7 Details of the Rules Dictionary . 60
3.8 Combining TSs with no guards . 61
3.9 Combining TSs when one TS has guards and the other one does not . . . 62
3.10 Combining TSs with different guards . 63
3.11 NuSMV code for the TS of Figure 3.3 . 66
3.12 Context-Free Grammar to convert the output of the Converter or of the

TUTS into the NuSMV Model Checker Notation. 67
3.13 ATM Use Case diagram . 68
3.14 Part of ATM Sequence Diagram and its respective TS 69
3.15 Part of ATM Behavioral State Machine Diagram and its respective TS . 70
3.16 Part of ATM Activity Diagram and its respective TS 71
3.17 Part of the final TS obtained from the three diagrams 72
3.18 Part of the NuSMV code for the TS of Figure 3.17 73
3.19 UML diagrams used for ATM example. Adapted from Debbabi et al. (2010) 74
3.20 Counterexample for property 2 . 75

4.1 Activities of SOLIMVA 3.0 automated by XMITS 77
4.2 Flow diagram of XMITS . 78
4.3 XMITS software architecture . 80

xv

4.4 XMITS detailed workflow . 80
4.5 Flow diagram of Converter Module . 81
4.6 Package Diagram of Converter Module 82
4.7 Package Diagram of TUTS Module . 83
4.8 The iteration over the diagrams in the TUTS module 84
4.9 An example of a diagram and its respective tree 86
4.10 Output file for the diagram shown in Figure 4.9 88

5.1 Physical architecture defined for QSEE project. Caption: ADC = Analog-
to-Digital Converter; DAQ = Data Acquisition Board; RS-232 = Rec-
ommended Standard 232; USB = Universal Serial Bus. SANTIAGO
JÚNIOR (2011) . 90

5.2 Scenario 1 represented in Statecharts and adapted to UML State Machine 92
5.3 Sequence Diagram for Scenario 1 . 93
5.4 Activity Diagram for Scenario 1 . 94
5.5 State Machine Diagram for Scenario 1 95
5.6 Part of the unified TS obtained for Scenario 1 98
5.7 Sequence Diagram for Scenario 3 . 99
5.8 State Machine Diagram for Scenario 3 100
5.9 Part of the unified TS obtained for Scenario 3 101
5.10 Sequence Diagram 1 for Scenario 8 . 102
5.11 Sequence Diagram 2 for Scenario 8 . 103
5.12 Sequence Diagram 3 for Scenario 8 . 104
5.13 State Machine Diagram for Scenario 8 105
5.14 Part of the unified TS obtained for Scenario 8 108
5.15 Simplified physical architecture of the protoMIRAX balloon experiment.

XRC: X-ray camera; ACS: Attitude Control System; TEMPDXA: Tem-
perature monitoring equipment; GPSDXA: GPS unit; OBDH: On-Board
Data Handling Subsystem; PDCpM: Payload Data Handling Computer;
DC-DC Conv: DC-DC Converter; PRESN: Pressure Sensor; PSS: Power
Supply Subsystem; FCTS: Flight Control and Telecommunications Sub-
system. Braga et al. (2015) . 110

5.16 Sequence Diagram for Scenario 6 . 112
5.17 The unified TS obtained for Scenario 6 114
5.18 Sequence Diagram for Scenario 7 . 115
5.19 The unified TS obtained for Scenario 7 116
5.20 Sequence Diagram for Scenario 8 . 117
5.21 Part of the unified TS obtained for Scenario 8 118

C.1 Screen of Modelio . 161

xvi

C.2 Adding the build path in Eclipse . 161
C.3 Preparing the class to run XMITS . 162
C.4 Java class ready to run XMITS . 162
C.5 Output as a Transition System displayed on the console 163
C.6 Output as an input of NuSMV displayed on the console 164
C.7 Output as an input file of NuSMV . 165
C.8 Class Diagram of Reader Module . 166
C.9 Class Diagram of Bridge Module . 167
C.10 Class Diagram of Global Module . 168

xvii

LIST OF TABLES

Page

2.1 Logical connectives, path quantifiers, and temporal modalities 22
2.2 Logical connectives, path quantifiers, and temporal modalities expressed

in NuSMV notation . 27
2.3 Comparison between the most relevant research related to SOLIMVA 3.0 36

3.1 Translation from SD into TS . 48
3.2 Mapping elements of the SD into the generic categories 48
3.3 Translation from AD into TS . 52
3.4 Mapping elements of the AD into the generic categories 52
3.5 Translation from SMD into TS . 55
3.6 Mapping elements of the SMD into the generic categories 57
3.7 Translation from the unified TS into NuSMV 65

5.1 Statistics about Scenario 1 of SWPDC 98
5.2 Statistics about Scenario 3 of SWPDC 101
5.3 Commands and its representation on the TS 106
5.4 Commands and its representation on the TS 107
5.5 Statistics about Scenario 8 of SWPDC 107
5.6 Summary of the results of the eight scenarios analyzed for SWPDC . . . 108
5.7 Commands and its representation on the TS 113
5.8 Commands and its representation on the TS 113
5.9 Statistics about Scenario 6 of SWPDCpM 113
5.10 Commands and its representation on the TS 115
5.11 Statistics about Scenario 7 of SWPDCpM 115
5.12 Statistics about Scenario 8 of SWPDCpM 118
5.13 Summary of the results of the twelve scenarios analyzed for SWPDCpM 119
5.14 Causes for encountered defects . 120

A.1 Verified Properties of SWPDC case study 137

B.1 Verified Properties of SWPDCpM case study 155

xix

LIST OF ABBREVIATIONS

SA – Software Assurance
NASA – National Aeronautics and Space Administration
V&V – Verification and Validation
UML – Unified Modeling Language
TS – Transition System
SWPDC – Software for the Payload Data Handling Computer
SWPDCpM – Software for the Payload Data Handling Computer protoMIRAX
IEEE – Institute of Electrical and Electronics Engineers
XML – eXtensible Markup Language
XMITS – XML Metadata Interchange to Transition System
FSM – Finite State Machine
XMI – XML Metadata Interchange
LTL – Linear Temporal Logic
CTL – Computation Tree Logic
NL – Natural Language
GTSC – Geração Automática de Casos de Teste Baseada em Statecharts
IUT – Implementation Under Test
SD – Sequence Diagram
AD – Activity Diagram
SMD – State Machine Diagram
INPE – Instituto Nacional de Pesquisas Espaciais
Std – Standard
UC – Use Case
alt – alternatives
opt – option
par – parallel
gvs – guard value structure
txt – extension for text file
DC – Do not care
ATM – Automated Teller Machine
PIN – Personal Identification Number
OMG – Object Management Group
BNF – Backus-Naur Form
IDE – Integrated Development Environment
TUTS – The Unified Transition System
SAX – Simple API for XML
QSEE – Qualidade do Software Embarcado em Aplicações Espaciais
CIFASIS – Centro Internacional Franco Argentino de Ciencias de la Información

– y de Sistemas
OBDH – On-Board Data Handling

xxi

PDC – Payload Data Handling Computer
EPP – Event Pre-Processors
SRS – Software Requirements Specification
RPQ – Relatório de Pesquisa
PCD – Power Conditioning Unit
POST – Power-On Self Test
SRAM – Static Random Access Memory
SDRAM – Synchronous Dynamic Random Access Memory
CRX – Subsistema Câmera de Raios X
ACS – Attitude Control and Pointing Subsystem
FCTS – Flight Control and Telecommunications Subsystem
TM&TC – Telemetry and Command Subsystem
PSS – Power Supply Subsystem
GPS – Global Position System
SGB – Board Management subsystem
PC – Personal Computer
AMD – Advanced Micro Devices
RTEMS – Real-Time Executive for Multiprocessor Systems
CTL – Control
AP – Application Process
ESS – Estação de Solo
HK – Housekeeping
SCA – Subsistema de Controle de Atitude
TC – Telecommand
TM – Telemetry
VC – Verificação de Comando

xxii

LIST OF SYMBOLS

s – Segundos
ms – Milissegundos
MHz – Megahertz
MB – Megabyte

xxiii

CONTENTS

Page

1 INTRODUCTION . 1
1.1 Motivation . 2
1.2 Objective . 4
1.3 Proposal to Meet the Objective . 4
1.4 Contributions . 6
1.5 Document Organization . 7

2 THEORETICAL BASIS . 9
2.1 Basic Concepts . 9
2.2 Unified Modeling Language - UML . 10
2.2.1 Use Case . 11
2.2.2 Sequence Diagram . 11
2.2.3 Activity Diagram . 13
2.2.4 Behavioral State Machine Diagram . 15
2.3 Formal Verification Methods . 17
2.3.1 Theorem Proving . 18
2.3.2 Model Checking . 19
2.3.2.1 Temporal Logic and Properties . 21
2.3.2.1.1 - Linear Temporal Logic (LTL) . 23
2.3.2.1.2 - Computation Tree Logic (CTL) . 23
2.3.2.1.3 - Properties . 24
2.3.2.2 NuSMV . 25
2.3.2.3 Strengths and Weaknesses . 27
2.4 SOLIMVA 1.0 and 2.0 Methodologies . 28
2.5 Formal Verification and UML . 31
2.6 Final Remarks . 37

3 APPROACH TO APPLY FORMAL VERIFICATION TO UML-
BASED SOFTWARE . 39

3.1 The SOLIMVA 3.0 Methodology . 39
3.2 Transforming UML Behavioral Diagrams into Transition Systems (TS) . 46
3.2.1 Generation of Individual TSs . 46
3.2.1.1 Translating Sequence Diagrams . 46

xxv

3.2.1.2 Translating Activity Diagrams . 50
3.2.1.3 Translating State Machine Diagrams 54
3.2.2 The Unified Transition System . 57
3.3 Generation of Model Checker Notation 63
3.4 A Running Example . 68
3.5 Final Remarks . 75

4 XMITS - XML Metadata Interchange to Transition System . . . 77
4.1 XMITS Architecture . 79
4.1.1 The Reader Module . 79
4.1.2 The Converter Module . 81
4.1.3 The TUTS Module . 82
4.1.4 The Bridge Module . 85
4.1.5 The Global Module . 86
4.2 Final Remarks . 87

5 APPLICATION OF SOLIMVA 3.0 TO SPACE SOFTWARE . . 89
5.1 SWPDC - Software for the Payload Data Handling Computer 89
5.1.1 Scenarios of SWPDC . 91
5.1.1.1 Scenario 1: PDC Initiation Process 93
5.1.1.2 Scenario 3: Changing software parameters in the Safety Operation

Mode . 97
5.1.1.3 Scenario 8: Housekeeping Data Transmission in the Nominal Opera-

tion Mode, Robustness (reception), Load new programs 101
5.1.2 Summary of the results for SWPDC case study 107
5.2 SWPDCpM - Software for the Payload Data Handling Computer - pro-

toMIRAX experiment . 109
5.2.1 Scenarios of SWPDCpM . 111
5.2.1.1 Scenario 6: Changing Computer Operation Mode 111
5.2.1.2 Scenario 7: Distribute Commands On and Off 114
5.2.1.3 Scenario 8: Control of Dump Memory Process 116
5.2.2 Summary of the results of SWPDCpM 119
5.3 Final Remarks . 119

6 CONCLUSIONS AND FINAL REMARKS 121
6.1 Limitations . 124
6.2 Suggestions for Future Research . 124

xxvi

REFERENCES . 127

APPENDIX A - ADDITIONAL INFORMATION ABOUT SW-
PDC CASE STUDY . 137
A.1 Verified Properties . 137
A.2 Tansition System for Scenario 1 . 140
A.3 NuSMV File for Scenario 1 . 151

APPENDIX B - ADDITIONAL INFORMATION ABOUT SWPD-
CpM CASE STUDY. 155
B.1 Verified Properties . 155
B.2 Tansition System for Scenario 6 . 158
B.3 NuSMV File for Scenario 6 . 159

APPENDIX C - XMITS USABILITY ASPECTS 161
C.1 XMITS Class Diagrams . 164

xxvii

1 INTRODUCTION

Almost 30 years ago, Parnas and Clements (PARNAS; CLEMENTS, 1986) argued that
“... the picture of the software designer deriving his design in a rational, error-free
way from a statement of requirements is quite unrealistic. No system has ever been
developed in that way, and probably none ever will.” After such a long time, profes-
sionals still face the problem of producing high quality software systems. Yet, this
is not a privilege of the software industry; quality is a desirable property related
to every single product, whatever is its scope. As a result, quality is an important
concept in the context of Software Engineering. Godbole (GODBOLE, 2006) presents
several definitions of quality, to name a few, defect level, defect origins, product com-
plexity, conformance to requirements, user satisfaction, and robustness. Regardless
of definition, developers agree that high-quality software is an important goal and
achieving it requires huge effort from organizations involved in developing software.

Critical systems demand high reliable software, and it is essential to ensure that
the software has the fewest number of defects when it is released for use. Software
Assurance (SA), according to the National Aeronautics and Space Administration
(NASA) (NASA, 2009), includes several disciplines, to name a few: Software Quality
(comprised of the functions of Software Quality Engineering, Software Quality Assur-
ance and Software Quality Control); Software Safety; Software Reliability; Software
Verification and Validation; and Software Independent Verification and Validation.
Hence, Verification and Validation (V&V) plays a key role of getting quality and
has been gaining importance in academia as well as in private sector.

V&V activities are usually divided into static and dynamic. The static ones do not
require the execution or even the existence of a program or executable model to be
performed. The dynamic ones are based on the execution of a program or model
(DELAMARO et al., 2007). V&V activities aim to ensure that:

a) the software is being correctly developed,

b) the software that is being developed is correct.

V&V encompasses a large range of activities and techniques, of which one can
mention testing (MARTHUR, 2008)(DELAMARO et al., 2007), inspection (IEEE,
1990)(GILB et al., 1993), and Formal Verification (BAIER; KATOEN, 2008) (CLARKE

et al., 1999), (SANTIAGO JÚNIOR, 2011). To determine whether there are any defects
in human thoughts, actions, and the products generated, the process of testing is

1

applied. The primary goal of testing is to determine if the thoughts, actions, and
products are as desired, that is, they conform to the requirements (MARTHUR, 2008).
Another technique is inspection. It is a technique that relies on visual examina-
tion of developed products to detect defects, violation of development standards,
and other problems (IEEE, 1990). Software requirements specifications, design doc-
uments, source code, and UML diagrams are examples of deliverables which can be
examined within inspection. On the other hand, Formal Verification refers to math-
ematical analysis of proving or disproving the correctness of a hardware or software
system with respect to a certain specification or property (GANAI; GUPTA, 2007).

V&V activities are usually time-consuming, specially if critical/intricate systems are
considered. Techniques are developed to facilitate and make the efforts easier with
these tasks.

1.1 Motivation

A recent paper (PETRE, 2013) reports interviews with 50 professional software en-
gineers in 50 companies about the use of the Unified Modeling Language (UML)
(OMG, 2015) in practice. Although considered as “de facto” standard by some au-
thors, the majority of professionals interviewed simply do not use UML, and those
who do use it tend to do selectively and often informally. Lack of context, overhead
of understanding the notations, and issues of synchronization/consistency are some
problems mentioned by the practitioners.

On the other hand, a survey (UBM TECH, 2013) of the embedded systems market
worldwide presented in the same year (2013) of the study above shows that 19%
of the professionals report on using UML for system level design. This survey was
undertaken with 2,098 professionals which amounts to 400 practitioners claiming
their organizations adopt UML. This is an extensive survey including organizations
around the world and addressing various aspects of the development of embedded
systems, such as design environment, embedded design process, operating systems,
microprocessors used, system level design (where UML is cited), among others. De-
spite the criticisms presented in Petre (PETRE, 2013), this embedded market survey
shows that UML is indeed used in practice, even though its use might be specific
to a particular part (e.g. design) of the project in many cases. Modeling systems
for object oriented and/or embedded software development is an approach that has
been employed by researchers and practitioners, specially by means of the several
UML behavioral diagrams.

2

In UML, dynamic aspects of system behavior can be specified by interactions (i.e.
sequence diagrams). UML behavioral state machine (variant of Harel’s Statecharts
(HAREL, 1987)) and activity diagrams give a view of the system that is associated
with instances of classes. These types of diagrams represent complementary views of
the system, but, at the same time, hide redundant descriptions of the same aspects of
the system. This gives the opportunity for V&V techniques to ensure the consistency
of these descriptions (KNAPP; MERZ, 2002). Nevertheless, V&V of complex software
developed according to UML is not trivial due to complexity of the software itself,
and the several different UML models/diagrams that can be used to model behavior
and structure of the software.

A major challenge in software and systems development process is to advance defect
detection at early stages of their life-cycles. Formal Methods offer a large potential to
obtain an early integration of verification in the design process, and to provide more
effective verification techniques (BAIER; KATOEN, 2008). Besides, Formal Verification
methods, Model Checking and Theorem Proving, are best applied in early stages of
system design, when costs are low and benefits can be high, increasing the quality
of systems.

Model Checking (BAIER; KATOEN, 2008),(CLARKE; EMERSON, 2008),(QUEILLE;

SIFAKIS, 1982) is a Formal Verification method which has been receiving much at-
tention from academic community due to its mathematical foundations. However,
Model Checking is not widely used in practice due to aspects such as high learning
curve and cost, and the lack of commercially supported tools. Therefore, the level
of automation for Formal Verification methods should be increased so that they can
be used as easily as using a compiler. In this line, approaches that translate indus-
try non-formal standards such as UML to model checkers notation are a great step
towards a wide acceptance of Formal Methods in every day software development
(SANTIAGO JÚNIOR, 2011). As stated by Schäfer, “...adoption of Formal Methods
will be easier when they can be applied within standard development process and
when they are based on standard notation” (SCHÄFER et al., 2001).

Transition System, also called finite-state model, is a standard class of models to
represent hardware and software systems (BAIER; KATOEN, 2008). They are often
used as models to describe the behavior of systems. Basically, they are directed
graphs where nodes represents states, and edges model transitions, i.e, state changes.
Such a system evolves through its state space assuming different configurations,
where a configuration can be understood as the set of states to which the system

3

abides at any particular moment (DEBBABI et al., 2010). Model Checking is a formal
automatic verification technique for finite state systems that checks temporal logic
specifications on a given model. In the context of verifying design models expressed as
UML behavioral diagrams, several works explore the idea of Transition Systems, but
using single diagrams (MIKK et al., 1998),(LATELLA et al., 1999),(KONRAD; CHENG,
2006),(LAM, 2007),(ESHUIS, 2006),(ANDERSON et al., 1996),(DUBROVIN; JUNTTILA,
2008),(UCHITEL; KRAMER, 2001). However, Transition System concept has a general
nature and a broad range of behavioral diagrams, such as activity, sequence, and
behavioral state machine can be conveniently adapted to use this concept (DEBBABI

et al., 2010).

1.2 Objective

Considering all that has been exposed so far, the objective of this PhD thesis
is to transform a non-formal language (UML) to a formal language (lan-
guage of a model checker) in order to detect defects within the design
of the software product. An effort to achieve this goal, where the mathematical
complexity of Model Checking is partially hidden from the professional and using
UML as the input notation for modeling, can generate a scientific/technological so-
lution with great potential to be used for improving the quality of real and complex
software products.

1.3 Proposal to Meet the Objective

In order to achieve the goal set for this PhD thesis, a methodology 1 called SOLIMVA
(SANTIAGO JÚNIOR, 2011) was extended and thus this work developed SOLIMVA
3.0 (SANTOS et al., 2014a),(SANTOS et al., 2014b),(ERAS et al., 2015). The approach
proposed in SOLIMVA 3.0 considers the properties generated from UML use case
models or requirements expressed in pure textual notation (Natural Language), and
the Transition System translated from up to three UML behavioral diagrams: se-
quence, activity, and behavioral state machine. Then, Model Checking can be used

1According to the Oxford Dictionary (PRESS, 2015), a methodology is “a system of methods
used in a particular area of study or activity”. On the other hand, a method is “a particular
procedure for accomplishing or approaching something, especially a systematic or established one”.
Thus, both versions 1.0 and 2.0 of the SOLIMVA methodology as well as the version 3.0 of this
methodology (contribution of this PhD thesis) would be more appropriately defined as “method”
rather than “methodology”. However, in the context of Software Engineering, words “methodology”
and “method” are largely used interchangeably, although many researchers believe it is important to
differentiate between them. But there is no consensus as can be observed in some discussions (WIKI,
2015). Therefore, this PhD thesis will follow the traditional nomenclature adopted in Software
Engineering and the term “SOLIMVA methodology” will be used instead of “SOLIMVA method”.

4

to ensure that the behavior of the system satisfies the requirements, that is, whether
the properties are satisfied by the Transition System that represents the behavior of
the application under evaluation. It is important to mention that such a model, au-
tomatically generated, will have a unified view of different perspectives of behavioral
modeling of the system obtained by using these three UML diagrams.

The verification process established in SOLIMVA 3.0 essentially consists of sequence
of scenarios to be checked. The analyst gathers requirements from software specifi-
cations. In practice, such requirements are generally expressed within UML use case
models or simply in Natural Language. SOLIMVA 3.0 suggests using specification
patterns (DWYER et al., 1999) to direct the formalization of properties in Computa-
tion Tree Logic (BAIER; KATOEN, 2008). The UML diagrams (sequence, behavioral
state machine, and activity) are input to a tool developed to support SOLIMVA
3.0: XML Metadata Interchange to Transition System (XMITS) (SANTOS et al.,
2014b),(ERAS et al., 2015). Hence, XMITS automatically generates a single, unified
TS in the notation of the NuSMV model checker (KESSLER, 2015). By running
NuSMV with the unified TS and the properties in CTL, it is possible to determine
if there are defects with the design of the software product. In case the TS does not
satisfy a certain property, a counterexample is presented by the model checker.

In order to facilitate the evaluation of the approach, case studies were conducted
applying the methodology/tool to two real case studies (embedded software) of the
space application: SWPDC - Software for the Payload Data Handling Computer
(SANTIAGO et al., 2007) and SWPDCpM - Software for the Payload Data Handling
Computer - protoMIRAX Experiment (BRAGA et al., 2015). These software systems
are related to the balloon-borne high energy astrophysics experiment called pro-
toMIRAX under development at Instituto Nacional de Pesquisas Espaciais (INPE -
National Institute for Space Research).

As previously pointed out, SOLIMVA 3.0 extends SOLIMVA, a methodology ini-
tially developed to generate model-based system and acceptance test cases con-
sidering Natural Language requirements artifacts (SOLIMVA 1.0), and to detect
incompleteness in software specifications by means of Model Checking (SOLIMVA
2.0) (SANTIAGO JÚNIOR, 2011).

By including Formal Verification in the SOLIMVA methodology, this enriches the
V&V process, addressing not only testing and inspection but also Formal Verifica-
tion. The reasons why the SOLIMVA methodology have been updated in the order
of versions (1.0, 2.0, 3.0) and not of releases (e.g. 1.0, 1.1) is precisely because each

5

new version deals with a different V&V technique (testing - 1.0, inspection - 2.0, For-
mal Verification - 3.0). As stated by Mathur (MARTHUR, 2008), Formal Verification
can be viewed as a complementary technique to software testing. Thus, combining
both software testing and Formal Verification can reduce the likelihood of failures.

1.4 Contributions

The main contribution of this thesis is the transformation of a non-formal
language (UML) to a formal language (language of the NuSMV model checker)
towards a greater adoption in practice of Formal Methods in software de-
velopment. The methodology can be applied throughout the lifecycle, even before
software coding. This strategy overcomes some of the limitations of existing ap-
proaches (MIKK et al., 1998),(LATELLA et al., 1999),(KONRAD; CHENG, 2006),(LAM,
2007),(ESHUIS, 2006),(ANDERSON et al., 1996),(DUBROVIN; JUNTTILA, 2008),(UCHI-

TEL; KRAMER, 2001),(BARESI et al., 2011),(MIYAZAWA et al., 2013),(BEATO et al.,
2005),(CORTELLESSA; MIRANDOLA, 2002),(MERSEGUER et al., 2002), because it has
the following features:

a) it uses different behavioral diagrams, when most of the studies use only
one single diagram;

b) it detects design defects considering functional requirements of the software
product, when some researches focus on specific types of requirements, such
as performance;

c) it demands only behavioral diagrams, that are often present in software
documentation, when other works require a very large amount of artifacts,
including for example, structural and behavioral diagrams.

Additionally, the following secondary contributions can be asserted:

a) Implementation of a tool, XMITS, that allows the automated translation
of the UML diagrams into the notation of a recognized model checker;

b) Application of SOLIMVA 3.0 methodology to two real space software prod-
ucts, SWPDC and SWPDCpM, showing the potential for a wide accep-
tance of Formal Verification for the development of complex software sys-
tems.

6

1.5 Document Organization

This chapter has presented the context, the motivations that led to the development
of this PhD thesis, the objective, as well as the contributions of this PhD thesis.
The organization of the remaining text is as follows:

a) Chapter 2 provides the theoretical basis for developing this PhD thesis,
including basic concepts, UML and its diagrams, Formal Verification and
Model Checking, an overview of the SOLIMVA methodology, and related
work, emphasizing its differences with respect to this thesis.

b) Chapter 3 presents the proposal itself, that is, the solution to use For-
mal Verification for software developed in accordance with UML. Version
3.0 of SOLIMVA methodology is explained, through a running example,
adressing Formal Verification.

c) In Chapter 4, the tool that was developed to support the proposed method-
ology is explained, as well as its architecture.

d) In Chapter 5, the results of the application of the methodology to both
case studies, SWPDC and SWPDCpM, are presented.

e) Conclusions, contributions, final remarks, and future work are in Chapter
6.

f) Appendix A contains additional informations about SWPDC case study.
Appendix B contains additional informations about SWPDCpM case
study. Appendix C contains XMITS usability aspects and class diagrams.

7

2 THEORETICAL BASIS

This chapter presents the theoretical basis for developing this PhD thesis. The issues
discussed are basic concepts related to V&V, UML, Formal Verification and Model
Checking, and SOLIMVA 1.0 and 2.0 methodologies. Besides, related research lit-
erature is presented where some approaches that use Formal Verification and UML
are emphasized. The main differences between these studies and this PhD thesis are
also stressed.

2.1 Basic Concepts

As mentioned in Chapter 1, V&V is a discipline related to Software Assurance (SA).
Verification refers to tasks that ensure the software correctly implements a specific
task. Validation refers to other tasks which ensure that the software that has been
built is according to customer requirements. Boehm states the same in a different
way (BOEHM, 1981):

Verification: “Are we building the product right?”

Validation: “Are we building the right product?”

There is also a definition according to the IEEE (Institute of Electrical and Elec-
tronics Engineers) Standard Glossary of Software Engineering Terminology (IEEE,
1990) that states:

Verification: “the process of evaluating a system or component to determine whether
the products of a given development phase satisfy the conditions imposed at the
beginning of that phase”.

Validation: “the process of evaluating a system or component during or at the end
of the development process to determine whether it satisfies specified requirements”.

Based on the above definitions, Validation refers to check that the sofware is accord-
ing to requirements. Verification helps to determine whether a high-quality software
has been produced, but does not garantee that the software is indeed useful.

There is still another definition for Verification, acording to IEEE (IEEE, 1990):
Verification is a formal proof of program correctness. This willl be the adopted
definition when Formal Verification is introduced.

Other important concepts for Software Engineering are: fault, error, failure, and

9

defect. In this thesis, it is utilized the definition given also by the IEEE. According
to the IEEE Std 610.12-1990 (IEEE, 1990):

Fault: an incorrect step, process, or data definition. For example, an incorrect in-
struction in a computer program.

Error: the difference between a computed, observed, or measured value or condition
and the true, specified, or theoretically correct value or condition. For example, a
difference of 30 meters between a computed result and the correct result.

Failure: (1) An incorrect result. For example, a computed result of 12 when the
correct result is 10. (2) The inability of a system or component to perform its
required functions within specified performance requirements.

Because of the definition, a fault may or may not lead to an error which, in turn,
may or may not lead to a failure. Hence, not always a fault causes an error because
sometimes a part of the source code has never been exercised neither during the
testing activities nor after the product was delivered to the customer.

Defect is another term used as a synonym of fault. So, an incorrect instruction can
be considered both a fault or a defect.

2.2 Unified Modeling Language - UML

UML (OMG, 2015) is a visual language that has been developed to support the
design of complex object-oriented systems. It was introduced in the late 90s, and
is currently in version 2.5 (when implementing the methodology/tool of this work,
UML 2.4.1 was used, because it was the available version). It contains two parts:
a model, and a set of diagrams. The model can be considered as a description of
the diagrams, which are used for visualization (MAKINEN, 2007). UML diagrams
can be divided into two broad categories: structural and behavioral diagrams. The
UML structural diagrams are used to model the static organization of the different
elements in the system, whereas behavioral diagrams focus on the dynamic aspects of
the system (SARMA; MALL, 2009). As the interest is in verifying the system behavior,
UML behavioral diagrams were used. This section discusses only the UML diagrams
that are relevant in the context of this thesis.

10

2.2.1 Use Case

“A use case is a description of the possible sequences of interactions between the
system under discussion and its external actors, related to a particular goal” (COCK-

BURN, 2000). Use cases describe the business rules, and because of this, they are
excellent to understand what the system may or may not do, according to the user
perpective. A use case describes how a user interacts with the system by defining
the steps required to accomplish a specific goal (PRESSMAN, 2010). The purpose of
a use case is to define a piece of coherent behavior without revealing the internal
structure of the system.

A use case typically represents a sequence of interactions between the user and the
system. These interactions consist of one mainline sequence (’main success scenario’)
and some variations (’extensions and sub-variations’) (COCKBURN, 2000). The main-
line sequence represents the normal interaction between a user and the system, that
is, the most occurring sequence of interactions. In this thesis, the mainline sequence
and each one of its variations are considered scenarios.

Use cases can be represented by drawing a use case diagram and writing an accom-
panying text elaborating the drawing, as can be seen in Figure 2.1. It shows a use
case diagram representing a fast food machine, as well as a description of the use
case Ordering. In this thesis, requirements and properties are extracted from the use
cases description or from requirements described in Natural Language.

2.2.2 Sequence Diagram

A sequence diagram describes how groups of objects collaborate on some behavior
over time. It registers the behavior of a single use case and displays objects and
messages passed between these objects in the use case. The sequence diagram follows
the approach based on temporal order of the messages, that is, the emphasis is on
the temporal distribution of messages.

A sequence diagram shows interaction among objects as a two dimensional chart.
The chart is read from top to bottom. The objects participating in the interaction
are shown at the top of the chart as boxes attached to a vertical dashed line. The
vertical dashed line is called the object’s lifeline. The lifeline indicates the existence of
the object at any particular point of time. The messages are shown in chronological
order from the top to the bottom. That is, reading the diagram from the top to
the bottom would show the sequence in which the messages occur. Each message is

11

FastFoodMachine

Customer

Bank

Clerk

Serviceterminal

Register Customer

Ordering

Checkout

Receive Payment

Issue Invoice

UC02 - Ordering
Description - This use case allows the customer to request an order.
Actors - The customer and the Service Terminal.
Pre-Conditions - The customer must be registered in the system.
Pos-Condition - After ordering, the system shows the checkout screen.
Flow tasks:
	- The terminal asks for the customer data;
	- If data is correct, the system shows the options;
	- The customer requests the order;
	- The system records the ordering;
	- The use case is finalized.

Figure 2.1 - Example of UML use case diagram and its description

labeled with the message name. Some control information can also be included.

UML 2.0 introduced the concept of a combined fragment to capture complex proce-
dural logic in a sequence diagram. A combined fragment is one or more processing
sequences grouped together and executed under specific named circunstances. Some
of the important fragments are (OMG, 2011):

alternatives (alt): it works as an if-else in procedural logic.
option (opt): it is like the alt fragment, but without else.
parallel (par): it models parallel messages.

12

loop (loop): it represents the loop in procedural logic.

The fragments alt, opt, and loop have guards which can assume values true or false.
Figure 2.2 shows a sequence diagram for the use case Ordering of the fast food
machine. The messages that are within the combined fragment opt only occur if
the value of guard data ok is true. Otherwise, only the first and the last messages
are sent. This occurs for all fragments which have guards: the messages within the
fragment only are sent if the guard is set with value true.

Customer TerminalService

Register

opt (data ok)

DisplayOptions

ChooseOptions

RecordOrder

DisplayFinalScreen

Figure 2.2 - Example of UML sequence diagram using combined fragment opt

In short, system requirements are represented in the use cases, i.e., use cases model
what is the problem. The sequence diagrams show how the model will get the
desired objective. This diagram is constructed from the use cases diagrams, showing
interactions between objects in a scenario.

2.2.3 Activity Diagram

An activity diagram depicts the dynamic behavior of a system (or part of a system)
through the flow of control between actions that the system performs (PRESSMAN,

13

2010). It is similar to a flowchart and can show concurrent flows. They evaluate better
the conditions by which the instances come to certain decisions. It is common to
find definitions of activity diagrams that consider them as flowcharts.

Besides, an activity diagram focuses on representing activities or parts of processing
which may or may not correspond to the methods of classes. An activity is a state
with an internal action and one or more outgoing transitions which automatically
follow the termination of the internal activity. If an activity has more than one
outgoing transitions, this must be identified through conditions.

Ask customer data

Show products list

data ok

else

Show message: "Ask order?"

Record ordering data

yes

no

Display final screen

Figure 2.3 - Activity diagram for the use case Ordering

14

Activity diagrams can be very useful to understand complex processing activities
involving many components. Later these diagrams can be used to develop interaction
diagrams which help to allocate activities (responsibilities) to classes. They support
description of parallel activities and synchronization aspects involved in different
activities. Main components of such diagrams are (OMG, 2011):

Activities: model the behavior to be performed.
Transition: models the flow of an activity to another.
Action: models transformation.
Decision: depending on a condition, it shows different transitions. Decisions are
accompanied by boolean guards.
Fork: it separates a transition in several other transitions that are executed at the
same time.
Join: junction of transitions that come from fork.

Figure 2.3 shows an activity diagram for the use case Ordering.

2.2.4 Behavioral State Machine Diagram

Behavioral state machine models an object’s states, the actions that are performed
depending on those states, and the transitions between the states of the objects.
They are designed to evaluate the behavior of instances, i.e., the sequence of actions
that affect the progress of instances, based on a reaction to events. State machine
can be used to specify behavior of various model elements. For example, they can
be used to model the behavior of individual entities (e.g., class instances). The state
machine formalism described is an object-based variant of Harel statecharts (OMG,
2011).

Behavioral state machine diagram is also called statechart diagram. In UML, each
class has an optional state machine that describes the behavior of its instances (the
objects). It is normally used to model how the state of an object changes in its
lifetime. Statechart diagrams are good at describing how the behavior of an object
changes across several use case executions. Statecharts diagrams are based on the
finite state machine (FSM) formalism. This state machine receives events from the
environment and reacts to them. This diagram specifies the possible states that an
object may assume, the transitions allowed at each state, the events that can cause
transitions to occur and the actions that may occur in response to events.

States of an object are essentially determined by the values that certain variables

15

(attributes) of the object may assume. A Statechart is hierarchical model of a system
and introduces the concept of a composite state (also called nested state). Actions
are associated with transitions and are considered to be processes that occur quickly
and are not interruptible. Activities are associated with states and can take longer.
An activity can be interrupted by an event.

A transition is shown as an arrow between two states. Normally, the name of the
event which causes the transition is placed along side the arrow. A guard to the
transition can also be assigned. A guard is a boolean logic condition. The transition
can take place only if the guard evaluates to true. The syntax for the label of the
transition is shown in 3 parts: event[guard]/action.

A state in a statechart diagram can either be simple or composite type. A simple
state, also known as a basic state, does not have any sub-states. A composite state,
on the other hand, consists of one or more regions. A region is a container for sub-
states. The notion of a composite state makes a statechart model a hierarchical
diagram. A composite state can either be sequential or concurrent. In a sequential
type of composite state, the state is considered to be an exclusive-or of its sub-states.
That is, a composite state can be in any one of its sub-states, but not in more than
one sub-state at any time. But, in a concurrent type, the state is determined by an
and logic of its sub-states and the object is considered to be in all the concurrent
states at the same time. Figure 2.4 shows an example of Behavioral State Machine
for the use case Ordering. It is possible to see a composite state (Serving customer).

Activity X Behavioral State Machine

Both state machine and activity diagrams are state machines. Any state machine
aims to assess the dynamic aspects of a system model and the following elements
are always identified: states, inputs, outputs, transitions, an initial state, and a final
state (MATOS, 2002).

Both activity and Statechart diagrams model the dynamic behavior of the system.
Activity diagram is essentially a flowchart showing flow of control from activity to
activity. A statechart diagram shows a state machine emphasizing the flow of control
from state to state.

Activity diagrams may stand alone to visualize, specify, and document the dynamics
of a society of objects or they may be used to model the flow of control of an oper-
ation. Statechart diagrams may be attached to classes, use cases, or entire systems

16

Idle

Validating Data

Displaying Options

Serving Customer

Registering Order

Back

Data
Entry

Invalid
Data

Figure 2.4 - State Machine for the use case Ordering

in order to visualize, specify, and document the dynamics of an individual object.

2.3 Formal Verification Methods

Formal Verification refers to mathematical analysis of proving or disproving the cor-
rectness of a hardware or software system with respect to a certain specification or
property (GANAI; GUPTA, 2007). Formal Verification constructs mathematical proofs
about the behavior of computer hardware or software, and has strong connections
with theoretical computing. The methods for analysis are known as Formal Veri-
fication Methods and they can be broadly classified into: Theorem Proving and
Model Checking. Both are explained in the next sections.

The properties to be validated are mainly obtained from the system’s specification.
The specification describes what the system has to do and what not, and thus can
be used as basis for any verification activity. A defect is found if the system does
not satisfy one of the specification’s properties. The system is said to be “correct”

17

whenever it satisfies all properties obtained from its specification. Therefore, cor-
rectness is relative to a specification, and is not an absolute property of a system
(BAIER; KATOEN, 2008). A view of verification is presented in Figure 2.5.

Figure 2.5 - View of a system verification. Baier and Katoen (2008)

Model-based verification techniques are based on models describing the possible
system behavior in a mathematically precise and unambiguous manner. The system
models are accompanied by algorithms that systematically explore all states of the
system model. This provides the basis for a whole range of verification techniques
such as exhaustive exploration (Model Checking) to experiments with a restrictive
set of scenarios in the model (simulation), or in reality (testing) (BAIER; KATOEN,
2008). The next section gives a brief description of Theorem Proving.

2.3.1 Theorem Proving

Theorem Proving is a proof-based approach to Formal Verification. In this method,
the system that is being analyzed is modelled as a set of mathematical definitions
using formal mathematical logic. The desired properties of the system are derived
as theorems that follow from these definitions (AMJAD, 2004). There is a need to
prove theorems in order to establish mathematical theorems, as well as in order to
establish the correctness of software and hardware.

According to (SETZER, 2008) there are four ways of Theorem Proving:

a) Theorem Proving by hand: this is what mathematicians do all the time.
As it is very human-dependent, there is the problem of errors and it is

18

unsuitable for verifying large software and hardware systems;

b) Theorem Proving with some machine support: machine checks the syn-
tax of the statements, creates a good layout, translates it into different
languages, but Theorem Proving is still done by hand;

c) Interactive Theorem Proving: proofs are fully checked by the system. How-
ever, proof steps have to be carried out by the user;

d) Automated Theorem Proving: the theorem is shown by the machine. It is
the task of the user to state the theorem, bring it into a form so that it
can be solved.

Techniques have been developed to automate the process of derivation or proof, by
using computers. Theorem provers use mathematical reasoning and logical inference
to prove the correctness of systems, and often require a specialist with substantial
understanding of the system under verification (BAIER; KATOEN, 2008).

The advantage of proof-based approach is that it can handle complex systems be-
cause it does not have to directly check each and every state. The disadvantage is
that it requires human insight and creativity to complete the proofs, which requires
time-consuming manual labour (AMJAD, 2004).

The other Formal Verification method discussed in the present work is Model Check-
ing (CLARKE; EMERSON, 2008) (QUEILLE; SIFAKIS, 1982). Model Checking is a For-
mal Verification method that starts from a formal system specification. It is detailed
in the following section.

2.3.2 Model Checking

Model Checking is a method that is executed automatically to verify if a model of
a system meets certain specifications. According to Baier (BAIER; KATOEN, 2008),
“Model Checking is an automated technique that, given a finite-state model of a
system and a formal property, systematically checks whether this property holds for
(a given state in) that model”.

In design of complex systems, large time and effort are spent on V&V. Techniques
are developed to reduce and ease the V&V efforts while increasing their coverage.
During the last decades, research in Formal Methods has led to the development
of some very promising verification techniques that facilitate the early detection

19

of defects. Investigations have shown that Formal Verification procedures would
have revealed the exposed defects in, e.g., the Ariane-5 missile, Mars Pathfinder,
Intel’s Pentium II processor, and the Therac-25 therapy radiation machine (BAIER;

KATOEN, 2008).

Model Checking is a verification technique that explores all possible system states in
a brute-force manner. The software tool that performs the Model Checking, examines
all possible system scenarios in a systematic manner. Hence, it can be proved that
a given system model truly satisfies a determined property. Baier (BAIER; KATOEN,
2008) states that “even the subtle errors that remain undiscovered using emulation,
testing and simulation can potentially be revealed using Model Checking”. However,
it is a challenge to examine all possible state spaces.

The Model Checking approach can be viewed in Figure 2.6. There are properties
obtained from the requirements that reveals what the system should do and not to
do. The properties are formalized using some sort of temporal logic such as Linear
Temporal Logic (LTL) or Computation Tree Logic (CTL). A model is generated
usually from the system’s pseudocode and describes the behavior of the transition
system (finite-state model). The model checker examines all relevant system states
to check whether they satisfy the desired property. If a state violates the property
under consideration, the model checker provides a counterexample showing a trace
that indicates the violation.

Figure 2.6 - Schematic view of Model Checking. Baier and Katoen (2008)

20

Model Checking Process

In applying Model Checking to a design, the following different phases can be dis-
tinguished:

• Modeling phase:

– model the system under consideration using the model description
language of the model checker at hand;

– formalize the property to be checked using the property specification
language.

• Running phase: run the model checker to check the validity of the property
in the system model.

• Analysis phase:

– property satisfied? So check next property (if any);

– property violated?

a) analyze generated counterexample;
b) refine the model, design, or property;
c) repeat the entire procedure.

– out of memory? So try to reduce the model and try again.

The next subsection explains some issues on properties and their formalization using
temporal logic, once Model Checking requires formalized properties using LTL or
CTL.

2.3.2.1 Temporal Logic and Properties

Before going into detail about temporal logic, it is important to show the mean-
ing and notation of the logical connectives, temporal modalities (operators), and
path quantifiers. Table 2.1 shows the notation and meaning of each one. Temporal
modalities (operators) and path quantifiers are further discussed in more details.

The semantics of propositional logic is specified by a satisfaction relation |= indi-
cating the evaluations µ for which a formula Φ is true. It is written as:

µ |= Φ

21

Table 2.1 - Logical connectives, path quantifiers, and temporal modalities

Logical connective Path quantifier Temporal modality
Notation Meaning Notation Meaning Notation Meaning
∧ and ∀ for all paths © next
∨ or ∃ for some path ∪ until
¬ not � always (globally)

♦ eventually

Once basic symbols and notations are exposed, some principles can be discussed.

Clarke (CLARKE, 2008) discusses that Model Checking problem is easy to state:

Let M be a transition system (i.e., state-transition graph). Let
f be a formula of temporal logic (i.e., the specification). Find all
states s of M such that M, s |= f .

The term Model Checking is used because the objective is to determine if the tem-
poral formula f was true in the structure M , i.e., whether the structure M was a
model for the formula f . The term Kripke structure is usually used instead of tran-
sition system in honor of the logician Saul A. Kripke, who used transition systems
to define the semantics of modal logics (MERZ, 2001).

The following definitions are based on Fraser (FRASER et al., 2009). Some few differ-
ences of syntax may occur when compared with other papers.

A Kripke structure M is a tuple M = (S, S0, T, L), where:

• S is a set of states.

• S0 ⊆ S is an initial state set.

• T ⊆ S × S is a total transition relation, that is, for every s ∈ S there is a
s′ ∈ S such that (s, s′) ∈ T .

• L : S → 2AP is a labeling function that maps each state to a set of atomic
propositions that hold in this state.
AP is a countable set of atomic propositions.

Path: a path p := 〈s0, s1, ...〉 of a Kripke structureM is a infinite sequence such that
∀i ≥ 0 : (si, si+1) ∈ TforM . A set of paths of a Kripke structure M that start in
state s is denoted as Paths(M, s).

22

As infinite paths are not usable in practice, Model Checking uses finite sequences,
commonly referred to as traces. The number of transitions in a trace is referred to
as its length. For example, trace t := 〈s0, s1, ..., sn〉 has a length of length(t) = n.

Temporal logic describes the ordering of events in time without introducing time
explicitly. The meaning of a temporal logic formula is determined with respect to a
Kripke structure. Most temporal logics have an operator like �f that is true in the
present if f is always true in the future. Temporal logic is often classified according
to whether time is assumed to have a linear or a branching structure. A linear
time LTL assertion h is interpreted with respect to a single path. An assertion of a
branching time logic is interpreted over computation trees.

2.3.2.1.1 Linear Temporal Logic (LTL)

An LTL formula consists of atomic propositions, boolean operators and temporal
operators. The operator “©” refers to the next state. So, “© a” expresses that a
has to be true in the next state. “∪” is the until operator, where “a∪ b” means that
a has to hold from the current state up to a state where b is true. “�” is the always
operator, stating that a condition has to hold at all states of a path, and “♦” is
the eventually operator that requires a certain condition to eventually hold at some
time in the future.

If a property φ is satisfied by the path π of model M , this is denoted by “M,π �

φ” and “M,π 2 φ” expresses that the property is not satisfied by the path. The
semantics of LTL is expressed for infinite paths of a Kripke structure. πi denotes
the suffix of the path π starting from the i-th state, and πi denotes the i-th state of
the path π. The initial state of a path π is π0.

2.3.2.1.2 Computation Tree Logic (CTL)

CTL formulas are similar to LTL but with an extra element, path quantifiers. The
path quantifiers ∀ (for all) and ∃ (there exists) require formulas to hold on all or
some paths, respectively. A schematic view of the validity of ∃�, ∃♦, ∀♦, and ∀� is
given in Figure 2.7, where black-colored states satisfy the proposition black.

As all temporal operators are preceded by a path quantifier in CTL, the semantics of
CTL can be expressed by satisfaction relations for state formulas. M, s � φ denotes
a state formula φ that is satified in state s of Kripke structure M . Most model
checkers use either CTL or LTL in practice, as there are some formulas that can be
only formalized in CLT, and vice-versa.

23

Figure 2.7 - Visualization of semantics of some basic CTL formulae. Baier and Katoen
(2008)

2.3.2.1.3 Properties

Commonly, three different types of verifiable properties are distinguished:

Safety Property: A safety property describes a behavior that may not occur on any
path (“Something bad may not happen”). To verify a safety property, all execution
paths have to be checked exhaustively. Safety properties are of the type �¬φ or
∀�¬φ, where φ is a propositional formula. Examples of safety property: mutual
exclusion property (always at most one process is in its critical section) and deadlock
freedom.

Invariance Property: An invariance property describes a behavior that is required
to hold on all execution paths. It is logically complementary to a safety property.
Invariance properties are of the type �φ or ∀�φ, where φ is a propositional formula.

Liveness Property: A liveness property describes that “something good eventually
happens”. With linear time logic, this means that a certain state will always be
reached. For example, �φ1 → ♦φ2 and ∀(� φ1 → ∀♦ φ2) are liveness properties.

Dwyer (DWYER et al., 1999) proposed a system of property specification patterns
for finite-state verification. They proposed 8 patterns and 5 pattern’s scopes. Hence,

24

based on a requirement, one identifies a pattern and the scope within the pattern
that mostly characterize such requirement. Having decided which is the pattern
and scope they proposed a template to generate the properties in LTL, CTL, and
Quantified Regular Expressions. For instance, some descriptions of pattern/pattern
scope are presented below with the correponding CTL state formulae (SANTIAGO

JÚNIOR, 2011):

a) Absence Pattern and Globally Scope: a given state/event p does not
occur within the entire program/model execution. CTL formula: ∀�¬p;

b) Response Pattern and Globally Scope: a state/event p must always
be followed by a state/event q within the entire program/model execution.
CTL formula: ∀�(p→ ∀♦q);

c) Precedence Pattern and Globally Scope: a state/event p must always
be preceded by a state/event q within the entire program/model execution.
CTL formula: ¬∃[¬q ∪ (p ∧ ¬q)].

The Absence Patern and Globally Scope is indeed a safety property which is often
characterized as “nothing bad should happen”. In the above descriptions, the sen-
tence “a given state/event occurs” means “a state in which the given state formula
is true, or an event from the given disjunction of events occurs” (SANTIAGO JÚNIOR,
2011).

The aim of Model Checking is to determine if a given model fulfills a property.
Several different algorithms have been successfully used for this task, using different
temporal logics and data structures. Once property violation or satisfaction is deter-
mined, a model checker can return an example of how this violation or satisfaction
occurs. This is illustrated with a counterexample in the case of violation, or witness
in the case of satisfaction (FRASER et al., 2009). Satisfaction of LTL properties is de-
fined using linear sequences. Consequently, witnesses and counterexamples for LTL
formulas are also linear sequences. In contrast, CTL properties are state formulas.
Therefore, the CTL Model Checking problem is to find the set of states that satisfy
a given formula in a given Kripke structure (FRASER et al., 2009). Special algorithms
are used to derive trace examples for witness or counterexample states.

2.3.2.2 NuSMV

There is a wide range of available tools for applying Model Checking, for instance,
SPIN (HOLZMANN, 2004), NuSMV (KESSLER, 2015), UPPAAL (BEHRMANN et al.,

25

2004), and JavaPathfinder (NASA, 2015). NuSMV is open, flexible, and documented
platform. NuSMV was previously used in version 2.0 of SOLIMVA methodology and
it is also used in this PhD thesis. Following, a discussion is presented to show an
overview of the NuSMV syntax.

The NuSMV language allows the description of finite state models. Finite state
models consist of a set of variables and predicates on these variables. Predicates use
the logical operators & (and), | (or), and ! (not). Constant 1 denotes true whereas
0 denotes false. Variables are declared using the VAR keyword, followed by a list of
typed variable declarations. Variables can be of type boolean or can be enumerative.
For example,

VAR
aa b : boolean;
aa a : { a1,a2,a3 };

declares a boolean variable b and a variable a that has an enumerative type, i.e.,
the value of a is either a1, a2, or a3.

There are basically two kinds of predicates: predicates defining the initial state
and predicates defining the transition relation, relating the current values of some
variables with their possible next values. A state is an assignment of values to a set
of variables. Predicates defining the initial state are preceded by the INIT keyword.
If there is more than one INIT declaration, the initial state is characterized by the
conjunction of all the INIT predicates.

Predicates defining the transition relation can be defined using assignment dec-
larations for each variable. Assignments are preceded by the ASSIGN keyword. In
assignments, next(v) refers to the next value of variable v. If different next values
are possible, depending upon some current condition, the case construct is used. The
list of case expressions is evaluated sequentially, starting at the top. For example,

ASSIGN
aa next(b):=
aaaa case(b)
aaaaaa !b: 1;
aaaaaa 1: 0;
aaaa esac;

says that the next value of b will be true if b is currently false, and false otherwise.

26

All assignments are made concurrently, i.e., all variables change value at the same
time. Two concurrent assignments to the same variable are forbidden.

The main purpose of a model checker is to verify that a model satisfies a set of desired
properties specified by the user. Table 2.2 shows how temporal logic elements can
be expressed in NuSMV input language.

Table 2.2 - Logical connectives, path quantifiers, and temporal modalities expressed in
NuSMV notation

Logical connective Path quantifier Temporal modality
Notation Meaning Notation Meaning Notation Meaning

& and A for all paths X next
| or E for some path U until
! not G always (globally)

F eventually

Basically, these are the main points related to the NuSMV syntax that are relevant
to this PhD thesis.

2.3.2.3 Strengths and Weaknesses

A set of strengths and weaknesses of Model Checking have been exhibited in Baier
(BAIER; KATOEN, 2008). It is shown those that are considered relevant for this thesis.

Strengths:

a) It is a general verification approach, applicable to a wide range of ap-
plications such as embedded systems, software engineering, and hardware
design.

b) It supports partial verification, i.e., properties can be checked individually,
thus allowing focus on the essential properties first.

c) It is not vulnerable to the likelihood that an defect is exposed; this contrasts
with testing and simulation that are aimed at tracing the most probable
defects.

d) It provides diagnostic information in case a property is invalidated; this is
very useful for debugging purposes.

Weaknesses:

27

a) It suffers from the state-space explosion problem, i.e., the number of states
needed to model the system accurately may easily exceed the amount of
available computer memory.

b) Its usage requires some expertise in finding appropriate abstractions to ob-
tain smaller system models and to state properties in the logical formalism
used.

In summary, Model Checking can not be applied in some areas, such as systems
with a great number of components. However, it can suggest results for arbitrary
parameters that may be verified using proof assistants, and therefore it has been
used in a broad range of systems.

2.4 SOLIMVA 1.0 and 2.0 Methodologies

This section aims to give an overview of the SOLIMVA methodology (SANTIAGO

JÚNIOR, 2011) (SANTIAGO JÚNIOR; VIJAYKUMAR, 2012) versions 1.0 and 2.0. Ver-
sion 1.0 of the SOLIMVA methodology aims at the generation of model-based system
and acceptance test cases considering Natural Language (NL) requirements deliver-
ables. The SOLIMVA is supported by a main tool, also called SOLIMVA, that makes
it possible to automatically translate NL requirements into Statechart models. Once
the Statecharts are created, the Geração Automática de Casos de Teste Baseada em
Statecharts (GTSC - Automated Test Case Generation based on Statecharts) (SAN-

TIAGO et al., 2008),(SANTIAGO JÚNIOR et al., 2012) environment is used to generate
Abstract Test Cases which are later translated into Executable Test Cases.

Version 1.0 of the SOLIMVA methodology is illustrated in the activity diagram
of Figure 2.8. The first activity is the definition of a Dictionary by the user/test
designer. The Dictionary defines the application domain. After the definition of the
Dictionary, scenarios are identified. A scenario is defined as an interaction between a
user and the Implementation Under Test (IUT). Associated with each scenario there
is a set of requirements which characterize such an interaction. After the previous
steps, the user must select and input a set of NL requirements. The user must search
these requirements in documents such as software requirements specifications.

The Dictionary does not necessarily have to be defined completely at once. This
is shown as the optional activity Update Dictionary. Hence, the creation of the
Dictionary is incremental and dependent on the selected set of NL requirements.
After that, the generation of the Statechart model follows. After generating the

28

Define and Input Dictionary

Define Scenarios

Select and Input NL Requirements

Generate Model

Clear Requirements
and Model [manual refinement]

Generate Abstract Test Cases

Generate Executable Test Cases

[more scenarios]

 [else]

Update Dictionary
[dictionary update]

 [else]

 [end of scenarios]

Figure 2.8 - Version 1.0 of SOLIMVA methodology. SANTIAGO JÚNIOR (2011)

model, the test designer may decide to manually refine it.

After these steps, Abstract Test Cases are generated by using the GTSC environ-
ment. GTSC allows test designers to model software behavior using Statecharts
and/or FSMs in order to automatically generate test cases based on some test cri-
teria for FSM and some for Statecharts. Then, the test designer shall accomplish
the translation from Abstract Test Cases into Executable Test Cases to enable the
effective execution of test cases.

Having created the test cases (Executable Test Cases) for a single scenario, the
test designer starts again selecting and inserting the NL requirements for the next
scenario. But before doing this, he/she must clear the requirements and related
model of the current scenario. This process must be repeated until there is no more

29

scenario.

Incompleteness, inconsistency, and, especially in NL requirements specifications, am-
biguity are among the types of defects found in software requirements specifications.
Since software requirements specifications are created early within the software de-
velopment lifecycle, their defects affect the next software artifacts, including source
code, to be developed.

Define and Input Dictionary

Define Scenarios

Select and Input NL Requirements

Generate Model

Clear Requirements
and Model [manual refinement]

Generate Abstract Test Cases

Generate Executable Test Cases

[more scenarios]

 [else]

Update Dictionary
[dictionary update]

 [else]

Analyze Incompleteness

Improve Specifications

 [incomp detected]

[else]

 [end of scenarios]

Figure 2.9 - Version 2.0 of SOLIMVA methodology. SANTIAGO JÚNIOR (2011)

Version 2.0 is an extension of version 1.0 of the SOLIMVA methodology in order

30

to address the goal of detecting incompleteness in software specifications (SANTI-

AGO JÚNIOR, 2011). Model Checking combined with k-permutations of n values of
variables and specification patterns (DWYER et al., 1999) were used to tackle this
problem. The new version is shown in Figure 2.9. The new activities are Analyze
Incompleteness and Improve Specifications. The activities present in version 1.0 are
also present in version 2.0, and the workflow is essentially the same. The only dif-
ference is that the execution of these new activities should proceed in parallel with
the Define and Input Dictionary activity.

The most important activity to deal with the problem of incompleteness is Ana-
lyze Incompleteness. It is by means of this activity that incompleteness defects are
truly detected. It is important to realize that Model Checking, in version 2.0 of the
SOLIMVA methodology, was used as a tool to aid the software inspection process
(detection of incompleteness in software specifications) and not as in the more tradi-
tional approach where the finite-state model is verified against formalized properties
to realize whether the behavior of the system meets its specifications. Once incom-
pleteness defects are detected, the quality of the assessed software specifications can
be improved by completing the documents, when necessary. This is the Improve
Specifications activity.

2.5 Formal Verification and UML

This section presents some of the research literature related to this PhD thesis,
showing approaches that made efforts on the use of Formal Verification and UML
with diverse purposes. Table 2.3 summarizes the main characteristics of the referred
published literature.

Sarma and Mall (SARMA; MALL, 2009) proposed a system testing approach to cover
elementary transition paths. The technique consisted on derivation of a System State
Graph (SSG) based on UML 2.0 use case models, sequence diagrams, and Statechart
models to design system test specifications to achieve coverage of system states
and transitions among them. They aim to satisfy the test criterion transition path
coverage. Even though it is related to Software Test instead of Formal Verification,
this research was very helpful for the present work because they use the concept
of scenarios and explore the relation between sequence and statechart diagrams,
which was quite motivating for this PhD thesis. The importance of UML models in
designing test cases is recognized in several other investigations, such as (BRIAND;

LABICHE, 2002), (HARTMANN et al., 2005), (CHEN et al., 2008), (BRITO et al., 2009),
(KIM et al., 1999), and (RIEBISCH et al., 2003). However, all these works used UML

31

to somehow generate test cases. In the present research, the interest is in UML and
Formal Verification.

Mikk (MIKK et al., 1998) translated Statecharts into PROMELA, the input lan-
guage of the SPIN verification system. They used extended hierarchical automata
as an intermediate format. The conclusion demonstrates the feasibility of LTL Model
Checking for statecharts. Latella (LATELLA et al., 1999) showed a translation from
a subset of UML Statechart Diagrams - covering essential aspects of both con-
current behaviour, like sequentialization, parallelism, non-determinism and priority,
and state refinement - into PROMELA. Both works used Statecharts to perform
the translation into PROMELA language. They use one single UML diagram, the
Statechart.

In (ANDERSON et al., 1996), Anderson translates the specification of TCAS (Traf-
fic Alert and Collision Avoidance System), which is specified in RSML (Require-
ments State Machine Language) into the input language of NuSMV. The objective
was to investigate if Model Checking could be used in large software specifications.
Dubrovin (DUBROVIN; JUNTTILA, 2008) implemented a tool that translates UML
hierarchical state machine models to the input language of NuSMV too. They have
defined a semantics and a compact symbolic encoding for a class of UML models
which are basically hierarchical state machine. Uchitel (UCHITEL; KRAMER, 2001)
proposes translation of scenarios, specified as Message Sequence Charts (MSCs),
into a specification in the form of Finite Sequential Processes. This can then be
fed to the Labelled Transition System Analyser model checker to support system
requirements validation.

Lam (LAM, 2007) examined how activity diagrams defined in UML 2.0 standard
are formally analyzed using NuSMV model checker. A model represented as activity
diagrams is first transformed into NuSMV input language and then verified that a
set of system specifications is satisfied using NuSMV. The objective was determining
the correctness of activity diagrams.

Eshuis (ESHUIS, 2006) presented two translations from activity diagrams to the
input language of NuSMV. Both translations map an activity diagram into a fi-
nite state machine (FSM) and are inspired by existing Statechart semantics. The
requirements-level translation defines state machine that can be efficiently verified,
but they assume the perfect synchrony hypothesis. The implementation-level trans-
lation defines state machine that cannot be verified so efficiently, but that are more
realistic since they do not use the perfect synchrony hypothesis. The aim was to

32

assess the activity diagrams from the point of view of requirements and also from
the point of view of implementation, which represents the actual system behavior.
These two last research works, also used one single diagram, the activity diagram.

Konrad and Cheng (KONRAD; CHENG, 2006) presented a process that supports the
specification and analysis of UML models wih respect to behavioral properties spec-
ified in NL. This process has been implemented using the SPIDER tool. This ap-
proach is a Model Checking of UML models against NL properties. UML models
are read and formal specification language PROMELA for the model checker SPIN
is generated. NL properties are derived using a previous work (KONRAD; CHENG,
2005), where a grammar was developed. The grammar enables the NL representa-
tion of specification patterns, and it is used to formalize properties in LTL. The aim
is to check UML models against the NL properties (requirements). Hence, the focus
of their work is checking NL requirements. On the other hand, the present work
focuses on checking UML models. They use version 1.4 of UML.

All the investigations presented so far, related to UML and Formal Verification, deal
with a single UML or UML-like diagram to perform Formal Verification. Rather,
the present research allows to work with up to three UML behavioral diagrams.
In addition, it is not clear if in the previous studies the authors used specification
patterns to formalize the properties. Specification patterns provide clear guidelines
to such formalization. The present work is proposing a full approach to detect defects
in the design of software developed in accordance with UML. In addition, it also
was developed a tool to translate UML diagrams into a unified TS to support Model
Checking.

Schäfer (SCHÄFER et al., 2001) and Knapp (KNAPP; MERZ, 2002) used two comple-
mentary UML notations for the specification of dynamic system behavior - state
machine and collaborations - to automatically verify whether the interactions ex-
pressed by a collaboration can indeed be accomplished by a set of state machines.
The first used the model checker SPIN to verify the model against the automata
while the second used the model checker UPPAAL to perform the same task. Both
works aim to validate the two diagrams, applying consistency checking between
diagrams.

Calinescu (JOHNSON et al., 2013) used a probabilistic model checker (PRISM) to
verify critical systems, after changes. Verifying these software systems only at design
time is insufficient, they have to be reverified after each change. They did not work
with UML diagrams, but with components and deterministic finite automata.

33

Cortellessa (CORTELLESSA; MIRANDOLA, 2002) suggested an interesting approach
to encompass performance validation task as an integrated activity within the de-
velopment process. They propose a methodology called Performance Incremental
Validation in UML (PRIMA-UML) aimed at generating a queueing network based
performance model from UML diagrams that are usually available early in the soft-
ware lifecycle (use case, sequence, and deployment). Bernardi (MERSEGUER et al.,
2002) translated sequence and statechart diagrams into Generalized Stochastic Petri
Nets. Both works aimed analyzing performance aspects of systems. The present re-
search is related to functional aspects of the software product, aiming at detecting
design defects within the solution, but considering exclusively functional require-
ments of the software product.

To the best of our knowledge, only three studies consider the translation from sev-
eral UML or UML-like diagrams into a formal notation to perform validation of
UML diagrams, aiming functional requirements. Baresi (BARESI et al., 2011) devel-
oped MADES, a tool to carry out Formal Verification of UML-based models, mainly
interested in the timing aspects of systems. It is composed by: static part (class di-
agrams); dynamic aspects and behavior are rendered through: (a) state diagrams
and activity; (b) sequence diagrams; and (c) interaction overview diagrams, used
to relate different sequence diagrams; Clocks (and time diagrams) are used to add
the time dimension to systems. All these diagrams seem to be required to construct
the approach. However, this assorted number of diagrams is not always available in
the documentation. Adversely, this proposal requires only one diagrama as manda-
tory (the sequence diagram), which provides a higher chance of being used in real
applications.

In (MIYAZAWA et al., 2013), a proposal of a formal semantics of SysML based on the
COMPASS Modeling Language (CML) (WOODCOCK et al., 2012) notation is pre-
sented. The semantics of SysML is given as a translation from the abstract syntax
of SysML to the abstract syntax of CML. They addressed the translation to CML
of model that include several structural and behavioral SysML diagrams: block def-
inition diagrams, internal block diagrams, activity diagrams, sequence diagrams,
and state machine diagrams. The basic difference between the present work and
theirs is that we translate the behavioral diagrams to the input language of NuSMV
and not to CML. A context-free grammar that guide the derivation of the code in
NuSMV was defined, with a very simple structure making it easier to undestand
the translation. Also, they translate SysML diagrams, which has distinctive features
from UML. Moreover, it is not clear if their approach has been applied to real and

34

complex case studies as it was done in this PhD thesis.

Encarnación Beato (BEATO et al., 2005) presents a tool (TABU - Tool for the Active
Behaviour of UML) to convert three UML diagrams into a SMV input for Formal
Verification: class, state and activity diagrams. It seems to see a close approach
to the present solution, using a tool for convert the XMI inputs into a SMV file.
The difference is in the use of Cadence SMV as a Formal Verification tool and the
need to use all the diagrams to get an output. Besides, the present research works
exclusively with behavioral diagrams, while they use class diagram.

The main motivation of this approach is the practical use of formal methods in
software development, through automation. This can be done throughout the life-
cycle, even before software coding. Besides, the present research suggests to get a
single vision of the system captured from three different diagrams (sequence, activ-
ity, and behavioral state machine). These diagrams represent complementary views
of system behavior and are often used in different phases of software specification
and design, allowing thus a wider system range to be verified. Most of the works
mentioned deal with a specific type of UML diagram.

Another important difference of the present research related to the others is that even
though there are works which use various UML diagrams, the checking is performed
on individual diagrams. None of them seems to use an unified model to perform the
verification, as the present research does.

A comparison between the most relevant studies related to this PhD thesis is shown
in Table 2.3. The table shows the research objectives (Software Testing or Formal
Verification), the type of requirements that is being analyzed in the research (func-
tional or non-functional), and also if the research uses one single UML diagram or
various UML diagrams, as well as if the diagrams are structural or behavioral.

35

Ta
bl
e
2.
3
-C

om
pa

ris
on

be
tw

ee
n
th
e
m
os
t
re
le
va
nt

re
se
ar
ch

re
la
te
d
to

SO
LI
M
VA

3.
0

R
es
ea
rc
h

U
M
L

So
ftw

ar
e

Fo
rm

al
Fu

nc
tio

na
l

N
on

-fu
nc
tio

na
l

O
ne

sin
gl
e

Va
rio

us
St
ru
ct
ur
al

B
eh
av
io
ra
l

Te
st
in
g

Ve
rifi

ca
tio

n
di
ag
ra
m

di
ag
ra
m
s

(S
A

R
M

A
;M

A
LL

,2
00
9)

X
X

X
X

X
(B

R
IA

N
D

;L
A

B
IC

H
E
,2

00
2)

X
X

X
(H

A
R

T
M

A
N

N
et

al
.,
20
05
)

(C
H

E
N

et
al

.,
20
08
)

(B
R

IT
O

et
al

.,
20
09
)

(K
IM

et
al

.,
19
99
)

(R
IE

B
IS

C
H

et
al

.,
20
03
)

(M
IK

K
et

al
.,
19
98
)

X
X

X
X

(L
A

T
E

LL
A

et
al

.,
19
99
)

X
X

X
X

(A
N

D
E

R
SO

N
et

al
.,
19
96
)

X
X

X
X

(D
U

B
R

O
V

IN
;J

U
N

T
T

IL
A
,2

00
8)

X
X

X
X

(U
C

H
IT

E
L;

K
R

A
M

E
R
,2

00
1)

X
X

X
X

(L
A

M
,2

00
7)

X
X

X
X

(E
SH

U
IS
,2

00
6)

X
X

X
X

(K
O

N
R

A
D

;C
H

E
N

G
,2

00
6)

X
X

X
X

(K
O

N
R

A
D

;C
H

E
N

G
,2

00
5)

(S
C

H
Ä

F
E

R
et

al
.,
20
01
)

X
X

X
X

(K
N

A
P

P
;M

E
R

Z,
20
02
)

X
X

X
X

(C
O

R
T

E
LL

E
SS

A
;M

IR
A

N
D

O
LA

,2
00
2)

X
X

X
X

X
(M

E
R

SE
G

U
E

R
et

al
.,
20
02
)

X
X

X
X

(B
A

R
E

SI
et

al
.,
20
11
)

X
X

X
X

X
(M

IY
A

ZA
W

A
et

al
.,
20
13
)

X
X

X
X

X
(B

E
A

T
O

et
al

.,
20
05
)

X
X

X
X

X
SO

LI
M
VA

3.
0

X
X

X
X

36

2.6 Final Remarks

This chapter presented the theory and research related to this PhD thesis. The areas
of knowledge associated with the present research include UML, Formal Verification,
Model Checking, Temporal Logic, SOLIMVA 1.0 and 2.0 methodologies, among
others. The chapter presented only the information necessary for understanding this
thesis, as all these areas are very large and complex.

It also was presented works related to this PhD thesis, always trying to emphasize
their main differences related to the present research. Table 2.3 summarizes the main
characteristics of the studies. Some investigations have the objective of applying
Software Testing instead of Formal Verification. This thesis keep the idea of using
multiple behavioral UML diagrams, representing complementary views of the system
behaviors. The goal of the present work is to let the user free to use any number of
the three accepted diagrams (with at last one sequence diagram when working with
more than one diagram). Most of the tools mentioned seems to work with a only
diagram at time or multiple required diagrams as input.

The next chapter presents SOLIMVA 3.0 methodology, the proposed solution for
Model Checking UML-based software. The activities that make up the methodology
are explained. It also is detailed how the unified TS is obtained and translated to the
model checker notation. For better understanding, a running example is presented.

37

3 APPROACH TO APPLY FORMAL VERIFICATION TO UML-
BASED SOFTWARE

This chapter presents SOLIMVA 3.0 methodology aiming to address the objective
stated in Chapter 1: to transform a non-formal language (UML) to a formal language
(language of a model checker) in order to detect defects within the design of the
software product. An abridged version of this chapter can be seen in (SANTOS et al.,
2014a).

Literature review has shown the wide adoption of UML to the design and modeling
of object-oriented software and that UML has received attention from researchers, as
well as practitioners (SARMA; MALL, 2009). UML is popular not only for designing
and documenting systems, but its importance is being recognized in providing ways
to allow the application of Validation and Verification techniques (SARMA; MALL,
2009) (KNAPP; MERZ, 2002) (SCHÄFER et al., 2001) (MIKK et al., 1998) (BRITO et al.,
2009) (ANDERSON et al., 1996) (DUBROVIN; JUNTTILA, 2008) (BARESI et al., 2011),
among others. UML diagrams can be used to capture different views of a system,
such as users’, structural, behavioral, implementation, and environmental (OMG,
2011). This thesis used the UML behavioral view.

As the basis of this research, it is considered that professionals specify the func-
tionality of the system with use cases. In the case of use cases descriptions are not
available, properties are obtained from requirements described in Natural Language.
Each use case is detailed (at least, it should be) by a set of UML sequence diagrams.
For each use case, there should exist at least one sequence diagram that represents
and describes its main scenario.

This strategy as an extension of SOLIMVA methodology is explained in the next
section. The rest of the chapter is as follows: Section 3.2 describes the transformation
of UML diagrams into Transition Systems. Section 3.3 shows how to obtain the
NuSMV notation from the unified TS. In Section 3.4, a running example is presented
for a better understanding of the methodology. Final remarks are in Section 3.5.

3.1 The SOLIMVA 3.0 Methodology

As presented in Section 2.4, version 1.0 of the SOLIMVA methodology aims at
model-based test case generation considering NL requirements deliverables. Version
1.0 of the SOLIMVA methodology was later extended to address the detection of
incompleteness in software specifications. This generated version 2.0 of SOLIMVA

39

and, therefore, the new activities of version 2.0 of the methodology are more related
to the automation of software inspection, specifically for detecting defects in software
specifications (SANTIAGO JÚNIOR, 2011).

Testing and Formal Verification are best considered as complementary techniques.
While Formal Verification techniques aim at showing that a given program/system
satisfies certain formalized properties or that a proof-based approach to correctness
is followed, testing aims to show that the given program is reliable in that no defects
of any significance were found (MARTHUR, 2008). In this context, this research is
intended to improve the existing SOLIMVA methodology to address not only soft-
ware testing and inspection, but also Formal Verification in the more traditional
approach.

Version 3.0 of the SOLIMVA methodology is illustrated in the activity diagram of
Figure 3.1. The contribution of this PhD thesis is encompassed by the dashed lines in
red. It is worth mentioning that the same activities, with the same features, present
in version 2.0 of the SOLIMVA methodology are also present in version 3.0, as well
as the workflow, that is the same. The difference is that it is possible to execute the
new activities of version 3.0 of the SOLIMVA methodology in parallel with the older
activities. In practical terms, version 3.0 of SOLIMVA proposes that the activities
of testing/inspection and Formal Verification can be performed independently by
different teams and even at different phases of the software development lifecycle.

Figure 3.2 shows in detail the contribution of this PhD thesis so that Formal Verifi-
cation can now be addressed by SOLIMVA. In figure 3.2, activities which are shown
in dashed line have been automated by the XMITS tool. XMITS is explained in
the next chapter. In the following, the activities of the SOLIMVA 3.0 methodology
(SANTOS et al., 2014a) are explained:

a) Identify Scenarios. As mentioned earlier, in this work, verification con-
sists of sequence of scenarios to be checked. Basically, scenarios focus on
how the system behaves to implement its functionalities. A scenario is a
sequence of events expected during the system operation, which includes
environment conditions, expected stimuli and responses (SIAU; HALPIN,
2001).

In this work, a scenario is identified by looking at use case models. A use
case can be viewed as a scenario. Each scenario is a set of related subscenar-
ios tied together by a common goal. The mainline sequence (’main success

40

Define and Input Dictionary

Define Scenarios

Select and Input NL Requirements

Generate Model

Clear Requirements
and Model [manual refinement]

Generate Abstract Test Cases

Generate Executable Test Cases

[more scenarios]

 [else]

Update Dictionary
[dictionary update]

 [else]

Analyze Incompleteness

Improve Specifications

 [incomp detected]

[else]

 [end of scenarios]

Identify Scenarios

Select Diagrams

Formalize Properties

Generate model checher notation

[more scenarios]

 [end of scenarios]

Start Formal Verification

Select Requirements

Simulate Model

[model's defects]

Apply Model Checking

Generate Report of
System Defects based on

Counter Examples

Generate single TSs

Generate unified TS

 					[else]

Figure 3.1 - Version 3.0 of SOLIMVA methodology

41

[more scenarios]

Identify Scenarios

Select Diagrams

Formalize Properties
Generate Model Checker Notation

 [end of scenarios]

Start Formal Verification

Select Requirements

Simulate Model

 [else]

[model's defects]

Apply Model Checking

Generate Report of
System Defects based on

Counter Examples

Generate Unified TS

Generate single TSs

Figure 3.2 - Extending SOLIMVA: contribution of this PhD thesis

42

scenario’ (COCKBURN, 2000)) and each of the variations (’extensions and
sub-variations’) are the scenarios identified by the present approach. For
example, considering the classical ATM (Automated Teller Machine) sys-
tem, there is a use case called Perform Transaction that states (BJORK,
2012):

“The session is started when a customer inserts an ATM card into the
card reader slot of the machine. The ATM pulls the card into the machine
and reads it. (If the reader cannot read the card due to improper insertion
or a damaged stripe, the card is ejected, an error screen is displayed, and
the session is aborted.) The customer is asked to enter his/her Personal
Identification Number (PIN), and is then allowed to perform a transaction,
choosing from a menu of possible types of transaction. When the customer
finishes performing transactions, the card is ejected from the machine and
the session ends. The customer may abort the session by pressing the
Cancel key when entering a PIN or choosing a transaction type.”

In the present approach, one can consider the Perform Transaction Use
Case as a scenario (containing the main success scenario and its variations).
Observing its description, it is easy to identify its ’main success scenario’:
it occurs when all goes well (the card is read, the PIN is correct, the user
perform the transaction with success, the card is ejected). Sub-variations
may also occur, as the PIN is incorrect, the card can not be read, and so
on.

b) Start Formal Verification. Once the scenario is identified, it is time to
begin, in fact, the Formal Verification. This activity means that from this
moment on, everything will be prepared to start the Formal Verification.
This can be observed in the next activities, which can be executed in
parallel.

c) Select Requirements. Here, the requirements which need to be prop-
erly executed by the system are selected. For each selected scenario, re-
quirements are extracted from the textual description of use cases or from
Natural Language descriptions. The user should identify the suitable re-
quirements which will be verified in the system model during the Model
Checking process. Considering the Perform Transaction Use Case, one pos-
sible requirement to be chosen is: the customer can perform transactions
only if he/she has a valid card and a valid personal identification number
(PIN). Otherwise, he/she can not perform any kind of transaction. Cer-

43

tainly this is an important feature that the system should perform properly,
and liable to be checked.

d) Formalize Properties. Once the requirements are selected, it is time to
formalize the properties 1. The properties folllow the formalization pro-
posed by means of specification patterns (DWYER et al., 1999) in LTL or
CTL. To generate the properties from the available requirements, the first
step is to identify the atomic propositions within the requirements, once
LTL and CTL formula consists of atomic propositions, operators, and path
quantifiers (this last only for CTL).

Consider the description of a requirement in the Perform Transaction Use
Case, presented in the previous item. It is possible to identify three atomic
propositions in this description: (i) a = “the customer can perform transac-
tions”; (ii) b = “valid card”; (iii) c = “valid personal identification number”.
After identifying the atomic propositions, the temporal sequence in which
they occur must be analyzed, so one can verify in which scope and pat-
tern (DWYER et al., 1999) the property fits. In this example, proposition a
should happen only after propositions b and c.

e) Select Diagrams. The activities related to model creation, which are Se-
lect Diagrams, Generate single TSs, Generate Unified TS, Generate Model
Checker Notation, and Simulate Model, can be executed in parallel with
the Select Requirements and Formalize Properties activities. The first ac-
tivity related to model creation, Select Diagrams, is when the respective
diagrams that represent the behavior related to the use case selected are
identified. Eventually, the use case selected does not have a representation
in all the diagrams that this approach is intended to use. For example, a
use case can be associated with a sequence and activity diagram but not
with a state machine diagram; or there are only the sequence and state
machine diagram for that use case but not the activity. In these cases, the
model must be generated from the available diagrams for that use case.
But, it is considered that at least one sequence diagram is available for
the selected scenario. The choice for the sequence diagram occurred due to
its acceptance. Most of the software specification that have been consulted
presented sequence diagrams modelling the systems. As the objective is
that the methodology is actually applied in practice, the choice for the
sequence diagram provides greater possibility for this to happen.

1In the present work, requirement and property are considered synonyms

44

The next three activities which are shown in dashed line in Figure 3.2
are automated by XMITS tool. These activities are detailed in the next
subsection.

f) Generate Single TSs. Based on the available UML behavioral diagrams,
a single TS (finite-state model) is generated and then a unified TS (Gener-
ate Unified TS) is also generated. These activities along with Generate
Model Checker Notation are performed by XMITS tool. As explained
before, the present approach does not demand that all three UML behav-
ioral diagrams (sequence, activity, behavioral state machines) exist: it is
enough to have a sequence diagram to generate the TS.

g) Generate Model Checker Notation. The created TS is translated by
XMITS into the input language of the NuSMV model checker (KESSLER,
2015). Guidelines, which take into account the NuSMV syntax and the
language description discussed in Section 2.3.2.2, are detailed to accomplish
the translation. This is explained in Section 3.3.

h) Simulate Model. The model of the system is simulated prior to Model
Checking in order to get rid of modeling defects. Eliminating simple mod-
eling defects before any form of thorough checking occurs may reduce the
time-consuming verification effort (BAIER; KATOEN, 2008). If more model
defects are identified then the workflow returns to the Generate Unified
TS activity and restart from this point. When there is no more remaining
defect in the model and all properties are created, Model Checking can be
applied.

i) Apply Model Checking. Finally, Model Checking is applied to identify
defects on the behavioral description of the system represented by the UML
diagrams.

j) Generate Report of System Defects based on Counterexamples.
Detected system defects are then reported. Having generated the report
for one scenario, the user starts again selecting the next scenario. This
process must be repeated until there is no more scenarios and the process
is finalized.

In the next sections, details of the main activities of the present approach are pre-
sented, i.e., a solution to generate a single TS based on UML behavioral diagrams.

45

The focus is on activitiesGenerate Single TSs,Generate Unified TS, andGen-
erate Model Checker Notation, which are automated by XMITS tool. First, the
single TS from each one of the diagrams is generated separately. Second, it is shown
how to obtain the definitive/unified TS from the combination of the individual TSs.
Finally, the generation of the NuSMV notation is explained.

3.2 Transforming UML Behavioral Diagrams into Transition Systems
(TS)

This section shows how to translate scenarios which are represented in UML behav-
ioral diagrams (by sequence, state machine, and activity) into a single Transition
System, so that Formal Verification can be applied to the considered system. Once
the properties to be checked and the scenario are identified, it is time to find out
the UML behavioral diagrams that model these scenarios.

First, this approach achieves individuals TSs from each one of the diagrams sepa-
rately. Then, the definitive/unified TS is obtained from the combination of the three
individual TSs.

3.2.1 Generation of Individual TSs

This section presents the translation of individual diagrams for simple examples.
For brevity, sequence diagram is denoted as SD, behavioral state machine diagram
as SMD, and activity diagram as AD. It is assumed that a scenario must have at
least one diagram describing it: the SD, which is mandatory, due to the explanations
given in the last section.

3.2.1.1 Translating Sequence Diagrams

The first diagram to analyze is the SD. In this approach, the SD is considered to be
mandatory, that is, it is taken for granted that every use case has at least one SD
describing it. As will be explained in Section 3.2.2, the SD gives the directives for
the combination of the diagrams, and because of this it is mandatory.

To extract the corresponding TS from an SD, it is necessary to look over the diagram
starting from the initial interaction. In general, an SD has a mainline sequence and
optionally several variations. The variations are usually represented using various
combined fragments, like alternatives, option, parallel, and loop. Depending on the
type of the fragment, different variations can be easily identified. The variations
were identified from the approach presented in (SARMA; MALL, 2009), which were

46

adapted to the present work. The rules are described below:

a) Fragment option (opt): If the guard of the fragment opt is true, then all
the items specified within this fragment are executed. Thus, two variations
occur, one with the additional interactions of the opt fragment and the
other without it.

b) Fragment alternatives (alt): For an alt fragment, depending on the outcome
of the guard condition for each of the operand, different variations can
occur. Suppose the fragment alt has n number of operands, then n different
possibilities would occur.

c) Fragment loop: For a loop fragment, for simplicity, we restrict that the loop
be executed at most one time. That is, either the loop is not executed at all
(false condition of the loop), or the loop is executed once (truth condition
of the loop). Thus, it gives rise to at least two different possibilities.

d) Fragment parallel (par): Here there is a subtle difference fom the approach
proposed in (SARMA; MALL, 2009). All regions are executed to occur in
parallel. Identifying all possibilities in a par fragment is very difficult and
it leads to a large number of alternatives.

Based on these rules, by extracting all possible execution paths of a given SD, one
can construct a corresponding TS. A state in the TS is composed by a message
and all the guards present in the SD, along with their values for that state. By
default, the TS initial state is set as null. Actually, the first state is the head of
the list. The syntax of a state in the TS is identified by a tuple � (Message),
g0, g1, ..., gn � where Message is each one of the messages present in the SD and
g0,g1,...,gn represent all the existing guards in the SD along with their respective
values. In the initial state, the guard values are assigned as ’dc’, which means ’do
not care’, because at the beginning the values can be either true or false. If there is
parallelism, the parallel messages are combined with an ’and’. Table 3.1 shows the
elements in UML and how they are represented in the TS. Last line represents two
parallel messages.

Combined fragments dictate the possible paths that an SD can reach. Transitions
are based on the sequencing of exchanged messages, that is, as the sequence diagram
evolves, the TS also evolves. Algorithm 1 shows how to generate a single TS from a
given SD.

47

Table 3.1 - Translation from SD into TS

UML Transition System Initial Value
Message = Register State = � (Register), ...� null

Guard = dataok State = � ..., dataok = dc, ...� dc

Message1 = Register State =
Message2 = DisplayOptions � (RegisterandDisplayOptions), ...� -

As will be seen, the initialization is the same for the three diagrams: first, the
algorithm calls the Reader, which is the first module responsible for processing the
SD. The SD is inputted as an XMI file. The operation of the modules is explained in
Chapter 4. The Reader identifies if it is a valid XMI file and which type of diagram
it is (SD, AD, or SMD). Then, the function Collector.run, which is specific for
each diagram, is called to process it. The SD Collector gathers the main elements:
Messages, Transitions, Combined Fragments, and Guards. These elements are then
classified into six categories: State, Fork, Join, Decision, Connection, or Default.
Table 3.2 shows how the elements of an SD are mapped into these generic categories.

Table 3.2 - Mapping elements of the SD into the generic categories

SD Element Category
Initial State Default
Message State

Combined Fragments opt, loop, and alt Decision
Combined Fragment par Fork

Other elements Connection

All elements in a UML diagram are classified in this way, regardless of their original
diagram. Then, the Converter Logic is called to processes the lists containing the
elements, classified into these categories. Based on these elements, the Converter
module calls the functions. It begins from the initial state and goes on untill all
states have been processed. The Converter Logic calls the Transition Function, which

48

performs a specific function, depending on the element:

Algorithm 1: Generate the TS from a given SD
Input: SD
Output: single TS

1 reader.read(xml) // Call the Reader to process the XMI file
2 diagramHandler.process(reader.getOutput()) // Identify if it is a valid XMI
3 catch (Exception e) // If it is not a valid XMI, an exception is shown
4 if reader.getOutput() is a valid XMI file then
5 identifyDiagram() // Identify which diagram it is (SD, AD, or SMD)
6 type = collectTypeDiagram();
7 return type;
8 SearchSpecificCollector(type) // Call the Collector, according to the type of

diagram (SD, AD, or SMD) to process the output of Reader
9 Collector.run(reader.getOutput());

10 if type=SD then
// The file is iterated by specific functions to collect the main SD

elements: Messages, Transitions, CombinedFragments, and Guards
11 MessageCollectorFunction() // The text from the messages are saved in a

key/value data structure called Message Dictionary
12 TransitionCollectorFunction() // The system uses the Message ID to generate

the transitions, which are stored in a Transition Dictionary
13 ElementCollectorFunction() // The combined fragments are classified and

stored in the Element Dictionary
14 GuardCollectorFunction() // All guards are stored in the Guards Dictionary

end
// Then, a new processing is performed on these elements, starting with the

first state. All collected elements are classified and saved into lists,
according to the following categories: State, Fork, Join, Decision,
Connection, or Default

15 Collector.classify();
// The Converter Logic is called to process the lists of the classified

elements
16 Converter.logic();

// The Converter starts processing the Initial State. The Initial State calls
the Transition Function to processes its transitions

17 repeat
18 Converter.TransitionFunction() // Call the Transition Function to process all

the transitions of this state
19 builder.saveTransitionSystem(output) // Build the Transition System

until all the states are processed;
// The Transition Function processes the next state. After processed, the

state calls the Transition Function again to process its transitions. The
process ends when all the states are processed

end

49

a) The Connection Function simply calls a Transition Function to process the
transitions.

b) The Decision Function splits the flow process according to the decision
node’s guard value (true or false). It also saves the guard values in the
output.

c) The Default Function does nothing. It is used, for instance, for the final
node.

d) The Fork Function deals with parallel elements. It creates the parallel flow.

e) The Join Function deals with the synchronism of parallels flows after a
Fork. It is responsible to terminate a parallel processing correctly.

f) The State Function is responsible for processing the states of the diagram
and to create the TS, which is the output of the Converter.

While the list is being processed, the functions call an instance of Builder, an im-
portant class of the Global module, responsible for creating the Transition System
output.

Returning to the example of the previous chapter, consider the SD shown in Figure
2.2, for the Ordering use case. The resulting TS for it is presented in Figure 3.3.
One can observe the two possible paths reached from opt fragment.

3.2.1.2 Translating Activity Diagrams

AD is not compulsory in the present approach to obtain the unified TS. AD focuses
on representing activities which may or may not correspond to methods of classes,
so they can model the behavior of a class as well of a system. An activity is a state
with an internal action and one or more outgoing transitions which automatically
follow the termination of the internal activity. If an activity has more than one
outgoing transition, then these must be identified through conditions. AD’s typically
support description of sequencing, conditional dependency, parallel activities, and
synchronization aspects involved in different activities.

To build the corresponding TS, each activity and transitions are analyzed. To trans-
late the transition behavior of the activities some specific nodes are identified:

a) Fork node: it separates a transition in several other transitions that are
executed at the same time (parallel): there are n possible variations.

50

<(Register),
data ok=dc>

<(DisplayOptions),
data ok=true> <(DisplayFinalScreeen),

data ok=false>

<(ChooseOptions),
data ok=true>

<(RecordOrder),
data ok=true>

<(DisplayFinalScreeen),
data ok=true>

Figure 3.3 - TS generated from the SD of Figure 2.2

b) Join node: it is a synchronization. The next state is activated only when
all the transitions arrive in this node.

c) Merge node: junction of transitions. Every transition that arrives, passes
by this node and the next state is activated.

d) Decision node: depending on the condition, it shows different transitions.
Two possible paths can occur here. Guards are present in decision nodes.

Activities in AD are mapped as states in the TS. As in SD, guards compose a state
in the TS, along with its value for that state. Also, parallel activities are represented
with an ’and’. By default, the TS initial state is set as null. Actually, the first state
is the head of the list. The syntax of a state in the TS is identified by a tuple
� (Activity), g0, g1, ..., gn� where Activity is each one of the activities present in
the AD and g0,g1,...,gn represent all the existing guards in the AD along with their
respective values. In the same way, in the initial state, guard values are assigned as
’dc’. Note that guard values are also being used in the states to be coherent with the
approach proposed for the SD. This will be valuable when combining the diagrams,
as will be seen in Section 3.2.2. Table 3.3 shows the elements in UML and how they
are represented in the TS. Last line represents two parallel activities.

Based on these rules, one can construct a corresponding TS for a given AD. Algo-
rithm 2 shows how to generate a single TS from a given AD. It is very similar to

51

Table 3.3 - Translation from AD into TS

UML Transition System Initial Value
Activity = Showproductslist State = � (Showproductslist), ...� null

Guard = dataok State = � ..., dataok = dc, ...� dc

Activity1 = Askcustomerdata State = � (Askcustomerdata
Activity2 = Showproductslist andShowproductslist), ...� -

the algorithm presented to convert the SD. The main difference is the Collector,
which classifies the elements that are specific to AD: nodes, edges, or guards. Then,
the behavior is the same of Algorithm 1: the elements are classified into categories,
saved in lists, and these lists are processed to generate the TS. Table 3.4 shows how
the elements of an AD are mapped into the generic categories.

Table 3.4 - Mapping elements of the AD into the generic categories

SD Element Category
Initial Node Default
Activity State

Decision Node Decision
Fork Node Fork
Join Node Join
Merge Node Connection

Other elements Default

Figure 3.4 shows the corresponding TS for the activity diagram presented in Figure
2.3 of previous chapter. This AD is modeling the same case study (Ordering) pre-
viously presented for the SD. It is possible to observe that each branch in the AD

52

leads to different paths in the TS.

Algorithm 2: Generate the TS from a given AD
Input: AD
Output: single TS

1 reader.read(xml) // Call the Reader to process the XMI file
2 diagramHandler.process(reader.getOutput()) // Identify if it is a valid XMI
3 catch (Exception e) // If it is not a valid XMI, an exception is shown
4 if reader.getOutput() is a valid XMI file then
5 identifyDiagram() // Identify which diagram it is (SD, AD, or SMD)
6 type = collectTypeDiagram();
7 return type;
8 SearchSpecificCollector(type) // Call the Collector, according to the type of

diagram (SD, AD, or SMD) to process the output of Reader
9 Collector.run(reader.getOutput());

10 if type=AD then
// The file is iterated by specific functions to collect the main AD

elements: Nodes, Edges, or Guards
11 NodeCollectorFunction() // All the elements classified as Node are stored in

the Element Dictionary
12 EdgeCollectorFunction() // All the Edges are classified as Transition and

stored in the Transition Dictionary
13 GuardCollectorFunction() // The function collects all guard conditions and

associates them with is specific decision structure. All the guards are
stored in the Guards Dictionary

// Then, a new processing is performed on these elements, starting with the
first state. All collected elements are classified and saved into lists,
according to the following categories: State, Fork, Join, Decision,
Connection, or Default

14 Collector.classify();
// Now, the Converter Logic is called to process the lists of the classified

elements
15 Converter.logic();

// The Converter starts processing the Initial State. The Initial State calls
the Transition Function to processes its transitions

16 repeat
17 Converter.TransitionFunction() // Call the Transition Function to process all

the transitions of this state
18 builder.saveTransitionSystem(output) // Build the Transition System

until all the states are processed;
// The Transition Function processes the next state. After processed, the

state calls the Transition Function again to process its transitions. The
process ends when all the states are processed

53

<(Ask customer data),
data ok=dc,
order = dc>

<(Show products list),
data ok=true,
order = dc>

<(Display final screen),
data ok=false,

order = dc>

<(Show message: “Ask order?”),
data ok=true, order = dc>

<(Record ordering data),
data ok=true,
order = true>

<(Display final screen),
data ok=true,
order = true>

<(Display final screen),
data ok=true,
order = false>

Figure 3.4 - TS generated from the AD of Figure 2.3

3.2.1.3 Translating State Machine Diagrams

The SMD, as the AD, is not mandatory either. An SMD is composed of nodes and
transitions and each one of them is analyzed to build the corresponding TS. In the
following, it is explained how the nodes are analyzed.

a) Simple node: it is mapped as a simple state in the TS.

b) Composite node: consists of one or more regions. A region is a container
for sub-states. A composite state can either be sequential or concurrent.
In a sequential type of composite state, the state is considered to be an
exclusive-or of its sub-states. That is, a composite state can be in any of
its sub-states, but not in more than one sub-state at any time. But, in a
concurrent type, the state is determined by a logical and of its sub-states
and the object is considered to be in all the concurrent states at the same
time.

c) Choice node: it is equivalent to if/else. So, here two situations can occur:
one when the guard condition is set to true and the other when it is set to
false. So, there are two paths to reach.

d) Join node: it represents a synchronization where the next state occurs only
when all the arrows arrive on the join node.

54

e) Fork node: the node may have one or more arrows from the node to states.
Suppose there are n number of arrows, so n possibilities would occur.

f) Junction node: junction of transitions. Every transition that arrives, passes
by this node and the next state is activated.

Based on these rules, one can construct a corresponding TS for a given SMD. There
is a difference in the syntax when constructing the TS, related to SD and AD. As
in SMD one state can have several incoming events, a state in the SMD is mapped
as states in the TS plus the event which triggered this state. Besides, guard values
for that state are mapped in the same way that they are mapped in SD and AD.
States in SMD can be single or parallel (represented as ’and’).

The syntax of a state in the TS is identified by a tuple � (Event − State),
g0, g1, ..., gn� where Event is each one of the events present in the SMD, State is
each one of the states present in the SMD, and g0,g1,...,gn represent all the exist-
ing guards in the SMD along with their respective values. Also, in the initial state,
guard values are assigned as ’dc’ and the TS initial state is set as null (list head).
Table 3.5 shows the elements in UML and how they are represented in the TS. Note
that in the first line, the initial state has no event, so, a dash is put in place of what
would be the name of the event. This is repeated every time there is no name for
the event which triggered the state. Line two shows the syntax with event.

Table 3.5 - Translation from SMD into TS

UML Transition System Initial Value
Initial State = Idle State = � (−− Idle), ...� null

Event = DataEntry State = � (DataEntry−
State = V alidatingData V alidatingData), ...� -

Guard = dataok State = � ..., dataok = dc, ...� dc

State1 = Idle State = � (−Idleand
State2 = V alidatingData −V alidatingData), ...� -

Algorithm 3 shows how to build a TS from an SMD. It has the same behavior of
the last two algorithms presented. The difference is also in the Collector. Here, the
SMD is divided as: Elements (which can be State, Pseudo State, or Final State)
and Transitions. Table 3.6 shows how the elements of an SMD are mapped into the
generic categories.

aaaaaaaa

55

aaaaaaaa

Algorithm 3: Generate the TS from a given SMD
Input: SMD
Output: single TS

1 reader.read(xml) // Call the Reader to process the XMI file
2 diagramHandler.process(reader.getOutput()) // Identify if it is a valid XMI
3 catch (Exception e) // If it is not a valid XMI, an exception is shown
4 if reader.getOutput() is a valid XMI file then
5 identifyDiagram() // Identify which diagram it is (SD, AD, or SMD)
6 type = collectTypeDiagram();
7 return type;
8 SearchSpecificCollector(type) // Call the Collector, according to the type of

diagram (SD, AD, or SMD) to process the output of Reader
9 Collector.run(reader.getOutput());

10 if type=SMD then
// The file is iterated by specific functions to collect the main SMD

elements: Elements and Transitions
11 ElementCollectorFunction() // All elements classified as State, Pseudo State

or Final State
12 TransitionCollectorFunction() // All transitions are stored in the Transition

Dictionary

// Then, a new processing is performed on these elements, starting with the
first state. All collected elements are classified and saved into lists,
according to the following categories: State, Fork, Join, Decision,
Connection, or Default

13 Collector.classify();
// Now, the Converter Logic is called to process the lists of the classified

elements
14 Converter.logic();

// The Converter starts processing the Initial State. The Initial State calls
the Transition Function to processes its transitions

15 repeat
16 Converter.TransitionFunction() // Call the Transition Function to process all

the transitions of this state
17 builder.saveTransitionSystem(output) // Build the Transition System

until all the states are processed;
// The Transition Function processes the next state. After processed, the

state calls the Transition Function again to process its transitions. The
process ends when all the states are processed

Figure 3.5 shows the corresponding TS for the state machine diagram presented in
Figure 2.4. Also, the SMD is modeling the same case study (Ordering). It is possible
to observe the different paths extracted from the events.

56

Table 3.6 - Mapping elements of the SMD into the generic categories

SD Element Category
State State

Choice Node Decision
Fork Node Fork
Join Node Join

Junction Node Connection
Terminate Node Default
Other elements Default

<(- -Idle)>

<(Data Entry-
Validating data)>

<(- -Displaying Options)>

<(- -Registering Order)>

<(Invalid Data
-Idle)>

<(Back-Idle)>

Figure 3.5 - TS generated from the SMD of Figure 2.4

Now it is presented how a unified TS can be achieved from each one of the individual
TSs obtained from the UML diagrams.

3.2.2 The Unified Transition System

In this subsection, it is shown how to generate the final/unified TS. Some defini-
tions and notations used in this approach are given in the sequence. As previously
mentioned, it is assumed that a scenario must have at least one diagram describing
it: the SD. In the following the syntax of the unified TS is detailed.

A state in the unified TS is identified by a tuple � (Message, Activity, Event −
State), g0, g1, ..., gn � where Message is from SD; Activity from AD; and Event-
State is from SMD; g0,g1,...,gn represent all the existing guards in all the diagrams

57

along with their respective values. At the beginning, all guard values are assigned to
’dc’ for the same reasons presented before, for creating the individual TSs. If there
are parallel messages, states, or activities, an ’and’ is inserted in the tuple, such as�
(Msg1andMsg2, Activity1andActivity2, Event1State1andEvent2State2), ... �,
which means that Msg1 and Msg2 are sent in parallel, as well as Activity1 and
Activity2, and State1 and State2 are parallel states.

There are situations that should be considered. They were divided into two cases:

a) The first one is when a diagram is missing, that is, the scenario
that is being analyzed is not represented in all the three diagrams.
It is possible that the AD is missing; or the SMD is missing; or
both, the AD and SMD are missing. The part representing the di-
agram that is missing in the corresponding TS is substituted by
an underscore ’_’. In these situations, states are described as �
(Message, Activity,−), g0, g1, ..., gn � or � (Message,−, Event −
State), g0, g1, ..., gn�, or � (Message,−,−), g0, g1, ..., gn�.

b) The second one happens because the diagrams do not model the
same behavior all the time. Some situations can be more detailed in
an SMD than in an SD diagram, or does not even appear in the
SD diagram. When this happens, diagrams are incoherent or incon-
sistent. In these situations, states in the unified TS are described as
� (Message, Activity,−), g0, g1, ..., gn � or � (Message,−, Event −
State), g0, g1, ..., gn�, or� (−, Activity, Event−State), g0, g1, ..., gn�,
and all its variations. Note that in this case, it is possible that the SD does
not contain a behavior which can be more detailed in the AD. So, the case
� (−, Activity, Event − State), g0, g1, ..., gn � may happen. That does
not mean that the SD is missing. Simply, that particular behavior is not
modeled on the SD.

The main challenge to combine the three diagrams is to define the correspondence
among messages, events, and activities. For instance, an event for a transition of the
SMD can be a message of the SD, while the message can be a call to an activity
modeled by an AD. Nevertheless, finding where a specific message of the SD is
modeled in the SMD or in the AD is very hard. Instead, the final TS is built using
the individual TSs. The algorithm looks over the TSs starting from their initial
states. The correspondence among states of each TS is assigned by using the flow of

58

transitions. At each iteration, the algorithm parses the three TSs and construct the
new states by taking the next possible transitions in each TS.

The flow of transitions, alone, is not enough to construct the final TS, as each
TS contains multiple paths. In addition, guard values are used to help finding the
correspondence among states. As already stated, the SD is mandatory and conducts
the diagrams merging. The basic elements that delineate the possibility of paths
in the SDs are guards on the combined fragments. Thus, guard values are adopted
along with the flow of transitions to construct the final TS states. If one thinks of
an algorithm, at each iteration, the algorithm seeks the next possible transitions in
each TS and their guard values.

To find out states that have the same guard values, the gvs (guard value structure)
was created. The gvs represents the values of each one of all available guards on
each state. Every time, for each possible next transitions of the TSs created from
the SD, SMD, and AD, their gvs are verified and a match of their values is created.
Thereafter, new states are generated.

<(A),
g=dc>

<(B),
g=dc>

<(C),
g=dc>

<(D),
g=false>

<(E),
g=true>

<(1),
g=dc>

<(2),
g=false>

<(3),
g=true>

<(A-1),
g=dc>

<(B-1),
g=dc>

<(C-1),
g=dc>

<(D-2),
g=false>

<(E-3),
g=true>

Diagram 1 Diagram 2 1 and 2 together

<(1),
g=dc>

<(2),
g=false>

<(3),
g=true>

<(A),
g=dc>

<(B),
g=false>

<(C),
g=true>

<(A-1),
g=dc>

<(B-2),
g=false>

<(C-3),
g=true>

gvs in next(A)={(g=false),(g=true)}

<(A),
g1=dc,
g2=dc>

<(B),
g1=false,
g2=dc>

<(D),
g1=false,
g2=false>

<(C),
g1=true,
g2=dc>

<(1),
g1=dc,
g2=dc>

<(2),
g1=false,
g2=dc>

<(4),
g1=false,
g2=true>

<(3),
g1=true,
g2=dc>

<(A-1),
g1=dc,
g2=dc>

<(B-2),
g1=false,
g2=dc>

<(--4),
g1=false,
g2=true>

<(C-3),
g1=true,
g2=dc>

<(D--),
g1=false,
g2=false>

a)

b)

gvs in next(A)={(g=dc)}

gvs in next(A)={(g1=false,g2=dc),
(g1=true,g2=dc),(g1=false,g2=false)}

gvs in next(1)={(g=false),(g=true)}

gvs in next(1)={(g=false),(g=true)}

gvs in next(1)={(g1=false,g2=dc),
(g1=true,g2=dc),(g1=false,g2=true)}

c)

gvs in next(A-1)={(g=false),(g=true)}

gvs in next(C-1)={(g=false),(g=true)}

gvs in next(A-1)={(g1=false,g2=dc),
(g1=true,g2=dc),(g1=false,g2=true),
(g1=false,g2=false)}

Figure 3.6 - Possible situations to generate the unified TS and its respective gvs

59

Figure 3.6 shows the three possible situations that may occur to generate a state in
the final TS. All other cases found end up falling in one of these three cases. Rows
are representing the three cases a, b, and c. The TS in column 3 is the combination
of the TSs in columns 1 and 2.

Situation a) is straightforward to see. All the gvs match and the combination is
explicit. Situation b) shows how the algorithm handles cases when in at least one of
the next possible states, the value of its gvs is the same of the current gvs value. This
occurs because the diagrams do not model the same behavior during their evolution.
In this case, the TSs have different lengths. Here, only the TS which has the value
of its next gvs equal to the current evolves. The other TS keeps standing until the
next gvs match, or the TS processing complete. Situation c) shows an example of
inconsistent states, due to inconsistent diagrams. As previously discussed, this may
happen when one of the diagrams models a behavior that is not modeled in the
other diagram and vice versa. New transitions are created, as many as necessary to
cover all possibilities of gvs values.

The three situations presented in Figure 3.6 represent the rules to unify the diagrams
based on the gvs. These rules were implemented in XMITS as an array list. They
were defined as “Rules Dictionary”. The Rules Dictionary is an array containing
four rules: First Rule, Second Rule, and Third Rule, which represent, respectively,
situations a, b, and c of Figure 3.6; and Fourth Rule, which is applied when there
are no next states, that is, when the diagram was all consumed. In this case, the
diagram is taken out from the processing. When building the unified TS, these rules
are always called in the order in which they are held in the array. Figure 3.7 shows
the structure of the Rules Dictionary.

1

2

3

First Rule

Second Rule

Third Rule

Rules Dictionary
ArrayList

4

Fourth Rule

Figure 3.7 - Details of the Rules Dictionary

60

To perform this approach, before combining the TSs, three situations must be con-
sidered:

a) TSs with no guards. All the TSs that are being combined have no guards.
For example, a sequence diagram with no combined fragments, or only
with parallel combined fragment. All other combined fragments require
guards. Or an activity diagram with no decision node. Or a behavioral
state machine diagram with different incoming events. In the absence of
guards, it is quite easy to construct the final TS: all that is required is to
follow the flow of transitions. At each iteration, all the next possible states
are combined. Note that it is possible to have multiple paths, and that all
the combinations must be done, as can be seen in Figure 3.8.

<(A and B)>

<(C)>

<(B)>
<(A and C)>

<(a)>

<(y-c)>

SD SMD

<(x-b)>

<(A and B, a)>

<(C, x-b)>
<(B, x-b)>

<(A and C, x-b)>

<(A and C, y-c)>
<(B, y-c)>

<(C, y-c)>

The two TSs combined

Figure 3.8 - Combining TSs with no guards

b) One TS has guards and the other one does not. At the beginning,
the algorithm seeks all guards in all diagrams. Suppose TS1 has guards g1
and g2 and TS2 has no guards. The gvs will be composed by {g1, g2} and it
is assigned to TS2. As originally TS2 did not contain {g1,g2}, their values
are assigned as “dc” and will never change. Thenceforth the situations
are covered in Figure 3.6. Figure 3.9 shows how the approach handle this
situation.

c) TSs with different guards. It is similar to the previous case. At the

61

<(A),
g1=dc,g2=dc>

<(C),g1=false,
g2=dc>

<(B),g1=true,
g2=dc>

<(y-c),g1=dc,
g2=dc>

SD -> {g1,g2} SMD ->{ }

<(x-b),g1=dc,
g2=dc>

<(A,a),
g1=dc,g2=dc>

<(A,x-b),g1=dc,
g2=dc>

<(B,_),g1=true,
g2=dc>

<(C,_),g1=false,
g2=dc>

<(A,y-c),g1=dc,
g2=dc>

The two TSs combined

<(a),g1=dc,
g2=dc>

<(B,_),g1=true,
g2=dc>

<(C,_),g1=false,
g2=dc>

Figure 3.9 - Combining TSs when one TS has guards and the other one does not

beginning, the algorithm seeks all guards in all diagrams. Suppose TS1
has guards g1 and g2 and TS2 has guard g3. The gvs will be composed
by {g1, g2, g3} and it is assigned to TS1 and TS2. As originally TS2 did
not contain g1,g2, their values are assigned as “dc” and will never change,
as well as TS1 will receive g3, which is assigned as “dc” and will never
change. Thenceforth the situations are covered in Figure 3.6. Figure 3.10
shows how the approach handles this situation.

Algorithm 4 shows how to build the unified TS, applying all the guidelines that have
been explained so far. The single TSs are the input, which must contain at least one
element generated from an SD diagram. The TSs are saved in the TSDictionary
(line 2). At each iteration, the Repeat loop tries apply one of the four rules to the
diagrams (lines 5 to 16), until all states of all diagrams have been analized:

a) The First Rule looks for equal next states in all diagrams. If, and only if,
all the states from all diagrams are equal at the same time, it is possible
to create a unified state. If all the next states are equal, the first rule will
iterate all diagrams and create a unified state with those states, saving it
in the Builder class (lines 15-16).

b) The Second Rule verifies all next states. If at least one diagram does not
change its gvs in the next state, only this diagram is iterated and then the

62

<(A),g1=dc,
g2=dc,g3=dc>

<(C),g1=false,
g2=dc,g3=dc>

<(B),g1=true,
g2=dc,g3=dc>

<(y-c),g1=dc,
g2=dc,g3=false>

SD -> {g1,g2} SMD ->{g3 }

<(x-b),g1=dc,
g2=dc,g3=true>

<(A,a),g1=dc,
g2=dc,g3=dc>

<(B,_),g1=true,
g2=dc,g3=dc>

<(C,_),g1=false,
g2=dc,g3=dc>

The two TSs combined

<(a),g1=dc,
g2=dc,g3=dc>

<(_,x-b),g1=dc,
g2=dc,g3=true>

<(_,y-c),g1=dc,
g2=dc,g3=false>

Figure 3.10 - Combining TSs with different guards

First Rule is applied. Note that if there are more diagrams in the same
situation, all these diagrams must be iterated.

c) If there are at least two equal next states, the First Rule is applied to the
equal states. Otherwise, if all the next states are different, there is no way
to create a unified state. If it happens, the diagrams start to be processed
individually, no unified state will be created.

d) If there is no more next states, then the last rule is applied. If a diagram
has no next state, the last rule takes the diagram out from the loop.

The last line of the algorithm, line 17 shows the unified TS. The next section shows
how to obtain the model checker notation from the TS generated.

3.3 Generation of Model Checker Notation

After its creation, the unified TS can be used to systematically generate its corre-
sponding encoding into the model checker input language by constructing declara-
tive divisions (DEBBABI et al., 2010). It is important to emphasize that once a formal
unified TS is generated from UML behavioral diagrams, there is the possibility of
transforming it into several different languages of available model checkers such as
SPIN (HOLZMANN, 2004) and NuSMV (KESSLER, 2015).

In the current approach, the NuSMV model checker was chosen because it is open

63

source, it has a widespread use in academia, and it accepts properties formalized not
only in Computation Tree Logic (CTL) but also in Linear Temporal Logic (LTL)
(BAIER; KATOEN, 2008). These two logics are well known and have mapping defined
in the specification patterns (DWYER et al., 1999).

Algorithm 4: Generate the unifed TS
Input: singleTSs
// where singleTSs is defined as follows:
// Given a set Y = { { }, {TS generated from an SD }, {TS generated from an AD },

{TS generated from an SMD }}
// singleTSs = {TS generated from an SD} ∪ {X}, where
// X = {x| x is "an Arrangement with Repetition" of the elements of Y}
Output: unified TS

1 foreach element ∈ singleTSs do
2 TSDictionary.addTransitionSystem(TransitionSystem) // Save the single TSs in the

TSDictionary

// To proceed, the system verifies if at least one single TS is generated from an
SD

3 if ∃ element ∈ singleTSs | element = {TS generated from an SD} then
// The loop to unify the diagrams starts

4 forall TSs ∈ TSDictionary do
5 repeat

// Starting from initial states of all TSs, analyze all the states
6 startRace(TransitionSystem,List<Lane>);

// The system iterates over a rule list and tries to apply the rules
in a specific order to the diagrams to find a way to unify the
states

7 tuts.logics.rules.FirstRule;
8 tuts.logics.rules.SecondRule;
9 tuts.logics.rules.ThirdRule ;

10 tuts.logics.rules.FourthRule ;
11 for rule1 to rule4 do

// If the rule apply, the diagrams are iterated to the next state.
If the rule do not apply it tries the next rule

12 if rule is true then
13 apply rule;
14 break;

15 if rule=FirstRule then
16 builder.saveTransitionSystem(output) // Build the Transition System

until all states in all TSs have been analyzed;

17 tuts.getOtput() // This command shows the unified TS

64

Considering the NuSMV model checker, declaration of variables is relatively easy, as
presented in Subsection 2.3.2.2. One variable called State is related to the element
�(Message,Activity,Event-State)� of the tuple that identifies a certain state of the
TS. In addition, there will be as many variables as the guards identified within the
UML behavioral diagrams, i.e. g0 is transformed into a variable vg0 of enumerative
type, g1 into a variable vg1, and so on. All these variables derived from the guards
will be enumerated with the following values: {dc, false, true}. The dc value is im-
portant because in many occasions and especially at the beginning of the behavioral
system modeling, the values of certain guards either do not care or do not make
sense be true or false. Another remark is that the use of only state variables of
NuSMV.

Table 3.7 shows the elements in the TS and how they are represented in the NuSMV.
States are grouped into enumerations, as well as the guards. Each transition is
represented by the CASE construct.

Table 3.7 - Translation from the unified TS into NuSMV

Unified TS NuSMV Initial Value
State Variable State of

Enumerative type
Guard Variable of dc

Enumerative type
Transition CASE construct

The initial value of the State variable of the final TS in NuSMV is always initialized
with the initial state to mark the starting point of the diagram. Note that this is not
the “full” state characterization of the initial state of the NuSMV model because
we depend on the values of the variables representing the guards to know this. To
generate the model in NuSMV we simply follow the transitions of the unified TS,
making appropriate assignments to the State variable and for each variable derived
from the guards. To illustrate the proposed translation, consider the TS of Figure
3.3. Applying the proposed guidelines, one can obtain the code presented in Figure
3.11.

To automate this activity (Generate Model Checker Notation), a grammar was
developed. At first, the process to translate a TS into NuSMV imposes no restriction.
Name of messages in sequence diagrams, activities in activity diagrams, and events
and states in state machine diagrams were not adequate to become values of variables

65

Defining a subset of NuSMV input language using Backus–Naur Form.

<nusmv-code> ::= “MODULE main” <EOL>
<variable-declaration>
“ASSIGN” <EOL>
<statements>
[“CTLSPEC” <formalized-ctl-logic> | “LTLSPEC” <formalized-ltl-logic>]

<variable-declaration> ::= <variable-declaration> | “VAR” <EOL>
<identifier> “:” <EOL>
<enumeration-type> “ ;” | <boolean-type> “ ;”

<identifier> ::= <ident-first-charact> | <identifier ident-consecutive-charact>

<enumeration-type> ::= “{“ <integer-numbers> ”}” | “{“ <symbolic-constants> ”}” | “{“ <integer-
numbers><symbolic-constants> ”}”

<boolean-type> ::= “TRUE” | “FALSE”

<ident-first-charact> ::= “A” | “B” | “C” | “D” | “E” | “F” | “G” | “H” | “I” | “J” | “K” | “L” | “M” | “N”
| “O” | “P” | “Q” | “R” | “S” | “T” | “U” | “V” | “W” | “X” | “Y” | “Z” | “a” | “b”
| “c” | “d” | “e” | “f” | “g” | “h” | “i” | “j” | “k” | “l” | “m” | “n” | “o” | “o”| “q”| “r”
| “s” | “t” | “u” | “v” | “w” | “x” | “y” | “z”| “_”

<ident-consecutive-charact> ::= <ident-first-charact> | <digit> | “$” | “#” | “-”

<digit> ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”

<integer-numbers> ::= <digit> | “-”<digit>

<symbolic-constants> ::= “A” | “B” | “C” | “D” | “E” | “F” | “G” | “H” | “I” | “J” | “K” | “L” | “M” | “N”
| “O” | “P” | “Q” | “R” | “S” | “T” | “U” | “V” | “W” | “X” | “Y” | “Z” | “a” | “b”
| “c” | “d” | “e” | “f” | “g” | “h” | “i” | “j” | “k” | “l” | “m” | “n” | “o” | “o”| “q”| “r”
| “s” | “t” | “u” | “v” | “w” | “x” | “y” | “z”|

<statements> ::= <statements> | <initial-state> <transition-relation>

<initial-state> ::= <initial-state> | “ “ |
“init” “(“ <identifier> ”) := ” <enumeration-type> “ ;” | <boolean-type> “ ;”

<transition-relation> ::= <transition-relation> | “ “ |
“next” “(“ <identifier> ”) := ” <EOL>
“case” <EOL>
<transicao> <EOL>
“TRUE: “ <identifier> “ ;” <EOL>
“esac ;”

MODULE main

VAR

State:

 {Register, DisplayOptions, ChooseOptions, RecordOrder, DisplayFinalScreen};

data ok:

 {dc,false,true};

ASSIGN

init(State):= Register;

init(data ok):= dc;

next(State):=

case

 State=Register & data ok=true : DisplayOptions;

 State=Register & data ok=false : DisplayFinalScreen;

 State=DisplayOptions & data ok=true : ChooseOptions;

 State=ChooseOptions & data ok=true : RecordOrder;

 State=RecordOrder & data ok=true : DisplayFinalScreen;

TRUE: State;

esac;

MODULE main

VAR

State:

 {Register, DisplayOptions, ChooseOptions, RecordOrder, DisplayFinalScreen};

data ok:

 {dc,false,true};

ASSIGN

init(State):= Register;

init(data ok):= dc;

next(State):=

case

 State=Register & data ok=true : DisplayOptions;

 State=Register & data ok=false : DisplayFinalScreen;

 State=DisplayOptions & data ok=true : ChooseOptions;

 State=ChooseOptions & data ok=true : RecordOrder;

 State=RecordOrder & data ok=true : DisplayFinalScreen;

TRUE: State;

esac;

MODULE main

VAR

State:

 {Register, DisplayOptions, ChooseOptions, RecordOrder, DisplayFinalScreen};

data ok:

 {dc,false,true};

ASSIGN

init(State):= Register;

init(data ok):= dc;

next(State):=

case

 State=Register & data ok=true : DisplayOptions;

 State=Register & data ok=false : DisplayFinalScreen;

 State=DisplayOptions & data ok=true : ChooseOptions;

 State=ChooseOptions & data ok=true : RecordOrder;

 State=RecordOrder & data ok=true : DisplayFinalScreen;

TRUE: State;

esac;

MODULE main

VAR

State:

 {Register, DisplayOptions, ChooseOptions, RecordOrder, DisplayFinalScreen};

data ok:

 {dc,false,true};

ASSIGN

init(State):= Register;

init(data ok):= dc;

next(State):=

case

 State=Register & data ok=true : DisplayOptions;

 State=Register & data ok=false : DisplayFinalScreen;

 State=DisplayOptions & data ok=true : ChooseOptions;

 State=ChooseOptions & data ok=true : RecordOrder;

 State=RecordOrder & data ok=true : DisplayFinalScreen;

TRUE: State;

esac;

VAR

State:

 {Register, DisplayOptions, ChooseOptions, RecordOrder, DisplayFinalScreen};

MODULE main

VAR

MODULE main

VAR

VAR

 State:

{Register, DisplayOptions, ChooseOptions, RecordOrder,
DisplayFinalScreen};

data ok:

 {dc,false,true};{dc,false,true};

ASSIGN

init(State):= Register;

init(data ok):= dc;

next(State):=

case

init(State):= Register;

init(data ok):= dc;

next(State):=

case

State=Register
&
data
ok=true
: DisplayOptions;

State=Register
&
data
ok=false
: DisplayFinalScreen;

State=DisplayOptions
&
data
ok=true
: ChooseOptions;

State=ChooseOptions
&
data
ok=true
: RecordOrder;

State=RecordOrder
&
data
ok=true
:
DisplayFinalScreen;

State=Register & data ok=true : DisplayOptions;

State=Register & data ok=false : DisplayFinalScreen;

State=DisplayOptions & data ok=true : ChooseOptions;

State=ChooseOptions & data ok=true : RecordOrder;

State=RecordOrder & data ok=true : DisplayFinalScreen;

TRUE: State;

esac;

Figure 3.11 - NuSMV code for the TS of Figure 3.3

in NuSMV. Thus, a context-free grammar was defined in order to structure the code
in NuSMV, as can be seen in Figure 3.12. The grammar was written using the BNF
(Backus-Naur Form) (NAUR et al., 1963), one of the main notation techniques for
context-free grammars.

The grammar defines all the syntax to build the smv file: the variable declaration,
identifiers, and so on, exactly as defined in the NuSMV manual (CAVADA et al.,
2005). The grammar defines the main parts of the NuSMV file: the header, variable
declaration, and statements. The header is the same for every NuSMV code. There
are a number of restrictions related to variable declaration: the variable identifier
is composed by first character and consecutive character. Each one has specific
allowed types of digits, leters, numbers, and symbols. Statements are composed of
statements, initial state, and transition relation. The grammar defines each one of
them. There is also the properties to be verified, which start with CTLSPEC or
LTLSPEC. XMITS uses this grammar to generate the NuSMV notation.

The next section presents a running example to illustrate all activities proposed in
SOLIMVA 3.0.

66

Defining a subset of NuSMV input language using Backus–Naur Form.

<nusmv-code> ::= “MODULE main” <EOL>
<variable-declaration>
“ASSIGN” <EOL>
<statements>
[“CTLSPEC” <formalized-ctl-logic> | “LTLSPEC” <formalized-ltl-logic>]

<variable-declaration> ::= <variable-declaration> | “VAR” <EOL>
<identifier> “:” <EOL>
<enumeration-type> “ ;” | <boolean-type> “ ;”

<identifier> ::= <ident-first-charact> | <identifier ident-consecutive-charact>

<enumeration-type> ::= “{“ <integer-numbers> ”}” | “{“ <symbolic-constants> ”}” | “{“ <integer-
numbers><symbolic-constants> ”}”

<boolean-type> ::= “TRUE” | “FALSE”

<ident-first-charact> ::= “A” | “B” | “C” | “D” | “E” | “F” | “G” | “H” | “I” | “J” | “K” | “L” | “M” | “N”
| “O” | “P” | “Q” | “R” | “S” | “T” | “U” | “V” | “W” | “X” | “Y” | “Z” | “a” | “b”
| “c” | “d” | “e” | “f” | “g” | “h” | “i” | “j” | “k” | “l” | “m” | “n” | “o” | “o”| “q”| “r”
| “s” | “t” | “u” | “v” | “w” | “x” | “y” | “z”| “_”

<ident-consecutive-charact> ::= <ident-first-charact> | <digit> | “$” | “#” | “-”

<digit> ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”

<integer-numbers> ::= <digit> | “-”<digit>

<symbolic-constants> ::= “A” | “B” | “C” | “D” | “E” | “F” | “G” | “H” | “I” | “J” | “K” | “L” | “M” | “N”
| “O” | “P” | “Q” | “R” | “S” | “T” | “U” | “V” | “W” | “X” | “Y” | “Z” | “a” | “b”
| “c” | “d” | “e” | “f” | “g” | “h” | “i” | “j” | “k” | “l” | “m” | “n” | “o” | “o”| “q”| “r”
| “s” | “t” | “u” | “v” | “w” | “x” | “y” | “z”|

<statements> ::= <statements> | <initial-state> <transition-relation>

<initial-state> ::= <initial-state> | “ “ |
“init” “(“ <identifier> ”) := ” <enumeration-type> “ ;” | <boolean-type> “ ;”

<transition-relation> ::= <transition-relation> | “ “ |
“next” “(“ <identifier> ”) := ” <EOL>
“case” <EOL>
<transicao> <EOL>
“TRUE: “ <identifier> “ ;” <EOL>
“esac ;”

Figure 3.12 - Context-Free Grammar to convert the output of the Converter or of the
TUTS into the NuSMV Model Checker Notation.

67

3.4 A Running Example

This section presents a running example to illustrate the activities proposed in the
SOLIMVA methodology version 3.0. Consider more thoroughly the ATM classical
example, where the ATM interacts with a customer via a specific interface and
communicates with the bank over an appropriate communication link. A user that
requests a service from the ATM has to insert a card and enter a personal identifica-
tion number (PIN). Both pieces of information (card number and PIN) need to be
validated. If the credentials of the customer are not valid, the card is ejected. Other-
wise, the customer carries out operations that he/she chooses, such as deposit, cash
withdrawal, printing receipts, and so on. When the custumer finishes the operation
the card is returned to him/her. Figure 3.13 shows the system use case diagram.

Customer

Withdraw CashDeposit
Print Receipt

Validate User

Bank
«include»

Perform Transaction

Figure 3.13 - ATM Use Case diagram

In accordance with SOLIMVA 3.0, the first activity is Identify Scenarios, observ-
ing the use cases. Let’s consider the use case Perform Transaction (described in
Section 3.1) as a scenario to be verified, containing the main success scenario and
its variations. Once the scenario is identified, it is time to begin, in fact, the For-
mal Verification (Start Formal Verification). For this, two things are needed: the
property to be verified and a model of the system.

To generate a model of the system, five activities must be performed. The first
two activities to perform are Select Diagrams and Generate Single TSs. For
simplicity, to facilitate the understanding of the translation, it is presented only
the first part of the diagrams, which represents validation of customer credentials.

68

<(InsertCard),Cardok=dc,
Pinok=dc,Balok=dc>

<(VerifCard()),Cardok=dc,
Pinok=dc,Balok=dc>

<(CardStatus),Cardok=dc,
Pinok=dc,Balok=dc>

<(WaitPIN),Cardok=dc,
Pinok=dc,Balok=dc>

<(PIN),Cardok=dc,
Pinok=dc,Balok=dc>

<(ejectCard),Cardok=false,
Pinok=dc,Balok=dc>

<(verifPIN()),Cardok=true,
Pinok=dc,Balok=dc>

<(PINStatus),Cardok=true,
Pinok=dc,Balok=dc>

... ...

Figure 3.14 - Part of ATM Sequence Diagram and its respective TS

Figure 3.14 presents the initial part of ATM sequence diagram and its respective
individual TS. Figures 3.15 and 3.16 show the UML behavioral state machine, and
activity diagrams modeling the initial part of ATM description, respectively, as
well as the individual TSs obtained from each one of the diagrams. The sequence
diagram has an alt combined fragment, which leads to two paths. The TS obtained
from the SMD has multiple paths, due to parallel states. The activity diagram has
also parallel activities, which leads to multiple paths.

Continuing, the next activity related to model generation isGenerate Unified TS.
Applying the suggested approach on the three diagrams, the TS shown in Figure
3.17 is achieved. Actually, Figure 3.17 exhibits part of the unified TS, only the parts
that are shown in Figures 3.14, 3.15, and 3.16. Note that to generate the unified
TS, all rules based on the gvs (guard value structure) presented in Figure 3.6 were
applied.

Other two activities remaining to model generation areGenerate Model Checker
Notation, and Simulate Model. Each state is characterized by the values of the

69

<(IDLE),Cardok=dc,
Pinok=dc,Balok=dc>

<(VERIFCARD and VERIFYPIN),
Cardok=dc, Pinok=dc,

Balok=dc>

<(CARDVALID and VERIFYPIN),
Cardok=true,

Pinok=dc,Balok=dc>

<(EJECT),Cardok=false,
Pinok=dc,Balok=dc>

...

<(VERIFCARD and PININVALID),
Cardok=dc, Pinok=false,

Balok=dc>

<(VERIFCARD and PINVALID),
Cardok=dc, Pinok=true,

Balok=dc>

<(CARDVALID and PININVALID),
Cardok=true, Pinok=false,

Balok=dc>

<(CARDVALID and PINVALID),
Cardok=true, Pinok=true,

Balok=dc>

<(EJECT),Cardok=false,
Pinok=false,Balok=dc>

<(EJECT),Cardok=true,
Pinok=false,Balok=dc>

<(CARDVALID and PININVALID),
Cardok=true, Pinok=false,

Balok=dc>

<(EJECT),Cardok=false,
Pinok=true,Balok=dc>

...

Figure 3.15 - Part of ATM Behavioral State Machine Diagram and its respective TS

variables. There were identified four main variables that characterize the TS:

a) State={(InsertCard,Idle,InsertCard),...,(PinStatus,VerifyPin,Autho-
rizePin)};

b) CardOk = {dc,false,true}. CardOk represents the card validation;

c) PinOk = {dc,false,true}. PinOk represents the PIN validation; and

d) BalOk = {dc,false,true}. BalOk represents the available amount of the
customer account. CardOk, PinOK and BalOk comes from the guards
identified within the UML diagrams.

Using the guidelines and the grammar proposed in last section, it is possible to
obtain the NuSMV code for the TS. Figure 3.18 shows the code partially.

Activity Simulate Model is performed to validate the model. Before applying
Model Checking, it is necessary to simulate the model to see if it is consistent.

70

<(InsertCard),Cardok=dc,
Pinok=dc,Balok=dc>

<(ReadCard and EnterPIN),
Cardok=dc,Pinok=dc,

Balok=dc>

<(ReadCard),Cardok=dc,
Pinok=dc,Balok=dc>

<(AuthorizeCard),Cardok=dc,
Pinok=dc,Balok=dc>

<(AuthorizePIN),Cardok=true,
Pinok=dc,Balok=dc>

<(EjectCard),Cardok=false,
Pinok=dc,Balok=dc>

...

...

<(EnterPIN),
Cardok=dc,Pinok=dc,

Balok=dc>

Figure 3.16 - Part of ATM Activity Diagram and its respective TS

When running the model checker, this activity is very valuable, because one can
see all possible states and all reachable states. Indeed, when running NuSMV model
checker for this ATM example, in total, there are 756 states, 86 of which are reachable
states. Figure 3.19 shows the three UML diagrams, now complete, used to perform
the case study. From left to right, one can see the sequence, state machine, and
activity diagrams.

With respect to the property, two activities must be performed: Select Require-
ments and Formalize Properties. Considering the use case Perform Transaction,
it is possible to extract two relevant user-defined properties related to requirements.
As the TS has multiple paths, Computation Tree Logic (CTL) (BAIER; KATOEN,
2008) was chosen to formalize the properties. Note that the properties could be
formalized using LTL as well, considering that NuSMV supports both.

a) Requirement 1: the customer can perform transactions only if he/she has
a valid card and a valid personal identification number (PIN). Otherwise,
he/ she can not perform any kind of transaction. This property can be

71

<(VerifCard,
VerifCard and VerifyPin-

ReadCard and EnterPin),
Cardok=dc,Pinok=dc,

Balok=dc>

<(InsertCard,Idle,
InsertCard),Cardok=dc,

Pinok=dc,Balok=dc>

<(EjectCard-Eject-
EjectCard),Cardok=false,

Pinok=dc,Balok=dc>

<(WaitPin,VerifCard and VerifyPin,
AuthorizeCard),Cardok=dc,

Pinok=dc,Balok=dc>

<(CardStatus,
VerifCard and VerifyPin,

AuthorizeCard),Cardok=dc,
Pinok=dc,Balok=dc>

...

<(CardStatus,
VerifCard and VerifyPin,
ReadCard),Cardok=dc,

Pinok=dc,Balok=dc>
<(CardStatus,

VerifCard and VerifyPin,
EnterPin),Cardok=dc,
Pinok=dc,Balok=dc>

<(Pin,VerifCard and VerifyPin,
AuthorizeCard),Cardok=dc,

Pinok=dc,Balok=dc>

<(VerifPIN,CardValid and VerifyPin,
AuthorizePin),Cardok=true,

Pinok=dc,Balok=dc>

<(PinStatus,VerifyPin,
AuthorizePin),Cardok=true,

Pinok=dc,Balok=dc>

Figure 3.17 - Part of the final TS obtained from the three diagrams

formalized using the Absence Pattern and Scope After Q proposed
by (DWYER et al., 1999), in CTL, as follows:
∀� ((CardOK = false ∨ PinOK = false) → ∀� (¬(State = WaitAccount-

CardValidandPinValid-InitiateTransaction)))

CardOk and PinOk refers to the validation of the customer creden-
tials. CardOk = true means the card is valid. PinOk = true means the
identifier is valid. Each value of each variable is considered an atomic
proposition. WaitAccount-CardValidandPinValid-InitiateTransaction is
the first state on the final TS that can only be reached when CardOk
and PinOk are true, that is, when the custumer has card and PIN
valids (it means that the customer can perform transactions). It is easy
to see this when looking at Figure 3.19. If one observes the individ-
ual UML diagrams, it is possible to see that state WaitAccount for
the SD is the first reachable state when both CardOk and PinOk are
true, for SMD CardValidandPinValid, and also InitiateTransaction for AD.

72

Figure 3.18 - Part of the NuSMV code for the TS of Figure 3.17

b) Requirement 2: whenever the specified amount exceeds the level of available
funds, it should be possible for the user to request a new cash advance
operation if the user wishes to correct the amount. The property can be
formalized using the Existence Pattern and Scope After Q proposed
by (DWYER et al., 1999), in CTL, as follows:
¬∃ [¬ (State = InsuffFunds-Modify-ShowBalance ∧ ∀♦ (State = CashAdvance-Chkbal-

CheckBalance)) ∪ (State = InsuffFunds-Modify-ShowBalance ∧ ¬ (State = InsuffFunds-

Modify-ShowBalance ∧ ∀♦ (State = CashAdvance-Chkbal-CheckBalance)))]

Here, the state that allows the customer to perform a cash operation
is CashAdvance-Chkbal-CheckBalance and the state that indicates that
the available funds are insufficient is InsuffFunds-Modify-ShowBalance.
To formalize the properties, it is necessary to see the final TS and its
variables.

73

E
nt

er
 P

IN

R
ea

d
ca

rd
A

ut
ho

riz
e

ca
rd

In
iti

at
e

tr
an

sa
ct

io
n

In
se

rt
 c

ar
d

A
ut

ho
riz

e
P

IN

ca
rd

ok

 e
ls

e

pi
no

k

S
el

ec
t a

cc
ou

nt

C
he

ck
 b

al
an

ce

 e
ls

e ba
lo

k	
D

eb
it

ac
co

un
t

R
ec

or
d

tr
an

sa
ct

io
n

D
is

pe
ns

e
ca

sh

P
rin

t r
ec

ei
pt

P
ic

k
ca

sh

S
ho

w
 b

al
an

ce

E
je

ct
 c

ar
d

 e
ls

e

ID
LE

V
E

R
IF

Y

C
H

K
C

A
R

D

C
H

K
P

IN

E
JE

C
T

V
E

R
IF

C
A

R
D

C
A

R
D

V
A

LI
D

ca
rd

ok

			
	e

ls
e

V
E

R
IF

Y
P

IN

P
IN

V
A

LI
D

P
IN

IN
V

A
LI

D
el

se

pi
no

k

O
P

E
R

A
T

IO
N

S
E

LA
C

C
O

U
N

T

T
R

A
N

S
A

C

P
A

Y
M

E
N

T

C
A

S
H

A
D

V
B

IL
LP

A
Y

ne
xt

ne
xt

M
O

D
IF

Y
C

H
K

B
A

L
D

E
B

IT
se

le
ct

ba
ck

ba
lo

k

in
su

f

:A
T

M
:U

se
r

:B
an

k
In

se
rt

C
ar

d

V
er

ifC
ar

d(
)

C
ar

dS
ta

tu
s

W
ai

tP
IN

P
IN

al
t

[c
ar

do
k

=
 T

R
U

E
]

V
er

ifP
IN

()

P
IN

S
ta

tu
s

E
je

ct
C

ar
d

al
t

[c
ar

do
k

=
 F

A
LS

E
 o

r
P

IN
ok

 =
 F

A
LS

E
]

E

je
ct

C
ar

d

W
ai

tA
cc

ou
nt

W
ai

tO
pe

ra
tio

n

S
el

A
cc

ou
nt

C
as

hA
dv

an
ce

(A
m

ou
nt

)

C
he

ck
B

al
an

ce
(A

m
ou

nt
)

B
al

an
ce

S
ta

tu
s

al
t

[b
al

ok
 =

 T
R

U
E

]

D
eb

it(
)

P
ic

kC
as

h

In
su

ffF
un

ds

B
ac

k

E
je

ct
C

ar
d

Figure 3.19 - UML diagrams used for ATM example. Adapted from Debbabi et al. (2010)

74

Next activity of SOLIMVA 3.0 is Apply Model Checking. After applying Model
Checking, the results indicate that the first property is satisfied. However, the second
property is violated, as can be seen in the counterexample shown in Figure 3.20. Each
line represents one state in the TS. When analyzing the counterexample, one can
note that it is not possible to reach state CashAdvance-ChkBal-CheckBalance from
state InsuffFunds-Modify-ShowBalance.

Figure 3.20 - Counterexample for property 2

Activity Generate Report of System Defects based on CounterExamples
is implemented by the XMITS, when it generates the final txt file, as can be seen
in the next chapter.

3.5 Final Remarks

This chapter presented the proposed solution to allow applying Model Checking to
software developed in accordance with UML. It presented SOLIMVA 3.0 and the
activities that make up the methodology. The details of the translation of UML
diagrams to individual Transition Systems were explained, as well as the algorithms
to allow these translations.

After that, the translation to a unified Transition System was detailed. It was ex-
plained how a new state is composed, the rules that conducts the unification, and
the algorithm that implements the junction. Then, the guidelines and a grammar
to transform the unified TS to the input language of NuSMV model checker were
described. And finally, a running example was presented to illustrate the methodol-
ogy.

The next chapter presents XMITS, the tool that was developed for automate the

75

main activities of SOLIMVA 3.0. The XMITS modules and its architecture are
explained.

76

4 XMITS - XML Metadata Interchange to Transition System

This chapter presents XMITS - XML Metadata Interchange to Transition System,
a tool developed to support the main three activities proposed in SOLIMVA 3.0
(shown in Figure 4.1), to achieve Model Checking of UML-based software:Generate
single TSs, Generate Unified TS, and Generate Model Checker Notation.
An abridged version of this chapter can be seen in (SANTOS et al., 2014b), which
presented a very preliminary version of XMITS, and in (ERAS et al., 2015), where
the actual version of XMITS is presented.

Generate single TSs

Generate Unified TS

Generate Model Checker Notation

Figure 4.1 - Activities of SOLIMVA 3.0 automated by XMITS

XMITS is essential to the application of SOLIMVA 3.0. The development of XMITS
is part of an effort to allow the use of Formal Methods in practice, to real software
projects. The tool facilitates the process of applying Formal Verification during the
software development, so that it becomes transparent to the user. Briefly explaining,
the analyst considers a use case, with its narrative description, or requirements in
Natural Language; and also the corresponding UML behavioral diagrams that repre-
sent the solution to meet the requirements (use cases or pure textual requirements)
are taken into account.

XMITS performs a three-step translation. First, it translates individual types of
diagrams (SD, AD, SMD) into a TS in a simple intermediate format. After that,
XMITS merges all single TSs into a unified TS. Finally, the tool transforms this

77

unified TS into the notation of the model checker (NuSMV). Requirements are for-
malized using a temporal logic, such as CTL or LTL, following Dwyer’s specification
patterns (DWYER et al., 1999). If there is a problem with the design (UML behavioral
diagrams), a counterexample is presented by the model checker.

Due to the modular nature proposed for the system, a language that supports the
object-oriented programming paradigm was chosen: Java (ORACLE, 2011). The aim
was to develop a tool that is extensible. If one wants to add another UML diagram
to the approach, this can be easily implemented in XMITS. Eclipse (The Eclipse Foun-
dation, 2015) was the Integrated Development Environment (IDE) chosen for imple-
menting XMITS. UML 2.4.1 specifications were considered to produce the design
artifacts. The design artifacts are then exported into XMI (XML Metadata Inter-
change) format, and are inputted to XMITS. XMI is a standard of OMG (Object
Management Group) (OMG, 2015) for exchanging metadata information via Exten-
sible Markup Language (XML). The most common use of XMI is as an interchange
format for UML models, although it can also be used for serialization of models
of other languages (metamodels). OMG has a documentation of formally released
versions of XMI.

Figure 4.2 - Flow diagram of XMITS

78

Figure 4.2 presents a data flow within XMITS. The tool interoperates with two other
tools: Modelio 3.2 (MODELIOSOFT, 2011), that is the software used to produce the
UML artifacts; and the NuSMV model checker. XMITS consists of five modules, of
which four of them can be viewed in Figure 4.2: the Reader, that transforms the
XMI file to a list of tags; the Converter, that transforms the list of tags to a single
TS; the TUTS (The Unified Transition System), that transforms the single TSs
to the unified TS; and the Bridge module, that transforms the unified TS to the
model checker notation. There is still the Global module, that is not shown in the
figure, which controls several functions. All these modules are detailed in the next
section.

4.1 XMITS Architecture

The actual XMITS software architecture is shown in Figure 4.3, where it is possible
to visualize all the five modules of the tool. In total, there are 121 classes: 7 for the
Reader Module; 61 for the Converter Module; 26 for the TUTS Module; 7 for the
Bridge Module; and 20 for the Global Module. There are about 11,120 lines of code
instructions.

All XMITS modules work together following a sequence of interactions to produce
the final output. Figure 4.4 shows the detailed workflow related to XMITS. The
process begins by the XMI files produced in the Modelio software. XMITS can
process n XMI files. This is because sometimes there are two activity diagrams
related to the scenario being analyzed; or three sequence diagrams. In this way, due
to each combination of the three accepted UML behavioral diagrams, it is possible
to process n XMI files. The only restriction is that, as previously emphasized, it
demands that at least one SD must be available. For n XMI files, XMITS calls n
instances of the Reader and n instances of the Converter. All the Converter outputs
feed the TUTS, which, in turn, combines the Transition Systems into a unique TS.

Once this is done, it is possible to call the Bridge module to translate the Transition
System into the NuSMV notation. The Global module has also a Printer function
to visualize the Transition System output directly in the Java terminal, or save it
as a txt file. Follows are the details of XMITS modules.

4.1.1 The Reader Module

To process any XMI input, the first action is to convert the file to a useful format.
The Reader module is responsible for converting the XMI into a structure for the

79

TUTS

-converter: Converter
-builder: Buider
-exception: Exception

+addDiagram(XMI)
+run()
+getTransitionSystem(): List()

Exceptions

Reader

-nodeList: List()
-exception: Exception

+parse(XMI)
+getNodeList(): List()

Bridge

-output: String

+getOutput(TransitionSystem): String

Builder

-transitionSystem: List()

+saveState()
+getTransitionSystem(): List()

Converter

-reader: Reader
-builder: Buider
-exception: Exception

+run()
+getTransitionSystem(): List()

Bridge

Global

TUTS
ConverterReader

«access»«access»

«access»

«access»
«access»

«access» «access»

Figure 4.3 - XMITS software architecture

Figure 4.4 - XMITS detailed workflow

80

Converter module. The input file, which is an XML file, is processed by SAX (Simple
API for XML). The Reader module uses this API to save all the content of the input
into a linked list, storing each tag in a Java class according to its characteristics.
Figure C.8 in Appendix C shows the class diagram for this module.

4.1.2 The Converter Module

Figure 4.5 shows the operation of Converter module. After the XMI file is processed
by the Reader, the Converter parses its content to confirm if it is a valid UML
diagram and which diagram it is. After identification, the diagram is redirected
to its specific Collector depending on the type of the diagram: Sequence, Activity,
State Machine. The collectors are responsible for reading the file, line by line, and
classifying its elements into six categories: State, Fork, Join, Decision, Connection,
or Default. These are the basic categories used by the Converter’s Logics to define
all possible elements in the behavioral UML diagram that this research is working
with. Then, the Converter Logics is called to process the list containing the elements,
classified in these categories.

Figure 4.5 - Flow diagram of Converter Module

Currently, XMITS accepts Sequence, Activity, and State Machine UML diagrams
but, if at anytime it is necessary to upgrade the system with more diagrams, the

81

only change required is to implement a new collector in the collectors package. Once
the categories are formatted in a list, they are redirected to the Logics, as can be
seen in Figure 4.5. Actually, the list is a kind of state machine, so the Logics gets
its first state and starts to process all the transitions and subsequent states. For
each kind of element in the mentioned six categries there is a specific function in the
Function Dictionary, which is the class responsible for calling the correct function
for each category. The functions process the information of the incoming element.

While the list is being processed, the functions call an instance of Builder, an im-
portant class of the Global module, responsible for creating the Transition System
output. The Builder class always returns its own instance, so there will never be
more than one Builder, no matter how many times it has been used in the system.
Figure 4.6 shows the package diagram for this module.

Figure 4.6 - Package Diagram of Converter Module

4.1.3 The TUTS Module

The Unified Transition System (TUTS) module is an implementation of the ap-
proach proposed in Subsection 3.2.2, and it is responsible for unifying the single
Transition Systems into an unified Transition System output. The TUTS is com-
posed of five packages, as can be seen in Figure 4.7: dictionaries, interfaces, facade,
logics and tools. The dictionaries package holds all dictionaries used by the mod-
ule. A Dictionary is a class of unique instance, which keeps an information that
can not be duplicated. It was implemented using Singleton design pattern solution.
A Dictionary class has data structures such as linked lists, arrays, and so on. It
has functions to add and to consult information. The interfaces package defines the
basic function interfaces to generalize the code. All dictionaries are initialized by a

82

facade class stored in the facade package. The core processing happens inside the
logics package. Finally, the tools package provides many important functions for the
unification process.

Figure 4.7 - Package Diagram of TUTS Module

The flow of processing inside the TUTS is based on an iteration on the Transition
System inputs, unifying each state of each Transition System according to a rule.
Algorithm 4, presented in Section 3.2.2, shows how the unified TS is generated.
Each Transition System represents a UML diagram transformed by the Converter
Module. They are processed all together, side by side, like cars running on a race
track. To walk from a state to another, the iterator needs to obey rules in a specific
order (actually, these rules are based on the gvs - guard value structure - explained
in Figure 3.6). All these rules are stored in a Rule Dictionary, in the dictionaries
package. The Rule Dictionary is an array list containing the four rules, as can be
seen in Figure 3.7. If the states fit in the First Rule, there is a specific kind of
iteration; if not, the system tries to apply the Second Rule, and so on. The last rule
is an “end of race”, a function that simply stops all the iterators because there is
nothing more to iterate, i.e., all the diagrams reach their last state. This process
can be observed in Figure 4.8.

The gvs can be formalized as follows. Given that a Transition System is composed of
states and that each state w contains its own gvs, the gvsw is defined as an ordered
n-tuple (x1, x2, ..., xn), where n is a positive integer and x1, x2, ..., xn is a distinct
sequence of elements. An element xk of the tuple represents a guard along with its
value. Two ordered n-tuples (x1, x2, ..., xn) and (y1, y2, ..., yn) are equal if, and only
if, xi = yi, ∀ i = 1...n.

83

Figure 4.8 - The iteration over the diagrams in the TUTS module

Let p be a state of a Transition System. Nextgvs(p) is defined as the set of all gvs
of the next states of p. It is written as Nextgvs(p) = {gvs1, gvs2, ..., gvsk}, where
elements gvs1, gvs2, ..., gvsk represent the gvs of each one of the k next states of p.
A state q is a next state of p if, and only if, there exists a transition from state p to
state q, written as p→ q.

Returning to Algorithm 4, let S = {s1, s2, ..., sm} be the set of states of the current
iteration, each one representing a digram, as can be seen in Figure 4.8. The four
rules are defined as follows:

a) First Rule: ∀ a ∈ Nextgvs(s1) ∃ b ∈ Nextgvs(sj) | a = b, j = 2...m.

b) Second Rule: ∃ sk ∈ S | gvssk
= r, where r ∈ Nextgvs(sk).

c) Third Rule: if ∃ a ∈ Nextgvs(s1), then a 6= b ∀ b ∈ Nextgvs(sj) ,
j = 2...m.

d) Fourth Rule: All the other cases.

The First Rule expects to find all states in the iterators position with the same
guard conditions. This rule means “all states are equal”, and it is the only time in
the process when the Builder class is called to generate an output. An unified state
is possible if, and only if, all the states are equal. If all states are not equal then

84

the system tries the Second Rule. The Second Rule looks for a scenario where some
diagrams changed their guard conditions but others did not. In this hybrid condition
the iterator advances just the diagrams which did not change, and the First Rule
can be applied. If the Second Rule wasn’t applied, then the system tries the Third
Rule. Here not all states are equal. If there are at least two equal states, the First
Rule is applied to them. Then, if all diagrams have different states, there is no way
to create a unified state, so all diagrams start to run in a different thread with no
interaction with the others. If even the Third Rule wasn’t applied, there is a Final
Rule to end all the process.

Every time the diagrams can not be unified, the system divides the process and a
new thread is created. This process happens when a division occurs in the diagram
or in the Third Rule, when all states are different. In this way, TUTS avoids joining
different states and simplifies the process. While there is more than one thread
running, the Builder class falls into a concurrency of processes, trying to save a
Transition System. To solve this, the save function runs into a critical region.

4.1.4 The Bridge Module

The Bridge module is responsible for translating the TSs into the notation of the
NuSMV model checker. It allows to translate both the output of the Converter as
well as the output of TUTS. So, if one needs to translate only a single TS, it is
possible. Thus, the Bridge module allows the translation of both the single TSs or
the unified TS.

The Bridge module accomplishes the model transformation using the context-free
grammar shown in Figure 3.12. As already explained in Section 3.3, the grammar
defines all the syntax of NuSMV. It is possible to visualize the output directly
in Java terminal or save it in a file. To make the conversion, the Bridge module
iterates all over the Transition System several times, one for creating each section
of the output file: header, variables, initial state (Assign), transitions (Next), and
guards. There is a function dedicated to create each one of these sections of the
NuSMV file. Then, the formater() function iterates over all String values looking
for non accepted characters and replaces then in order to apply the rules defined by
the grammar. Figure C.9 in Appendix C shows the class diagram for this module.

85

4.1.5 The Global Module

The Global module provides some useful resources. The Builder and the main data
structure, widely used by the Converter and TUTS modules are here. The Builder is
responsible for writing the Transition System during the conversion and unification
processes. It is also responsible for giving access to the Transition System output
after all the processes have been finalized. All data processed by conversion and
unification are encapsulated into a data structure defined in the Global module.
Figure C.10 in Appendix C shows the class diagram for this module.

The Transition System itself is defined in this module. This module is also responsi-
ble for holding all the exception classes used by all other modules. Finally, there are
two useful functions for global use: an ID generator and a Printer. The ID generator
provides a global unique ID generation for all the inner processes. The Printer is
used for textual visualization of the Transition System tree. It is possible to see this
output on a terminal console or save it directly to a txt file.

Figure 4.9 - An example of a diagram and its respective tree

86

The printed version by the tool is a breadth-first search in this Transition System
tree. It presents the name of each state, the guard conditions and, in the sequence
diagram, who sent and who received each message. Figure 4.9 shows an example
to illustrate a diagram and its tree and Figure 4.10 shows the output file for this
diagram. Note that the first line of the output file shows the number of children
nodes that each node has. Note also that the first state is null; the first state is
the head of the list. The first state of any diagram is always null, because all the
data structure used in the output of the application is a list with a head. As the
diagram used is a sequence diagram, there is a description of who sent and received
the message. In the end, the total number of states identified by the Converter is
presented.

When there is a condition, the tree displays different paths. When the condition is
true, the stream goes to the left, when it is false, it follows to the right, as shown in
Figure 4.9. In this example, there is a branch because of the opt fragment. In this
way, all the possibilities for implementation of the diagrams presented in Section 3.2
are predicted.

4.2 Final Remarks

This chapter has presented XMITS, the tool developed to support three activites
proposed in SOLIMVA 3.0 methodology: Generate single TSs, Generate Uni-
fied TS, and Generate Model Checker Notation. XMITS is essential to the
application of SOLIMVA 3.0, which aims to allow the use of Formal Methods in
practice, to real software projects.

All the modules of XMITS were explained, as well as the operation of each one of
them. XMITS is composed of five main modules: the Reader, the Converter, the
TUTS, the Bridge, and the Global module. The tool aims to be modular and ready
for upgrade. All its architecture was think to be generic and flexible. One of the most
important characteristics of the architecture used in XMITS tool is the aperture to
implement new modules and add new features in the existent modules.

Appendix C presents step-by-step, how to use the tool. It also shows the class
diagrams of Reader, Bridge, and Global modules. The next chapter shows SOLIMVA
3.0 applied to two case studies in the aerospace area.

87

Figure 4.10 - Output file for the diagram shown in Figure 4.9

88

5 APPLICATION OF SOLIMVA 3.0 TO SPACE SOFTWARE

The goal of this chapter is to present the aplication of SOLIMVA 3.0 and its sup-
porting tool, XMITS, to two real space software products. In total, the methodology
was applied to twenty scenarios considering the two case studies.

This chapter is organized as follows. The next section details the first case study:
Software for the Payload Data Handling Computer (SWPDC). It shows the project
description, its architecture, main objectives, as well as the scenarios explored. The
results for each scenario are presented. Section 5.2 shows the same explanation, but
related to the Software for the Payload Data Handling Computer - protoMIRAX
Experiment (SWPDCpM).

5.1 SWPDC - Software for the Payload Data Handling Computer

This case study is a space application software product, SWPDC, developed in the
context of the Qualidade do Software Embarcado em Aplicações Espaciais (QSEE
- Quality of Space Application Embedded Software) research product (SANTIAGO

et al., 2007). QSEE was an experience in outsourcing the development of software
embedded in satellite payload. INPE was the customer and there were two SWPDC’s
suppliers: INPE itself and a Brazilian software company.

Figure 5.1 shows the physical architecture defined for QSEE project. Note the fol-
lowing computing units in the architecture: On-Board Data Handling (OBDH) Com-
puter, Payload Data Handling Computer (PDC), Event Pre-Processors (EPPs; EPP
H1 and EPP H2), and Ionospheric Plasma Experiments (IONEX) Computer. OBDH
is the satellite platform computer in charge of processing platform and payload in-
formation and formatting/generating data to be transmitted to Ground Stations.
The Payload is composed of two scientific instruments (note the dashed rectangles).
However, for the purpose of this case study, the main instrument is the one in which
PDC exists, because SWPDC is embedded into PDC. The main goal of PDC is
to obtain scientific data from EPPs and to transmit them to the OBDH. EPPs
are front-end processors in charge of fast data processing of X-ray camera signals
(SANTIAGO JÚNIOR, 2011).

The main functions of SWPDC software product are (SANTIAGO et al., 2007):

a) Interaction with EPPs in order to collect Scientific, Diagnosis, and Test
Data;

89

OBDH
(Simulation
Software)

PDC
(SWPDC)

EPP H1
(Data

Simulation)

EPP H2
(Data

Simulation)

Temperature
Simulation

IONEX

Temperature
Simulation

Converter

USB DAQ

RS-232

ADC

RS-232

Instruments
RS-232

Figure 5.1 - Physical architecture defined for QSEE project. Caption: ADC = Analog-to-
Digital Converter; DAQ = Data Acquisition Board; RS-232 = Recommended
Standard 232; USB = Universal Serial Bus. SANTIAGO JÚNIOR (2011)

b) Data Formatting;

c) Memory management to store data temporarily before transmission to the
OBDH;

d) Implementation of flow control mechanisms;

e) Housekeeping Data generation;

f) Implementation of complex fault tolerance mechanisms; and

g) Loading of new programs of the fly.

This case study has, therefore, almost all the functions of data handler computers
for space applications and thus, the characteristics of SWPDC are representative of
an important class of software in space domain.

In order to apply SOLIMVA 3.0 methodology, two documents were consulted: the
Software Requirements Specification of QSEE (SRS), one of the artifacts generated
during SWPDC’s development lifecycle; and INPE-16677-RPQ/850 Research Report
(JÚNIOR et al., 2010), developed in a partnership between INPE and CIFASIS (Centro
Internacional Franco Argentino de Ciencias de la Información y de Sistemas), whose

90

goal was to accomplish a comparison between Statecharts and Z language (SPIVEY;

ABRIAL, 1992), and to propose a complementing approach.

The SRS describes the technical specification of SWPDC, showing the environments,
requirements, functional modeling, behavioral modeling, restrictions, and limitations
of the software. Behavioral modeling is represented by means of two UML diagrams:
sequence diagram and activity diagram. The modeling procedure is given by rep-
resentation of scenarios. Such scenarios were used as the scenarios of the case
studies (remembering the first activity of SOLIMVA 3.0: Identify Scenarios). The
INPE-16677-RPQ/850 Research Report shows the scenarios proposed by an expert
and modeled in Statecharts. Therefore, the two documents together are valuable in-
puts to apply SOLIMVA 3.0 methodology, since most of the scenarios are specified
using sequence diagram, activity diagram, and Statecharts.

As some of the features of Harel’s Statecharts are not covered in UML 2.0, the Stat-
echarts models of the Research Report were rewritten as UML state machines. One
such example is shown in Figure 5.2. On the left, Scenario 1 is represented using
UML state machine. On the right, the same Scenario 1 is represented using State-
charts. Observe that the changes were performed because of the events tr[In(IniM_-
POST)] and endtime[In(SafeM_Etered)]. ’In(IniM_POST)’ predicate returns true
if the state machine is in the state IniM_POST. This predicate allows coordina-
tion among parallel regions. As this predicate is not implemented in XMITS, the
states from where these transitions start were modeled as parallel with the states
IniM_POST and SafeM_Etered. Actually, that is what happens in practice.

5.1.1 Scenarios of SWPDC

In the case study, eight scenarios of SWPDC were chosen to be carried out. As
already mentioned, these scenarios were obtained from SWPDC’s SRS, from the
INPE-16677-RPQ/850 Research Report, and from (SANTIAGO JÚNIOR, 2011).

a) Scenario 1: PDC initiation process;

b) Scenario 2: Switching EPP Hxs on and off;

c) Scenario 3: Changing software parameters in the Safety Operation Mode;

d) Scenario 7: Housekeeping Data Transmission in the Nominal Operation
Mode;

91

PDCOff

IniM_POST

SafeM_Entered

SafeM_VerOp

SafeM_EPPsOff

Idle

CountingTime

[switchPDCOn/start60s]

[POSTOk]

[VER_OP_MODE/INFO_OP_MODE]

[tsinc]

[switchPDCOff]

[endtime]

UML State Machine Model: Scenario 1

Statechart Model: Scenario 1

Statechart Model: Scenario 1

Figure 5.2 - Scenario 1 represented in Statecharts and adapted to UML State Machine

e) Scenario 8: Housekeeping Data Transmission in the Nominal Operation
Mode, Robustness (reception), Load new programs;

f) Scenario 9: Dump Data of Program Memory in the Nominal Operation
Mode;

g) Scenario 10: Dump Data of Program Memory in the Nominal Operation
Mode, Robustness (command and reception); and

h) Scenario 12: Dump Data of Data Memory (Page 0) in the Nominal Oper-
ation Mode, Robustness (command and reception).

In the next subsections scenarios 1, 3, and 8 are detailed. Not all the scenarios
are detailed to make text not exhausting. Subsection 5.1.2 summarizes the results
obtained from all the scenarios analyzed.

92

5.1.1.1 Scenario 1: PDC Initiation Process

In this scenario, the main actor is the PCD (Power Conditioning Unit) that switches
the PDC computer on. The flow involves: to accomplish hardware verification, to
obtain current PDC temperature, to generate startup report, to configure PDC state
with standard values, and to divert the control to the main module when in safety
operation mode.

There are three UML diagrams which represent Scenario 1: a sequence, an activity,
and a state machine diagram, illustrated in Figures 5.3, 5.4, 5.5, respectively. Four
user-defined properties for this scenario, related to requirements, were verified.

PCD : SWPDC : EPP :

1: powerOn()

2:iniciar()

3:verificarHardware()

4: obterStatusAlimentacao(HX1,HX2)

5:gerarRelatoPOST()

6:reconfigurar()

7:mudarModoOperacao()

8:ativarModuloPrincipal()

Figure 5.3 - Sequence Diagram for Scenario 1

a) Property 1: The POST (Power-On Self Test) shall comprise: (i) Power
status of the PDC itself; (ii) Power satus of the two EPP-HXI sets; (iii)
Current internal temperature of the PDC; (iv) Coherent information of
the PDC Program Memory; (v) Reading of SRAM (Data Memory) and;

93

Verificar

memoria de

programa

Verificar

memoria

de dados

Verificar status da

alimentacao do

PDC

Verificar status da

alimentacao EPP

HXi

Verificar

temperatura

atual do PDC

Verificar

circuito de Cao-

de-Guarda

Determinar

Modo de

Iniciacao

Limpar

memoria

flash

Iniciar memoria de

configuracao com

valores padrao

Gravar

relato de

eventos

Avaliar

processo de

iniciacao

Re-

configurar

Mudar para modo

de operacao

SEGURANCA

[mal sucedido]

[modo iniciacao - power on]

[bem sucedido]

[else]

Figure 5.4 - Activity Diagram for Scenario 1

(vi) Correct operation of the watchdog timer circuit. This property can be
formalized using the Existence Pattern and Globally Scope proposed
by (DWYER et al., 1999), in CTL, as follows:

∀♦ (State=_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--
CountingTimeANDIniM_POST)

∀♦ (State=_4obterStatusAlimentacao$HX1-HX2$--
VerificarstatusdaalimentacaoEPPHXi--IniM_POST)

∀♦ (State=_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--
SafeM_Entered)

94

PDCOff

IniM_POST

SafeM_Entered

SafeM_VerOp

SafeM_EPPsOff

Idle

CountingTime

[switchPDCOn/start60s]

[POSTOk]

[VER_OP_MODE/INFO_OP_MODE]

[tsinc]

[switchPDCOff]

[endtime]

Figure 5.5 - State Machine Diagram for Scenario 1

∀♦ (State=_1powerOn$$--Verificarmemoriadeprograma--PDCOff)
∀♦ (State=_2iniciar$$--Verificarmemoriadedados--IdleANDIniM_POST)
∀♦ (State=_6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--SafeM_VerOp)

A state is composed of (Message,Activity,Event-State), as de-
tailed in Section 3.2.2. However, some adjustments had to be made
to be compatible with NuSMV notation. For example, observe the
state _3verificarHardware$$–VerificarstatusdaalimentacaodoPDC–
CountingTimeANDIniM_POST. Its first part, _3verificarHardware$$ is in-
herited from the sequence diagram (3:VerificarHardware()). Observing
the grammar presented in Figure 3.12, it is possible to see that the first
character of a variable can not be a number: only letters and character
’_’ (underscore) are allowed. That’s why all states begin with an ’_’,
as the messages are all numbered. Also, one can observe that name of
variables can be formed by letters, numbers, and only the digits ’$’, ’#’,

95

’-’. So, () was replaced by $$, and ’:’ (colon) was removed. The comma,
which was used for separating messages, activities, and event-states, was
replaced by ’–’ (two dashes). Besides, all blank spaces were removed. Thus,
VerificarstatusdaalimentacaodoPDC was inherited from the activity di-
agram, originally was Verificar status da alimentacao do PDC and
CountingTimeANDIniM_POST was inherited from the state machine dia-
gram. Missing diagrams are substituted by an underscore ’_’.

Each one of the six items related to property 1 are represented by one state
in the TS obtained from the diagrams of Figures 5.3, 5.4, 5.5. For example,
Coherent information of the PDC Program Memory is represented by the
state _1powerOn$$–Verificarmemoriadeprograma–PDCOff. After running
NuSMV, this property is satisfied.

b) Property 2: The SWPDC should know how to distinguish between a
power-on process and a reset process. This property can be formalized
using the Existence Pattern and Scope After Q proposed by (DWYER
et al., 1999), in CTL, as follows:

¬∃ [¬ ((State= _7mudarModoOperacao$$--DeterminarMododeIniciacao--
SafeM_EPPsOff ∧ modoIniciacaoPowerOn=true) ∧

∀♦ (State = _--Limparmemoriaflash--_)) ∪ ((State= _7mudarModoOperacao$$--
DeterminarMododeIniciacao--SafeM_EPPsOff ∧

modoIniciacaoPowerOn=true)
∧¬ ((State= _7mudarModoOperacao$$--DeterminarMododeIniciacao--

SafeM_EPPsOff ∧ modoIniciacaoPowerOn=true) ∧ ∀♦ (State=
--Limparmemoriaflash--)))]

The TS obtained from the diagrams of Figures 5.3, 5.4, 5.5 has a
variable (obtained from the guards) that distinguish between a power-on
process and a reset process (modoIniciacaoPowerOn). After the state
_7mudarModoOperacao$$--DeterminarMododeIniciacao--SafeM_EPPOff
if the value of variable modoIniciacaoPowerOn=true the next state should
be _--Limparmemoriaflash--_. When running NuSMV, this property is
satisfied.

c) Property 3: The SWPDC should report processing of the POST through
reports of events. This property can be formalized using the Existence
Pattern and Globally Scope proposed by (DWYER et al., 1999), in
CTL, as follows:

∀♦ (_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_Entered)

96

∨ ∀♦ (_--Gravarrelatodeeventos--_)

Two states on the TS represent this property: _5gerarRelatoPOST$$--
VerificartemperaturaatualdoPDC--SafeM_Entered and also the state
--Gravarrelatodeeventos--. When running NuSMV, this property is
satisfied.

d) Property 4: In the case of any unrecoverable problem not being identified
in the PDC after the initiation process, the PDC shall automatically enter
into the safety operation mode. This property can be formalized using the
Response Pattern and Globally Scope proposed by (DWYER et al.,
1999), in CTL, as follows:

∀� ((State=_--Avaliarprocessodeiniciacao--_ ∧ bemSucedido=true) ->
∀♦ (State=_--MudarparamododeoperacaoSEGURANCA--_))

In the TS there is a variable that indicates if the initiation process is
successful (bemSucedido=true) or not (bemSucedido=false). After state
--Avaliarprocessodeiniciacao--, in the case of bemSucedido=true,
it is possible to reach state _--MudarparamododeoperacaoSEGURANCA--_,
which represents that the PDC enters the safety operation mode. Other-
wise, the PDC remains in the initiation operation mode. When running
NuSMV, this property is satisfied.

For Scenario 1, 243 states were obtained, 31 of which are reachable states when
running NuSMV model checker. Table 5.1 summarizes all information about this
scenario. The table is divided into three parts. From left to right: first, it shows the
number of each type of UML diagram that was used for this scenario; then, the total
number of states and reachable states; and last, the properties verified and which
of them have been satisfied. Figure 5.6 exhibits part of the unified TS for Scenario
1. The TS generated as txt file as well as the output containing the model checker
notation (smv file) for this scenario can be found in Appendix A. Table A.1, also in
Appendix A, presents all properties which were verified for all scenarios of SWPDC.

5.1.1.2 Scenario 3: Changing software parameters in the Safety Opera-
tion Mode

In this scenario, the modification of SWPDC parameters, may occur in any mode
of operation (except on initiation). SWPDC verifies the limits of the values that the

97

Table 5.1 - Statistics about Scenario 1 of SWPDC

UML diagrams Transition System Properties Verified
SD AD SMD Total States Reachable States Property Satisfied
1 1 1 243 31 P1 Yes

P2 Yes
P3 Yes
P4 Yes

<(_1powerOn$$--
Verificarmemoriadeprograma
--PDCOff),bemSucedido=dc,
modoIniciacaoPowerOn=dc>

...

<(_2iniciar$$--
Verificarmemoriadedados--

IdleANDIniM_POST),bemSucedido=dc,
modoIniciacaoPowerOn=dc>

<(_3verificarHardware$$--
VerificarstatusdaalimentacaodoPDC--

CountingTimeANDIniM_POST),
bemSucedido=dc,

modoIniciacaoPowerOn=dc>

<(_3verificarHardware$$--
VerificarstatusdaalimentacaodoPDC--
CountingTimeANDSafeM_Entered),

bemSucedido=dc,
modoIniciacaoPowerOn=dc>

<(_3verificarHardware$$--
VerificarstatusdaalimentacaodoPDC--

SafeM_EnteredANDIdle),
bemSucedido=dc,

modoIniciacaoPowerOn=dc>

<(_4obterStatusAlimentacao$HX1-HX2$--
VerificarstatusdaalimentacaoEPPHXi--

IniM_POST),bemSucedido=dc,
modoIniciacaoPowerOn=dc>

<(_4obterStatusAlimentacao$HX1-HX2$
--VerificarstatusdaalimentacaoEPPHXi
--SafeM_EnteredANDCountingTime),

bemSucedido=dc,
modoIniciacaoPowerOn=dc>

<(_4obterStatusAlimentacao$HX1-HX2$
--VerificarstatusdaalimentacaoEPPHXi
--SafeM_Entered),bemSucedido=dc,

modoIniciacaoPowerOn=dc>

... ...

...
...

Figure 5.6 - Part of the unified TS obtained for Scenario 1

parameter in question can assume and proceeds with the change of values in the
configuration table.

There are two UML diagrams which represent Scenario 3: a sequence and a state
machine diagram, as can be seen in Figures 5.7, 5.8, respectively. Two user-defined
properties for this scenario, related to requirements, were verified.

a) Property 1: The time for generation of housekeeping data can be changed
by means of command sent by OBDH. The minimum value of time to
generate housekeeping is 60s, and and the maximum value is 1000s.

98

OBDH : ComOBDH : ConSvcApl : GerEstado :

1: MODIFICAR_PARAMETROS(par,val)

3: COMANDO_RECEBIDO

2: analisarComando()

4: executar(cmd)

5: ok: = consistentir(cmd)

6: [ok] definirManipulador(cmd)

7: manipular(cmd)

8: OK:=verificarLimites(par,val)

9: [OK] alterarParametro(par,val)

Figure 5.7 - Sequence Diagram for Scenario 3

This property can be formalized using the Universality Pattern and
Globally Scope proposed by (DWYER et al., 1999), in CTL, as follows:

∀� (ModifyParameters(HK,60s))
∀� (ModifyParameters(HK,1000s))

The state that represents ModifyParamtParameters(HK,60s) is _-
2dots$__analisarcomando$_$$_$$coma$__ch_sw_par$minus$hk_-
60s$slash$cmd_rec__and__safem_parhkr$_$, but there is no state in
the TS that represents ModifyParameters(HK,1000s). So, the property
is not satisfied.

b) Property 2: A session for transmission of housekeeping data begins with
the command PREPARE HOUSEKEEPING DATA. In this case, the
SWPDC interrupts the acquisition of scientific data of EPPs. The session
continues with one or more commands TRANSMIT HOUSEKEEPING
DATA (RETRANSMIT RESPONSE, when necessary) and ends with the
command TRANSMIT SCIENTIFIC DATA, where SWPDC returns to
acquire scientific data of EPPs. This property can be formalized using the

99

SafeM_BeginChSw

SafeM_ParHkR

SafeM_ParAnCR

SafeM_WaitHk

SafeM_TxSciR

SafeM_ParHkR2

SafeM_ParAnCR2

SafeM_EndHk

SafeM_PrepHkR

SafeM_TxHkR

NoSeq1

Seq

NoSeq2

Idle

CountingTime

[CH_SW_PAR-Hk_60s/CMD_REC]

[start600s/first]

[CH_SW_PAR-AnC_1000ms/CMD_REC]

[tsinc] [CH_SW_PAR-Hk_600s/CMD_REC]

[TX_DATA-Sci/NO_DATA]

[CH_SW_PAR-AnC_10000ms/CMD_REC]

[PREP_HK/CMD_REC]

[TX_DATA-Hk/HK_DATA_RSC0]

[start60s/sec]

[first]

[sec]

[endtime/tsinc]

Figure 5.8 - State Machine Diagram for Scenario 3

Precedence Chain and Scope After Q proposed by (DWYER et al.,
1999), in CTL, as follows:

¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪ (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]
where,
Q = PREPARE HOUSEKEEPING DATA
S = STOP DATA ACQUISITION
T = TRANSMIT HOUSEKEEPING DATA
P = TRANSMIT SCIENTIFIC DATA

There are no states in the TS that represent the commands Q, S, T or P.
The property is not satisfied.

For Scenario 3, it was obtained 3745 states, 63 of which are reachable states when
running NuSMV model checker. Table 5.2 summarizes all information about this
scenario. Figure 5.9 exhibits part of the unified TS for Scenario 3.

100

Table 5.2 - Statistics about Scenario 3 of SWPDC

UML diagrams Transition System Properties Verified
SD AD SMD Total States Reachable States Property Satisfied
1 0 1 3745 63 P1 No

P2 No

<(_1modificar_parametrosparcomaval
--safem_beginchsw)>

...

<(_2analisarcomando$$--
ch_sw_par$minus$hk_60s$slash$cmd_rec

-safem_parhkr$_$)>

<(_4executar$_$cmd$$--first_tseq__and__
ch_sw_par$minus$anc_1000ms$slash$cmd_rec

safem_parancr)>

<(_3comando_recebido--
ch_sw_par$minus$anc_1000ms$slash$cmd_rec

safem_parancr__and__noseq1$_$)>

<(_4executar$_$cmd$$--start600s$slash$first-
safeM_waithk__and__noseq1$_$)>

<(_4executar$_$cmd$$--
start600s$slash$first-safeM_waithk__and

first_tseq__)>

...

...

Figure 5.9 - Part of the unified TS obtained for Scenario 3

5.1.1.3 Scenario 8: Housekeeping Data Transmission in the Nominal Op-
eration Mode, Robustness (reception), Load new programs

In this scenario, during a sequence of commands for transmission of data, the OBDH
may request the retransmission of the last reply to a request for data. In this case,
the command handler defined by the application service control will be responsible
for acquiring and conditioning the response message to retransmission, working with
data management.

There are four UML diagrams which represent Scenario 8: three sequence diagrams
and one state machine diagram, as can be seen in Figures 5.10, 5.11, 5.12, 5.13,

101

respectively. Four user-defined properties for this scenario, related to requirements,
were verified.

OBDH : SWPDC :

loop

[]

alt

[]

[]

1: PREPARAR_DADOS(housekeeping)

2: COMANDO_RECEBIDO

5:TRANSMITIR_DADOS(housekeeping)

6: DADOS(housekeeping)

7:TRANSMITIR_DADOS(cientifico)

9: [buffCientificoSuficiente]DADOS (cientifico)

10: [buffCientificoInsuficiente]NENHUM_DADO

3: interromperAquisicaoDeDados

4:prepararDados(housekeeping)

8: iniciarAquisicaoDeDados

Figure 5.10 - Sequence Diagram 1 for Scenario 8

a) Property 1: A session for transmission of housekeeping data begins with
the command PREPARE HOUSEKEEPING DATA. In this case, the
SWPDC interrupts the acquisition of scientific data of EPPs. The session
continues with one or more commands TRANSMIT HOUSEKEEPING
DATA (RETRANSMIT RESPONSE, when necessary) and ends with the
command TRANSMIT SCIENTIFIC DATA, where SWPDC returns to
acquire scientific data of EPPs. This property can be formalized using the
Precedence Chain and Scope After Q proposed by (DWYER et al.,
1999), in CTL, as follows:

¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪ (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]
where,

102

OBDH : SWPDC :

loop

[]

1: PREPARAR_DADOS(tipo)

2: COMANDO_RECEBIDO

5:TRANSMITIR_DADOS(tipo)

6: DADOS(tipo)

timeout

7:RETRANSMITIR_RESPOSTA(tipo)

8:DADOS(tipo)

3: interromperAquisicaoDeDados

4:prepararDados(housekeeping)

Figure 5.11 - Sequence Diagram 2 for Scenario 8

Q = PREPARE HOUSEKEEPING DATA
S = STOP DATA ACQUISITION
T = TRANSMIT HOUSEKEEPING DATA
P = TRANSMIT SCIENTIFIC DATA

Table 5.3 maps the commands and how they are represented in the TS.
When running NuSMV, this property is satisfied.

b) Property 2: The PDC can also have a situation of not receiving the
command sent. After identifying delimiter of start the PDC waits for
a time of 600 ms for the rest of the command. This time is equivalent
to 2 times as long to transmit command with maximum size (1128
Bytes). In the case of expiry of the stipulated time, a timeout occurs
and the PDC aborts the communication, the command is discarded,
one event is raised to it, and the PDC expects a new command from
OBDH. This property can be formalized using the Precedence Chain
and Scope After Q proposed by (DWYER et al., 1999), in CTL, as follows:

¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪ (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]
where,
Q = StartCommand & Wait600ms
S = Timeout

103

OBDH : SWPDC :

1: PARAR_AQUISICAO_DE_DADOS

2: COMANDO_RECEBIDO

3: parar aquisicao de dados

4: CARREGAR_DADOS_NA_MEMORIA(dados)

5: COMANDO_RECEBIDO

6:[sequencia OK] carregar(dados)

7: EXECUTAR_PROGRAMA_CARREGADO

8: verificar carga

9: STATUS_DA_CARGA

10: [carga ok] executar programa

11: REINICIAR_AQUISICAO_DE_DADOS

12: COMANDO_RECEBIDO

13: iniciar aquisicao de dados (cientifico)

Figure 5.12 - Sequence Diagram 3 for Scenario 8

T = GenerateReportEvent
P = ExpectNewCommandOBDH

There is no state in the TS generated that represents the command
GenerateReportEvent. Thus, the property is not satisfied.

c) Property 3: The OBDH checks all fields of the replies sent by the PDC.
In the case of OBDH send a command TRANSMIT DATA and if
there is inconsistency in the values received in any of the fields of a
data response (SCIENTIFIC DATA, HOUSEKEEPING DATA, DUMP
DATA MEMORY, DIAGNOSTIC DATA, AND TEST DATA), the
OBDH uses the command RETRANSMIT RESPONSE to try get a
consistent data response. The command RETRANSMIT RESPONSE
refers only to the last data response sent by the PDC. Therefore, the
PDC must maintain, temporarily, always the latest data response that
was sent to the OBDH for case of error in receipt of this response by

104

NomM_BeginHkData

NomM_WaitChPar1

NomM_WaitPrepHk1

NomM_EndT1

NomM_WaitT2

Idle

CountingTime

Idle

NomM_WaitPrepHk2

CountingTime

NomM_EndT2 NomM_PrepHkR2

NomM_PrepHkR1 NomM_WaitChPar2

NomM_EndHkData

NomM_WaitT1

NomM_TxHkR1

NomM_TxHkR2

NomM_TxHkR3

NomM_UpPrg

NomM_TxHkR4

NomM_TxHkSqEr

NomM_PrepDmpR1

[VER_OP_MODE/INFO_OP_MODE]

[CH_SW_PAR-Hk_60s/CMD_REC]

[tsinc]

[TX_DATA-Hk/NO_DATA]

[start60s]

[TX_DATA-Sci/SCI_DATA]

[start600s]

[endtime/tsinc]

[tsinc]

[endtime/tsinc]

[PREP_HK/CMD_REC]

[TX_DATA-Hk/timeout]

[TX_DATA-Hk/HK_DATA-RSC0]

[PREP_DMP/CMD_REC]

[PREP_HK/CMD_REC] [CH_SW_PAR-Hk_600s/CMD_REC]

[TX_DATA-Sci/SCI_DATA]

[RET_ANSW/HK_DATA-RSC0]

[UPLOAD_PRG-CSC0-8000H-1113/CMD_REC]

[TX_DATA-Hk/NO_DATA]

[TX_DATA-Hk/NO_DATA]

Figure 5.13 - State Machine Diagram for Scenario 8

the OBDH. The OBDH sends this same command for maximum two
more times. If after these other two attempts still there is problem in
the response received from the PDC, the OBDH does not transmit this
command and generates a bug report which should be sent to the ground
station. This property can be formalized using the Precedence Chain
and Scope After Q proposed by (DWYER et al., 1999), in CTL, as follows:

¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪ (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]
where,
Q = TRANSMIT DATA & PDCResponseProblem

105

Table 5.3 - Commands and its representation on the TS

Command TS element Name and/or Value
PREPARE Variable State _$_$1$dots$__preparar_dados$

HOUSEKEEPING DATA _$housekeeping$_$$coma$__1$dots$_
_preparar_dados$_$tipo$_$$coma$_
_1$dots$__parar_aquisicao_de_dados

$coma$__nomm_beginhkdata$_$
STOP DATA Variable State _$_$3$dots$__interromperaquisicaodedados$

ACQUISITION coma$__3$dots$__interromperaquisicaodedados
$coma$__3$dots$__pararaquisicaodedados

$coma$__ch_sw_par$minus$hk_60s
$slash$cmd_rec__and__nomm_waitt1$_$

TRANSMIT Variable State _$_$5$dots$transmitir_dados$_$housekeeping
HOUSEKEEPING DATA $_$$coma$__5$dots$transmitir_dados$_$tipo

$_$$coma$__4$dots$carregar_dados_na
memoria$$dados$_$$coma$__$minus$$_$

TRANSMIT Variable State _$_$7$dots$transmitir_dados$_$cientifico
SCIENTIFIC DATA $_$$coma$__timeout$coma$__6$dots$#

sequenciaok#carregar$_$dados$_$$coma$
__$minus$$_$

S = RETRANSMIT RESPONSE 1 & PDCResponseProblem
T = RETRANSMIT RESPONSE 2 & PDCResponseProblem
P = Stop Sending & GenerateReportEvent

There is no state in the TS generated that represents the command Stop
Sending & GenerateReportEvent. Thus, the property is not satisfied.

d) Property 4: The SWPDC should allow uploading of programs in this
operation mode. The first command to be sent to the SWPDC is STOP
DATA ACQUISITION, for the SWPDC interrupts scientific data acquisi-
tion of the EPPs. After this command, one or more commands to LOAD
DATA MEMORY should be sent to the new program to be loaded in the
data memory of PDC. Later, a command RUN PROGRAM LOADED
INTO MEMORY should be sent to the PDC to have the program loaded
to run. At the end of the process of loading and executing of the program,
a command RESTART DATA ACQUISITION causes the SWPDC return
to acquire scientific data of EPPs. This property can be formalized using
the Precedence Chain and Scope After Q proposed by (DWYER et
al., 1999), in CTL, as follows:

¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪ (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]
where,
Q = STOP DATA ACQUISITION
S = LOAD DATA MEMORY
T = RUN PROGRAM LOADED

106

P = RESTART DATA ACQUISITION

Table 5.4 maps the commands and how they are represented in the TS.
When running NuSMV, this property is satisfied.

Table 5.4 - Commands and its representation on the TS

Command TS element Name and/or Value
STOP DATA Variable State _$_$3$dots$__interromperaquisicaodedados
ACQUISITION $coma$__3$dots$__interromperaquisicaodedados

$coma$__3$dots$__pararaquisicaodedados
$coma$__ch_sw_par$minus$hk_60s$slash$

cmd_rec__and__nomm_waitt1$_$
LOAD DATA Variable State _$_$5$dots$transmitir_dados$_$housekeeping
MEMORY $_$$coma$__5$dots$transmitir_dados$_$tipo$_$

$coma$__4$dots$carregar_dados_na_memoria
$_$dados$_$$coma$__$minus$$_$

RUN PROGRAM Variable State _$_$8$dots$__iniciaraquisicaodedados$coma$
LOADED __7$dots$retransmitir_resposta$_$tipo$_$

$coma$__7$dots$__executar_programa_carregado
$coma$__$minus$$_$

RESTART DATA Variable State _$_$8$dots$__iniciaraquisicaodedados$coma$
ACQUISITION __8$dots$dados$_$tipo$_$$coma$__11$dots$

reiniciar_aquisicao_de_dados$coma$__$minus$$_$

For Scenario 8, it was obtained 396 states, of which 50 are reachable states when
running NuSMV model checker. Table 5.5 summarizes all information about this
scenario. Figure 5.14 exhibits part of the unified TS for Scenario 8.

Table 5.5 - Statistics about Scenario 8 of SWPDC

UML diagrams Transition System Properties Verified
SD AD SMD Total States Reachable States Property Satisfied
3 0 1 396 50 P1 Yes

P2 No
P3 No
P4 Yes

5.1.2 Summary of the results for SWPDC case study

Table 5.6 summarizes the results of all scenarios of SWPDC. It is possible to view the
number of UML diagrams used for each one of the scenarios. Another information
is the number of states (total and reachable), as well as the number of properties

107

<(_$_$1$dots$__
preparar_dados$_$housekeeping$_$

$coma$__1$dots$__preparar_dados$_$tipo$_$
$coma$__1$dots$__parar_aquisicao_de_dados

$coma$__nomm_beginhkdata$_$),
_condition1=dc, _condition2=dc>

<(_$_$2$dots$__comando_recebido$coma$
__2$dots$__comando_recebido$coma$
__2$dots$__comando_recebido$coma$

__ver_op_mode$slash$info_op_mode__and
__nomm_waitchpar1$_$),

_condition1=dc, _condition2=dc>

<(_$_$4$dots$preparardados$_$housekeeping$_$
$coma$__4$dots$preparardados$_$housekeeping$_$
$coma$__3$dots$__pararaquisicaodedados$coma$

__start600s__and__nomm_waitprephk1
__and__idle$_$),_condition1=dc, _condition2=dc>

<(_$_$3$dots$__interromperaquisicaodedados
$coma$__3$dots$__interromperaquisicaodedados

$coma$__3$dots$__pararaquisicaodedados
$coma$__ch_sw_par$minus$hk_60s$slash$

cmd_rec__and__nomm_waitt1$_$),
_condition1=dc, _condition2=dc>

<(_$_$4$dots$preparardados$_$housekeeping$_$
$coma$__4$dots$preparardados$_$housekeeping$_$

$coma$__3$dots$__pararaquisicaodedados
$coma$__start600s__and__idle$_$)

,_condition1=dc, _condition2=dc>

<(_$_$4$dots$preparardados$_$housekeeping$_$
$coma$__4$dots$preparardados$_$housekeeping$_$

$coma$__3$dots$__pararaquisicaodedados
$coma$__start600s__and__countingtime$_$)

,_condition1=dc, _condition2=dc>

... ...

...

Figure 5.14 - Part of the unified TS obtained for Scenario 8

that were satisfied and not satisfied.

Table 5.6 - Summary of the results of the eight scenarios analyzed for SWPDC

UML Transition System Properties
Scenarios SD AD SMD Total States Reachable States Satisfied Not Satisfied
Scenario 1 1 1 1 243 31 4 0
Scenario 2 2 0 0 14 14 1 0
Scenario 3 1 0 1 3745 63 0 2
Scenario 7 1 1 1 3564 54 1 0
Scenario 8 3 0 1 396 50 2 2
Scenario 9 1 1 1 1377 36 1 0
Scenario 10 2 1 1 8262 99 3 0
Scenario 12 2 1 1 8262 99 3 0

As it is possible to see, some properties were not satisfied, meaning that some dia-
grams do not reflect all the requirements. The main reason for the properties have
not been met, was the absence of states in the TSs that represent certain com-
mands/sentences of the properties. This case study was very valuable, because by
means of the various scenarios, it has enabled to exercise the whole features of

108

SOLIMVA 3.0, which include unifying three or more UML diagrams.

5.2 SWPDCpM - Software for the Payload Data Handling Computer -
protoMIRAX experiment

The protoMIRAX is a scientific instrument for observations of x-ray cosmic sources,
placed on a stratospheric balloon platform. The main component of protoMIRAX is
a camera or, x-ray telescope (CRX). The protoMIRAX balloon gondola will house
the X-ray camera and the various subsystems of the space segment, including the
On-Board Data Handling Subsystem (OBDH), the Attitude Control and Pointing
Subsystem (ACS), the Flight Control and Telecommunications Subsystem (FCTS),
and the Power Supply Subsystem (PSS). Also, there will be a main GPS receiver
that will provide universal time to all subsystems and two star cameras that will be
part of the control loop (BRAGA et al., 2015).

The On-Board Data Handling Subsystem (OBDH; In Portuguese: Subsistema de
Gestão de Bordo - SGB) processes the information received from the Ground station,
as well as gets, generates, formats, stores, and transmits to the Ground station, via
FCTS, information of the subsystems of the experiment protoMIRAX. The main
hardware unit of OBDH is the Payload Data Handling Computer (PDCpM), which
is the on-board computer of OBDH. It is a PC/104 ultra-low-power AMD Geode
LX computer. It operates on 333 MHz, has a 128 MB SDRAM, and has interfaces
in addition to analog-digital/digital-analog converters. The software embedded in
the computer (SWPDCpM) has been developed in C language over the real-time
operating system RTEMS. The architecture of the SWPDCpM is composed of three
layers where the bottom layer is the basic software, the intermediate layer is the
flight software library in which there are basic services and reusable components,
and the top layer is the application software, the main part of SWPDCpM (BRAGA

et al., 2015). Figure 5.15 shows a simplified physical architecture of the protoMIRAX
experiment with its main subsystems.

In order to apply SOLIMVA 3.0 methodology, the document consulted was the
OBDH’s (SGB’s) Software Requirements Specification. This is indeed the SWPD-
CpM’s SRS which presents definitions, system environment, software logical model,
interfaces, and requirements description, and behavioral modeling by means of UML
sequence diagrams.

In this SRS, one can note that SWPDCpM’s logical model divides the software into
the following application processes which are in fact the main actors of SWPDCpM:

109

RS-422 (115.2 kbps)

PDCpM

GPSDXA

XRC

RS-422 (115.2 kbps)

RS-422 (115.2 kbps)

FCTS

Synchronous (500 kbps)

RS-232 (115.2 kbps)

RS-232 (9.6 kbps)

PSSACS

UNR

OBDH

RS-422
(PPS and Data)

Open
Collector

TEMPDXA

RS-422
(115.2 kbps)

PRESN

AN

DI
(3x)

RS-422
(PPS and Data)

RS-422
(PPS and Data)

DC-DC
Conv

+/- 15 V

UNR

DC-DC
Conv

GS

Space Segment

Ground Segment

L-Band
link

Figure 5.15 - Simplified physical architecture of the protoMIRAX balloon experiment.
XRC: X-ray camera; ACS: Attitude Control System; TEMPDXA: Temper-
ature monitoring equipment; GPSDXA: GPS unit; OBDH: On-Board Data
Handling Subsystem; PDCpM: Payload Data Handling Computer; DC-DC
Conv: DC-DC Converter; PRESN: Pressure Sensor; PSS: Power Supply Sub-
system; FCTS: Flight Control and Telecommunications Subsystem. Braga et
al. (2015)

a) CTL: SWPDCpM general control and transfer of packages;

b) HK: Internal housekeeping data collection of SWPCpM;

c) SYN: Clock synchronization and maintenance of mission time;

d) SCA: Interface control of data packets with SCA;

e) CRX: Interface control of data packets with CRX;

f) AP: Generic application process, both on board and in the ground;

g) ESS: An application process of the ground station.

110

5.2.1 Scenarios of SWPDCpM

In the case study, twelve scenarios of SWPDCpM were carried out.

a) Scenario 1: Receive Telecommand;

b) Scenario 2: Submit Telecommand;

c) Scenario 3: Submit Telemetry;

d) Scenario 4: Enable/Disable Telemetry Sending;

e) Scenario 5: Report Computer Operation Mode;

f) Scenario 6: Changing Computer Operation Mode;

g) Scenario 7: Distribute Commands On and Off;

h) Scenario 8: Control of Dump Memory Process;

i) Scenario 9: Report Software Current Version;

j) Scenario 10: Report Charge State of a New Version;

k) Scenario 11: Start New Version Loading;

l) Scenario 12: Control Interfaces with SCA.

As for SWPDC, the next subsections detail three of the twelve scenarios of SWPD-
CpM (scenarios 6, 7, and 8). Subsection 5.2.2 summarizes the results obtained from
all the scenarios analyzed.

5.2.1.1 Scenario 6: Changing Computer Operation Mode

In order to control the computer operation mode, the CTL process should: control
the switching between computer operation modes of SWPDCpM; and allow to con-
sult the current computer operation mode. There is one UML sequence diagram
which represents Scenario 6. It is shown in Figure 5.16.

Observe the following requirement related to this scenario: Upon receipt of a TC
from CTL.TC requesting the change of computational operation mode, the CTL pro-
cess should proceed the following sequence of operations: 1) To obtain new computer
operation mode from TC and to perform mode changing by issuing internal com-
mands; 2) If the computer operation mode can not be changed, a TM_RE must be

111

ESS : TC : CLT : TM_OUT : Encaminhar TM :

TC(SGB, ST=130, SST=2, modo)
TC(modo)

[accept]:TM_VC

[! modo OK]:TM_RE

[modo OK]:Altera(modo) Encaminhar TM

Figure 5.16 - Sequence Diagram for Scenario 6

generated and sent to CTL.TM_OUT; and 3) If a TM_RE is generated, it must
contain the value of the current mode and the value of the requested mode. From this
requirement, two user-defined properties for this scenario can be extracted:

a) Property 1: Upon receipt a TC, if the command change mode is valid, the
process must change the operation mode. This property can be formalized
using the Response Pattern and Scope After Q proposed by (DWYER
et al., 1999), in CTL, as follows:

¬∃ [¬ (Q ∧ ∀� (P → ∀♦ (S))) ∪ (Q ∧ ¬ (Q ∧ ∀� (P → ∀♦ (S))))]
where,
Q = ReceiveTC_CTL
P = ValidChangeMode
S = ChangeOperationMode

Table 5.7 maps the commands and how they are represented in the TS.
When running NuSMV, the property is not satisfied. This is because the
two commands ValidChangeMode and ChangeOperationMode are repre-
sented by the same state in the TS generated.

b) Property 2: Upon receipt a TC, if the command change mode is invalid,
the process must generate _TM_RE. This property can be formalized
using the Response Pattern and Scope After Q proposed by (DWYER
et al., 1999), in CTL, as follows:

112

Table 5.7 - Commands and its representation on the TS

Command TS element Name and/or Value
ReceiveTC_CTL Variable State _tc$_$sgb$coma$__st$equals$130$coma$__

sst$equals$2$coma$__modo$_$
ValidChangeMode Variable State _#modo__ok#$dots$altera$_$modo$_$

ChangeOperationMode Variable State _#modo__ok#$dots$altera$_$modo$_$

¬∃ [¬ (Q ∧ ∀� (P → ∀♦ (S))) ∪ (Q ∧ ¬ (Q ∧ ∀� (P → ∀♦ (S))))]
where,
Q = ReceiveTC_CTL
P = InvalidChangeMode
S = Generate_TM_RE

Table 5.8 maps the commands and how they are represented in the TS.
When running NuSMV, the property is not satisfied. This is because the
two commands InvalidChangeMode and Generate_TM_RE are represented
by the same state in the TS generated.

Table 5.8 - Commands and its representation on the TS

Command TS element Name and/or Value
ReceiveTC_CTL Variable State _tc$_$sgb$coma$__st$equals$130$coma$__

sst$equals$2$coma$__modo$_$
InvalidChangeMode Variable State _#not__modo__ok#$dots$tm_re
Generate_TM_RE Variable State _#not__modo__ok#$dots$tm_re

For Scenario 6, it was obtained 6 states, of which 6 are reachable states when running
NuSMV model checker. Table 5.9 summarizes all information about this scenario.
Figure 5.17 exhibits the unified TS for Scenario 6. The TS generated as txt file as
well as the output containing the model checker notation (smv file) for this scenario
can be found in Appendix B. Table B.1, also in Appendix B, presents all properties
which were verified for all scenarios of SWPDCpM.

Table 5.9 - Statistics about Scenario 6 of SWPDCpM

UML diagrams Transition System Properties Verified
SD AD SMD Total States Reachable States Property Satisfied
1 0 0 6 6 P1 No

P2 No

113

<(_tc$_$sgb$coma$__st$equals$130
$coma$__sst$equals$2$coma$__modo$_$)>

<(_tc$_$modo$_$)>

<(_#not__modo__ok#$dots$tm_re)>

<(_#accept#$dots$tm_vc)>

<(_#modo__ok#$dots$altera$_$modo$_$)>

<(_encaminhar__tm)>

Figure 5.17 - The unified TS obtained for Scenario 6

5.2.1.2 Scenario 7: Distribute Commands On and Off

In this scenario the CTL process must distribute commands on and off required by
TC. There is one UML sequence diagram which represents Scenario 7. It is shown
in Figure 5.18.

Observe the following requirement related to this scenario: The CTL process should
distribute commands on/off requested by TC. The following sequence of operations
must be performed: 1) Get command word on/off of the input TC; 2) Acting in
hardware to perform the commands on/off through the CTL.ON_OFF_TC inter-
face. This requirement is represented by the following property:

a) Property 1: This property can be formalized using the Precedence
Pattern and Scope After Q proposed by (DWYER et al., 1999), in CTL,
as follows:

¬∃ [¬ (Q ∧ (¬∃ [¬ S ∪ (P ∧ ¬ S)])) ∪ (Q ∧ ¬ (Q ∧ (¬∃ [¬ S ∪ (P ∧ ¬
S)])))]
where,
Q = ReceiveTC_CTL
P = ObtainwordOnOff
S = ActingHardware_CTL.ON_OFF_TC

114

ESS : TC : ON_OFF_TC : CTL : TM_OUT : Encaminhar TM :

T C(SGB, ST=2, SST=1, endereço)

TC(endereço)

[accept]:TM_VC

[endereço inválido]:TM_RE

[endereço válido]:traduz(endereço) :sinal Encaminhar TM

cmd_puso(sinal)

Figure 5.18 - Sequence Diagram for Scenario 7

Table 5.10 maps the commands and how they are represented in the TS.
When running NuSMV, the property is satisfied.

Table 5.10 - Commands and its representation on the TS

Command TS element Name and/or Value
ReceiveTC_CTL Variable State _tc$_$endereco$_$
ObtainwordOnOff Variable State _#endereco__valido#$dots

$traduz$_$endereco$_$__$dots$sinal
ActingHardware_CTL.ON_OFF_TC Variable State _cmd_pulso$_$sinal$_$

For Scenario 7, it was obtained 7 states, of which 7 are reachable states when running
NuSMV model checker. Table 5.11 summarizes all information about this scenario.
Figure 5.19 exhibits the unified TS for Scenario 7.

Table 5.11 - Statistics about Scenario 7 of SWPDCpM

UML diagrams Transition System Properties Verified
SD AD SMD Total States Reachable States Property Satisfied
1 0 0 7 7 P1 Yes

115

<(_t__c$_$sgb$coma$__st$equals$2$coma$
__sst$equals$1$coma$__endereco$_$)>

<(_tc$_$endereco$_$)>

<(_#endereco__invalido#$dots$tm_re)>
<(_#accept#$dots$tm_vc)>

<(_#endereco__valido#$dots$traduz$_$
endereco$_$__$dots$sinal)>

<(_encaminha__tm)>

<(_cmd_puso$_$sinal$_$)>

Figure 5.19 - The unified TS obtained for Scenario 7

5.2.1.3 Scenario 8: Control of Dump Memory Process

The CTL process should control the dump memory when requested by the ground
station. There is one UML sequence diagram which represents Scenario 8. It is shown
in Figure 5.20. Two user-defined properties for this scenario, related to requirements,
were verified.

a) Property 1: This function meets the telecommand of memory dump
request. The following sequence of operations must be performed: 1)
Get address and memory size required for dump; 2) Copy memory to
dumpfile CTL.MMFS, reporting the progress of the operation through
TM_VC, up to a maximum of 4MB; 3) Start transfer process of file
generated in CTL.MMFS. Report TM_RE and ignore the request when:
4) The requested memory is invalid; 5) The requested size exceeds the
maximum dump capacity; 6) A memory transfer process is still in
progress. This property can be formalized using the Precedence Chain
and Scope After Q proposed by (DWYER et al., 1999), in CTL, as follows:

¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪ (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]
where,
Q = ReceiveTC_CTL.TC_DumpMemory

116

ESS : TC : MMFS : CTL : TM_OUT :

loop

[OK == TRUE]

Encaminhar TM :

TC(SGB, ST=6, SST=5, endereço, tamanho)

TC(endereço, tamanho)

[accept]:TM_VC

Validar(endereço, tamanho) :O

[!OK]:TM_RE

Dump(endereço, tamanho) :blocos[]

gerar(dumpfile, blocos[]) :OK

[!OK]:TM_RE

ler(dumpfile) :bloco

TM_DM(bloco)

aguardar(250ms)

apagar(dumpfile)
Encaminhar TM

Figure 5.20 - Sequence Diagram for Scenario 8

S = GetAddressMemorySize
T = (¬(InvalidMemory ∨ InvalidSize ∨ ProcessTransferProgress) → (CopyMemory-
Dumpfile → Forward_TM_VC))
P = StartTransferDumpFile

There is no state in the TS that represents the command
ProcessTransferProgress. The property is not satisfied.

b) Property 2: This process is initiated by CTL automatically when a
dumpfile file is generated in CTL.MMFS. The following operation must
be done in parallel with other software functions: 1) Generate TM_DM
packages limited by the maximum size set to a TM package, consider-
ing that the last TM_DM package may have a size less than or equal
to the maximum size of a packet TM; 2) Send TM_DM packages to
CTL.TM_OUT at a rate not greater than four packets per second;
3) Report TM_VC indicating the completion status of the operation;
4) Delete dumpfile when finished. Report TM_RE and cancel transfer
process when: 5) Occur I/O error in dumpfile; 6) A change occurs for
computer mode operation that does not allow dump memory during dump
process. This property can be formalized using the Precedence Chain
and Scope After Q proposed by (DWYER et al., 1999), in CTL, as follows:

¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪ (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]
where,

117

Q = DumpFileGenerated
S = (¬(ErrorIODumpFile ∨ ChangeOperationModeNDump) → GeneratePackageDM)
T = SendPackagesTM_DM_CTL.TM_OUT
P = (Report_TM_VC → DeleteDumpFile)

There is no state in the TS that represents the command
ChangeOperationModeNDump. The property is not satisfied.

For Scenario 8, it was obtained 36 states, of which 16 are reachable states when
running NuSMV model checker. Table 5.12 summarizes all information about this
scenario. Figure 5.21 exhibits part of the unified TS for Scenario 8.

Table 5.12 - Statistics about Scenario 8 of SWPDCpM

UML diagrams Transition System Properties Verified
SD AD SMD Total States Reachable States Property Satisfied
1 0 0 36 16 P1 No

P2 No

<(_tc$_$sgb$coma$__st$equals$6$coma$
__sst$equals$5$coma$__endereco$coma$

__tamanho$_$), _ok=dc>

<(_tc$endereco$coma$
__tamanho$_$), _ok=dc>

<(_validar$_$endereco$coma$
__tamanho$_$__$dots$ok), _ok=dc>

<(_#accept#$dots$tm_vc), _ok=dc>

<(_#notok#$dots$tm_re), _ok=dc>

<(_dump$_$endereco$coma$__
tamanho$_$__$dots$blocos##), _ok=dc>

<(_gerar$_$dumpfile$coma$
__blocos##$_$__$dots$ok), _ok=dc>

<(_#notok#$dots$tm_re), _ok=dc>

...

Figure 5.21 - Part of the unified TS obtained for Scenario 8

118

5.2.2 Summary of the results of SWPDCpM

Table 5.13 summarizes the results of all scenarios of SWPDCpM. It has the same
information of the previous summarized table of case study SWPDC: number of
UML diagrams used for each one of the scenarios, number of states (total and
reachable), as well as the number of properties that were satisfied and not satisfied.

Table 5.13 - Summary of the results of the twelve scenarios analyzed for SWPDCpM

UML Transition System Properties
Scenarios SD AD SMD Total States Reachable States Satisfied Not Satisfied
Scenario 1 1 0 0 15 7 2 0
Scenario 2 1 0 0 7 7 0 7
Scenario 3 1 0 0 27 11 2 0
Scenario 4 1 0 0 6 6 1 0
Scenario 5 1 0 0 5 5 1 0
Scenario 6 1 0 0 6 6 0 2
Scenario 7 1 0 0 7 7 1 0
Scenario 8 1 0 0 36 16 0 2
Scenario 9 1 0 0 6 6 1 0
Scenario 10 1 0 0 7 7 1 0
Scenario 11 1 0 0 7 7 1 0
Scenario 12 1 0 0 4 3 2 0

As it is possible to see, almost half of the properties were not satisfied, meaning that
some diagrams do not meet all the requirements. Although this case study has only
sequence diagrams, and thus it is not possible to exercise the whole features (which
includes unifying the three UML diagrams) of SOLIMVA 3.0, this case study is very
important because it is a complex space application under development at INPE.
The results of using SOLIMVA 3.0 to analyze the (partial) design of SWPDCpM
have already been communicated to the OBDH (SGB) development team.

The properties were not satisfied because it was not found states that could repre-
sent some commands or sentences present in the properties, and also because some
commands or sentences were represented by one unique state in the TS.

5.3 Final Remarks

This chapter presented the application of SOLIMVA 3.0 to two case studies, SWPDC
and SWPDCpM, related to an X-ray imaging balloon experiment under develoment
at INPE. Defects were detected within the design of these software systems showing
the feasibility of the methodology.

119

The case studies were conducted considering twenty scenarios: eight from SWPDC
and twelve from SWPDCpM. For the eight scenarios of SWPDC, a total of nineteen
properties were verified. Of these, fifteen were satisfied and four were not satisfied.
This means that in 21.05% of the properties, the design of the SWPDC, by means
of its UML diagrams, were not correct. For the twelve scenarios of SWPDCpM, a
total of twenty three properties were verified. Of these, twelve were satisfied and
eleven were not. Thus, for SWPDCpM, 47.83% of the properties were not satisfied.
This is a significant defect detection in the (partial) design of the SWPDCpM.

It is important to know why the design (UML) did not satisfy the properties. Thus,
an analysis of the causes of the defects found was performed. For SWPDC, it was
always the same reason: there is no state in the TS that represents a certain com-
mand. This means that some commands are omitted or do not exist in the diagrams.
For SWPDCpM, the defects occurred due to: (i) there is no state in the TS that
represents a certain command; (ii) two commands are represented by the same state
in the TS. So, the property can not be specified. Table 5.14 shows the causes and
the number of properties which were not satisfied due to each cause, for the two
case studies.

Table 5.14 - Causes for encountered defects

(i) there is no state in the TS (ii) two commands are represented
that represents a certain command by the same state in the TS

SWPDC 4 0
SWPDCpM 5 6

Considering that, it is exposed the importance of the approach based on Formal
Verification to improve the quality of embedded software development for INPE’s
space projects. The results show the potential for a wide acceptance of Formal
Verification for the development of complex software systems.

The next chapter presents the contributions obtained in this work, as well as its
limitations and future prospects of this research.

120

6 CONCLUSIONS AND FINAL REMARKS

INPE deals with critical embedded software in satellites and stratospheric baloons.
Critical systems require high reliable software. A challenge in the systems develop-
ment process is to advance defect detection at early stages of their life cycles. V&V
techniques are essential to provide quality to the software systems being developed.
Formal Methods, such as Model Checking, offer a large potential to provide effective
verification techniques. However, Formal Methods require mathematical background
and their use is restricted, as users privilege the simplicity of other notations, rather
than more formal means.

In this line, many studies have emerged in order to develop approaches that allow
the use of Formal Methods in a manner that is transparent to the user. One such
example is the translation of industry non-formal standards such as UML to model
checkers notation, considered as a great step towards a wide acceptance of Formal
Methods in every day software development (SANTIAGO JÚNIOR, 2011).

Despite criticism regarding UML, it is indeed used in practice in many application
domains. Modeling systems for object oriented and/or embedded software devel-
opment is an approach that has been employed by researchers and practitioners,
specially by means of the several UML behavioral diagrams.

In order to cover these two domains, taking advantage of the positive aspects of
both, this PhD thesis proposed the SOLIMVA 3.0 methodology (SANTOS et al.,
2014a),(SANTOS et al., 2014b),(ERAS et al., 2015), aiming to transform a non-formal
language (UML) to a formal language (language of a model checker) in order to de-
tect defects within the design of the software product. SOLIMVA 3.0 is an extension
of a methodology initially developed to generate model-based system and acceptance
test cases considering Natural Language requirements artifacts (SOLIMVA 1.0), and
to detect incompleteness in software specifications by means of Model Checking
(SOLIMVA 2.0). By including Formal Verification in the SOLIMVA methodology,
the V&V process is enriched, addressing not only testing and inspection but also
Formal Verification.

The approach proposed in SOLIMVA 3.0 considers the properties generated from
UML use case models or requirements expressed in pure textual notation (Natural
Language), and the Transition System translated from up to three UML behavioral
diagrams: sequence, activity, and behavioral state machine. Then, Model Checking
can be used to ensure that the behavior of the system satisfies the requirements,

121

that is, whether the properties are satisfied by the Transition System that represents
the behavior of the application under evaluation. Using more than one diagram
provides a rich view of the system by different angles or in different states in time.
It also helps to find inconsistencies and incompleteness in the models by confronting
multiple views of the same system.

Additionally, a tool, XMITS, was developed to automate some steps of SOLIMVA
3.0 methodology. XMITS performs a three-step translation. First, it translates in-
dividual types of diagrams into a TS in a simple intermediate format. After that,
XMITS merges all single TSs into a unified TS. Finally, the tool transforms this
unified TS into the notation of the model checker (NuSMV).

Briefly, the process proposed in SOLIMVA 3.0 is as follows: first, scenarios are iden-
tified to be checked (scenarios are checked one by one). These scenarios have certain
properties that must be verified. These properties are extracted from UML use case
models or simply in Natural Language. SOLIMVA 3.0 suggests using specification
patterns (DWYER et al., 1999) to direct the formalization of properties in Compu-
tation Tree Logic (BAIER; KATOEN, 2008). The UML diagrams that are related to
the scenario that is being checked are input to XMITS. Hence, XMITS automat-
ically generates a single, unified TS in the notation of the NuSMV model checker
(KESSLER, 2015). By running NuSMV it is possible to observe if there are defects
in the design of the software product. In case the TS does not satisfy a certain
property, a counterexample is presented by the model checker. In the whole process,
three tools are used: Modelio, to generate the UML diagrams and export them to
XMI format; XMITS (which was developed to support this PhD thesis), that trans-
forms the UML to the input language of the model checker; and NuSMV, which is
the model checker used to perform the Model Checking.

SOLIMVA 3.0 was applied to two real space software products (embedded software),
SWPDC and SWPDCpM in order to validade the methodology. These software sys-
tems are related to the balloon-borne high energy astrophysics experiment called
protoMIRAX under development at INPE. Defects were detected within the design
of these software systems, what shows that the methodology can be applied in prac-
tice. Specifically, 21.05% and almost 50% of the properties formalized in CTL were
not satisfied for the SWPDC and SWPDCpM case studies, respectively. This implies
that there are design flaws related to the conception of these software systems. The
defects encountered were due to issues such as it was not found states that could
represent some commands or sentences present in the properties, and also because

122

some commands or sentences were represented by one unique state in the TS. The
results show the potential for the use of an approach based on Formal Verification to
improve the quality of embedded software development for critical INPE projects.

Regarding to the case studies, twenty scenarios were checked: eight from SWPDC
and twelve from SWPDCpM. For SWPDC, nineteen properties were verified, and
four of them were not satisfied, i.e., the design artifacts do not reflect the require-
ments related to these properties. For SWPDCpM, twenty three properties were
verified. Of these, eleven were not satisfied, which is a significant defect detection in
the design of SWPDCpM. These results analyzing the (partial) design of SWPDCpM
have already been communicated to the OBDH (SGB) development team.

The main contribution of this PhD thesis is to help to make it easier the use of Formal
Verification process for critical space software towards a greater adoption in practice
of Formal Methods in software development. When compared to some other research
studies, (MIKK et al., 1998),(LATELLA et al., 1999),(KONRAD; CHENG, 2006),(LAM,
2007),(ESHUIS, 2006),(ANDERSON et al., 1996),(DUBROVIN; JUNTTILA, 2008),(UCHI-

TEL; KRAMER, 2001),(BARESI et al., 2011),(MIYAZAWA et al., 2013),(BEATO et al.,
2005),(CORTELLESSA; MIRANDOLA, 2002),(MERSEGUER et al., 2002), SOLIMVA 3.0
has the following advantages:

a) it uses different behavioral diagrams, when most of the studies use only
one single diagram;

b) it detects design defects considering functional requirements of the software
product, when some researches focus on specific types of requirements, such
as performance;

c) it demands only behavioral diagrams, that are often present in software
documentation, when other works require a very large amount of artifacts,
including for example, structural and behavioral diagrams.

A qualitative comparison between the SOLIMVA 3.0 methodology and other sev-
eral approaches was presented in Section 2.5. Although a quantitative comparison
between SOLIMVA 3.0 and these other approaches has not been made, it is very
important to remark:

a) SOLIMVA 3.0 methodology was applied to two real and complex case
studies of the space domain. In both case studies, there was involvement

123

of the software national industry. The academic community has long been
charged to reverse their knowledge to the industry and research institutes
(such as INPE) so that these organizations can use such knowledge to
the development of their systems. By using real and complex case studies,
SOLIMVA 3.0, supported by the XMITS tool, is in agreement with this
perspective allowing that an informal language (UML), still quite popular,
can continue to be used for creating the design of software systems. The
complexity for the use of formal methods (Model Checking, in this case)
is almost completely hidden from the practitioner, and thus SOLIMVA
3.0 methodology has a high potential to be applied to the development of
other highly complex software systems.

b) The software design developed for both case studies had already been as-
sessed by experienced professionals in the context of their respective sys-
tem/software development lifecycle and formal technical reviews. Finding
additional defects within these design solutions, even if practitioners in
the field have evaluated them, demonstrates the real usefulness of this
PhD thesis.

6.1 Limitations

There are some limitations in SOLIMVA 3.0, of which stand out:

a) One of the main difficulties when working with Model Checking is the
formalization of properties. SOLIMVA 3.0 has proposed a solution for au-
tomating the model generation. However, the properties still have to be
manually formalized. A study about automated property formalization,
specially if requirements are expressed in Natural Language, is important
to be carried out.

b) Another restriction is related to counterexample. How to find the diagram
and the exact point in this diagram where the property was not satisfied?
The automated translation of the model checker counterexample back to
the UML diagrams is important to identify in which diagram, or diagrams,
the detected problem is related.

6.2 Suggestions for Future Research

To solve the limitations presented above, the following list of future work is proposed:

124

a) Directives to improve the automation of property formalization or facilitate
this formalization is important to be addressed.

b) Another important future work is the development of a new module of
XMITS to catch the feedback from NuSMV and show to the user the
results automatically.

In addition, the following other suggestions can be listed:

a) It is important to define a more detailed formal semantics for the transla-
tion from UML to TS proposed by SOLIMVA 3.0.

b) One other interesting new feature could be the implementation of new
UML diagrams compatibility. The Converter module of XMITS is ready
to accept new UML diagrams by adding a new collector class.

c) A subset of the UML diagrams syntax is implemented in XMITS. There
are several other features not supported by XMITS in the current version.
To increase this subset also increases the possibility of the tool use.

d) NuSMV is the only model checker used in XMITS. New grammars can be
defined so that other model checkers, such as SPIN, may be used.

e) The current ouput of TUTS module is a txt file, showing all states. It is
not possible to see the TS tree, following the flow of transitions. Adding
an output in graph format, showing states and transitions would help and
facilitate the validation of the TS.

f) Regarding to parallelism, when a process is divided due to parallel mes-
sages/activities/states, each process goes on alone. In many cases, there
are states that are created in each one of these processes that are the same,
that is, repeated states. Sometimes this led to not run some scenarios, es-
pecially those with many cases of parallelism. A method in XMITS that
seeks for repeated states during the process of creation of the TS is miss-
ing. Thus, it is relevant to improve the tool with such a method to deal
with state space explosion.

125

REFERENCES

AMJAD, H. Combining model checking and theorem proving. Cambridge,
United Kingdom, 2004. 131p. Technical Report. 18, 19

ANDERSON, R. J.; BEAME, P.; BURNS, S.; CHAN, W.; MODUGNO, F.;
NOTKIN, D.; REESE, J. D. Model checking large software specifications. ACM
SIGSOFT Software Engineering Notes, v. 21, p. 156–166, 1996. 4, 6, 32, 36,
39, 123

BAIER, C.; KATOEN, J.-P. Principles of model checking. Cambridge, MA,
USA: MIT Press, 2008. 975 p. Available from:
<http://mitpress.mit.edu/books/principles-model-checking>. xv, 1, 3, 5,
18, 19, 20, 24, 27, 45, 64, 71, 122

BARESI, L.; MORZENTI, A.; MOTTA, A.; ROSSI, M. Towards the uml-based
formal verification of timed systems. Formal Methods for Components and
Objects, v. 6957, p. 267–286, 2011. 6, 34, 36, 39, 123

BEATO, M. E.; BARRIO-SOLÓRZANO, M.; CUESTA, C. E.; FUENTE, P. de la.
Uml automatic verification tool with formal methods. Electronic Notes in
Theoretical Computer Science, Elsevier, v. 127, n. 4, p. 3–16, 2005. 6, 35, 36,
123

BEHRMANN, G.; DAVID, A.; LARSEN, K. A tutorial on uppaal. Formal
methods for the design of real-time systems, Springer, v. 3185, p. 200–236,
2004. 26

BJORK, R. C. The simulation of an automated teller machine. 2012.
Available from:
<http://www.math-cs.gordon.edu/courses/cs211/ATMExample/>. Access in:
11 mai. 2014. 43

BOEHM, B. Software engineering economics. 1. ed. US: Prentice Hall, 1981. 9

BRAGA, J.; D’AMICO, F.; AVILA, M. A. C.; PENACCHIONI, A. V.; SACAHUI,
J. R.; SANTIAGO, V. A. de; MATTIELLO-FRANCISCO, F.; STRAUSS, C.;
FIALHO, M. A. A. The protomirax hard x-ray imaging balloon experiment.
A&A, v. 580, p. A108, 2015. Available from:
<http://dx.doi.org/10.1051/0004-6361/201526343>. xvi, 5, 109, 110

127

http://mitpress.mit.edu/books/principles-model-checking
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/
http://dx.doi.org/10.1051/0004-6361/201526343

BRIAND, L.; LABICHE, Y. A uml-based approach to system testing. Software
and Systems Modeling, Springer, v. 1, n. 1, p. 10–42, 2002. 31, 36

BRITO, P. H. S.; LEMOS, R. D.; RUBIRA, C. M. F.; MARTINS, E. Architecting
fault tolerance with exception handling: verification and validation. J. Comput.
Sci. Technol., Institute of Computing Technology, Beijing, China, v. 24, n. 2, p.
212–237, mar. 2009. ISSN 1000-9000. Available from:
<http://dx.doi.org/10.1007/s11390-009-9219-2>. 31, 36, 39

CAVADA, R.; CIMATTI, A.; JOCHIM, C. A.; KEIGHREN, G.; OLIVETTI, E.;
PISTORE, M.; ROVERI, M.; TCHALTSEV, A. NuSMV 2.5 user manual.
2005. Available from: <http://nusmv.fbk.eu/>. Access in: 12 mai. 2013. 66

CHEN, M.; MISHRA, P.; KALITA, D. Coverage-driven automatic test generation
for uml activity diagrams. In: ACM GREAT LAKES SYMPOSIUM ON VLSI, 18.,
2008, Orlando, Florida, USA. Proceedings... New York, NY, USA: ACM, 2008.
p. 139–142. ISBN 978-1-59593-999-9. 477088. 31, 36

CLARKE, E. The birth of model checking. 25 Years of Model Checking,
Springer, v. 5000, p. 1–26, 2008. 22

CLARKE, E. M.; EMERSON, E. A. Design and synthesis of synchronization
skeletons using branching time temporal logic. In: GRUMBERG, O.; VEITH, H.
(Ed.). 25 years of model checking. Berlin/Heidelberg, Germany: Springer
Berlin/Heidelberg, 2008. v. 5000, p. 196–215. Lecture Notes in Computer Science
(LNCS). 3, 19

CLARKE, E. M.; GRUMBERG, O.; PELED, D. Model checking. Cambridge -
MA: MIT press, 1999. ISBN 978-0262032704. 1

COCKBURN, A. Writing effective use cases. US: Addison-Wesley Professional,
2000. 304 p. 11, 43

CORTELLESSA, V.; MIRANDOLA, R. Prima-uml: a performance validation
incremental methodology on early uml diagrams. SC Programming, Elsevier,
v. 44, n. 1, p. 101–129, 2002. 6, 34, 36, 123

DEBBABI, M.; HASSAÏNE, F.; JARRAYA, Y.; SOEANU, A.; ALAWNEH, L.
Verification and validation in systems engineering. Berlin, Heidelberg -
Germany: Springer, 2010. 270 p. xv, 4, 63, 74

DELAMARO, E.; MALDONADO, J. C.; M., J. Introdução ao teste de
software. Rio de Janeiro: Ed. Elsevier, 2007. 1

128

http://dx.doi.org/10.1007/s11390-009-9219-2
http://nusmv.fbk.eu/

DUBROVIN, J.; JUNTTILA, T. Symbolic model checking of hierarchical uml
state machines. In: INTERNATIONAL CONFERENCE ON APPLICATION OF
CONCURRENCY TO SYSTEM DESIGN, 8., 2008, Xi’An - China.
Proceedings... Xi’An - China: IEEE, 2008. p. 108–117. ISBN 978-1-4244-1838-1.
4, 6, 32, 36, 39, 123

DWYER, M. B.; AVRUNIN, G. S.; CORBETT, J. C. Patterns in property
specifications for finite-state verification. In: INTERNATIONAL CONFERENCE
ON SOFTWARE ENGINEERING, 21., 1999, Los Angeles, CA, USA.
Proceedings... New York, NY, USA: ACM, 1999. p. 411–420. ISBN
1-58113-074-0. 5, 24, 31, 44, 64, 72, 73, 78, 94, 96, 97, 99, 100, 102, 103, 105, 106,
112, 114, 116, 117, 122

ECLIPSE.ORG. Papyrus. 2014. Available from:
<https://www.eclipse.org/papyrus/>. Access in: 19 jan. 2014. 161

ERAS, E. R.; SANTOS, L. B. R. dos; JÚNIOR, V. A. de S.; VIJAYKUMAR,
N. L. Towards a wide acceptance of formal methods to the design of safety critical
software: an approach based on uml and model checking. Lecture Notes in
Computer Science, v. 9158, p. 612–627, 2015. 4, 5, 77, 121

ESHUIS, R. Symbolic model checking of uml activity diagrams. ACM
Transactions on Software Engineering and Methodology (TOSEM),
ACM, v. 15, n. 1, p. 1–38, 2006. 4, 6, 32, 36, 123

FRASER, G.; WOTAWA, F.; AMMANN, P. Testing with model checkers: a
survey. Software Testing, Verification and Reliability, Wiley Online Library,
v. 19, n. 3, p. 215–261, 2009. 22, 25

GANAI, M.; GUPTA, A. SAT-based scalable formal verification solutions.
Princeton - US: Springer, 2007. 2, 17

GILB, T.; GRAHAM, D.; FINZI, S. Software inspection. London - UK:
Addison-Wesley Longman Publishing Co., Inc., 1993. ISBN 078-5342631814. 1

GODBOLE, N. S. Software quality assurance: principles and practice. Oxford,
UK: Alpha Science International, 2006. 1

HAREL, D. Statecharts: A visual formalism for complex systems. Science of
computer programming, Elsevier, v. 8, n. 3, p. 231–274, 1987. 3

129

https://www.eclipse.org/papyrus/

HARTMANN, J.; VIEIRA, M.; FOSTER, H.; RUDER, A. A uml-based approach
to system testing. Innovations in Systems and Software Engineering,
Springer, v. 1, n. 1, p. 12–24, 2005. 31, 36

HOLZMANN, G. The SPIN model checker: primer and reference manual.
Boston - MA: Addison-Wesley, 2004. 25, 63

IEEE. Institute of electric and electronic engineers. Standard glossary of
software engineering terminology, Standard 610.12, 1990. 1, 2, 9, 10

JOHNSON, K.; CALINESCU, R.; KIKUCHI, S. An incremental verification
framework for component-based software systems. In: INTERNATIONAL ACM
SIGSOFT SYMPOSIUM ON COMPONENT-BASED SOFTWARE
ENGINEERING, 16., 2013. Proceedings... New York, NY, USA: ACM, 2013. p.
33–42. ISBN 978-1-4503-2122-8. 33

JÚNIOR, V. A. d. S.; CRISTIÁ, M.; VIJAYKUMAR, N. L. Model-based test
case generation using statecharts and z: a comparison and a combined
approach. São José dos Campos, 2010. 70 p. Available from:
<http://urlib.net/sid.inpe.br/mtc-m19@80/2010/02.26.14.05>. Access in:
30 nov. 2015. 90

KESSLER, F. B. NuSMV Home Page. 2015. Available from:
<http://nusmv.fbk.eu/>. Access in: 12 mai. 2015. 5, 25, 45, 63, 122

KIM, Y.; HONG, H.; BAE, D.; CHA, S. Test cases generation from uml state
diagrams. In: IET. Software, IEE Proceedings-. UK, 1999. v. 146, n. 4, p.
187–192. 31, 36

KNAPP, A.; MERZ, S. Model checking and code generation for uml state
machines and collaborations. In: WORKSHOP ON TOOLS FOR SYSTEM
DESIGN AND VERIFICATION, 5., 2002, Reisensburg, Germany. Proceedings...
Reisensburg, Germany: Institut für Informatik, Universität Augsburg, 2002. v. 11,
p. 59–64. 3, 33, 36, 39

KONRAD, S.; CHENG, B. Real-time specification patterns. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 27.,
2005, St. Louis, MO, USA. Proceedings... New York, US: ACM, 2005. p.
372–381. ISBN 1-58113-963-2. 33, 36

130

http://urlib.net/sid.inpe.br/mtc-m19@80/2010/02.26.14.05
http://nusmv.fbk.eu/

KONRAD, S.; CHENG, B. H. Automated analysis of natural language properties
for uml models. Lecture Notes in Computer Science, v. 3844, p. 48–57, 2006.
4, 6, 33, 36, 123

LAM, V. S. W. A formalism for reasoning about uml activity diagrams. Nordic J.
of Computing, Publishing Association Nordic Journal of Computing, Finland,
v. 14, n. 1, p. 43–64, jan. 2007. ISSN 1236-6064. Available from:
<http://dl.acm.org/citation.cfm?id=1515784.1515786>. 4, 6, 32, 36, 123

LATELLA, D.; MAJZIK, I.; MASSINK, M. Automatic verification of a behavioural
subset of uml statechart diagrams using the spin model-checker. Formal Aspects
of Computing, Springer, v. 11, n. 6, p. 637–664, 1999. 4, 6, 32, 36, 123

MAKINEN, M. A. Model based approach to software testing. Master Thesis
— Helsinki University of Technology, Helsinki, 2007. 10

MARTHUR, A. P. Foundations of software testing. India: Dorling Kindersley:
Pearson Education in South Asia, 2008. 1, 2, 6, 40

MATOS, A. V. de. Unified modeling language UML prático e
descomplicado. São Paulo, Brazil: Érica, 2002. 16

MERSEGUER, J.; CAMPOS, J.; BERNARDI, S.; DONATELLI, S. A
compositional semantics for uml state machines aimed at performance evaluation.
In: INTERNATIONAL WORKSHOP ON DISCRETE EVENT SYSTEMS, 6.,
2002, Zaragoza, Spain. Proceedings... Washington, DC, USA: IEEE Computer
Society, 2002. p. 295–302. ISBN 0-7695-1683-1. 6, 34, 36, 123

MERZ, S. Model checking: A tutorial overview. Modeling and verification of
parallel processes, Springer, v. 2067, p. 3–38, 2001. 22

MIKK, E.; LAKHNECH, Y.; SIEGEL, M.; HOLZMANN, G. Implementing
statecharts in promela/spin. In: WORKSHOP ON INDUSTRIAL STRENGTH
FORMAL SPECIFICATION TECHNIQUES, 2., 1998. Proceedings...
Washington, DC, USA: IEEE, 1998. p. 90–101. ISBN 0-7695-0081-1. 4, 6, 32, 36,
39, 123

MIYAZAWA, A.; ALBERTINS, L.; IYODA, J.; CORNÉLIO, M.; PAYNE, R.;
CAVALCANTI, A. Final report on combining SysML and CML. Seventh
Framework Programme, 2013. 219p. Technical Report. 6, 34, 36, 123

MODELIOSOFT. Modelio open source community. 2011. Available from:
<https://www.modelio.org>. Access in: Feb. 4, 2015. 79

131

http://dl.acm.org/citation.cfm?id=1515784.1515786
https://www.modelio.org

NASA. NASA software assurance: software assurance definitions. 2009.
Available from:
<http://www.hq.nasa.gov/office/codeq/software/umbrella_defs.htm>.
Access in: 19 mai. 2014. 1

NASA, A. R. C. Java Pathfinder Home Page. 2015. Available from:
<http://babelfish.arc.nasa.gov/trac/jpf>. Access in: 18 abr. 2015. 26

NAUR, P.; BACKUS, J. W.; BAUER, F. L.; GREEN, J.; KATZ, C.;
MCCARTHY, J.; PERLIS, A. J. Revised report on the algorithmic language algol
60. Communications of the ACM, v. 6, n. 1, p. 1–17, 1963. 66

OMG, T. O. M. G. OMG - Unified Modeling Language (OMG UML).
2015. Available from: <http://www.uml.org/>. Access in: 07 aug. 2014. 2, 10, 78

ORACLE. Javadoc tool home page. 2011. Available from:
<http://www.oracle.com/technetwork/java/javase/documentation/
index-jsp-135444.html>. Access in: Dec. 28, 2011. 78

PARNAS, D. L.; CLEMENTS, P. C. A rational design process: How and why to
fake it. IEEE Trans. Software Eng., v. 12, n. 2, p. 251–257, 1986. Available
from: <http://doi.ieeecomputersociety.org/10.1109/TSE.1986.6312940>. 1

PETRE, M. Uml in practice. In: INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING, 35., 2013, San Francisco, CA, USA.
Proceedings... Piscataway, NJ, USA: IEEE Press, 2013. p. 722–731. ISBN
978-1-4673-3076-3. 2

PRESS, O. U. The Oxford Dictionary. 2015. Available from:
<http://www.oxforddictionaries.com>. Access in: 15 out. 2015. 4

PRESSMAN, R. S. Software engineering: a practitioner’s approach - 7th ed.
New York, US: McGrawHill, 2010. ISBN 0073375977. 11, 14

QUEILLE, J.-P.; SIFAKIS, J. Specification and verification of concurrent systems
in cesar. Lecture Notes in Computer Science, v. 137, p. 337–351, 1982. 3, 19

RIEBISCH, M.; PHILIPPOW, I.; GÖTZE, M. Uml-based statistical test case
generation. Objects, Components, Architectures, Services, and
Applications for a Networked World, Springer, v. 2591, p. 394–411, 2003. 31,
36

132

http://www.hq.nasa.gov/office/codeq/software/umbrella_defs.htm
http://babelfish.arc.nasa.gov/trac/jpf
http://www.uml.org/
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://doi.ieeecomputersociety.org/10.1109/TSE.1986.6312940
http://www.oxforddictionaries.com

SANTIAGO JÚNIOR, V.; VIJAYKUMAR, N. L.; FERREIRA, E.; GUIMARãES,
D.; COSTA, R. C. Gtsc: Automated model-based test case generation from
statecharts and finite state machines. In: SESSÃO DE FERRAMENTAS DO III
CONGRESSO BRASILEIRO DE SOFTWARE: TEORIA E PRáTICA
(CBSOFT), 3., 2012, Natal, RN. Anais... Porto Alegre - RS: SBC, 2012. p. 25–30.
28

SANTIAGO JÚNIOR, V. A. SOLIMVA: a methodology for generating
model-based test cases from natural language requirements and detecting
incompleteness in software specifications. 2011. 264 p.
(sid.inpe.br/mtc-m19/2011/11.07.23.30-TDI). Thesis (PhD in Applied Computing)
— Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, SP,
Brazil, 2011. xv, xvi, 1, 3, 4, 5, 25, 28, 29, 30, 31, 40, 89, 90, 91, 121

SANTIAGO JÚNIOR, V. A.; VIJAYKUMAR, N. L. Generating model-based test
cases from natural language requirements for space application software. Software
Quality Control, Kluwer Academic Publishers, Hingham, MA, USA, v. 20, n. 1,
p. 77–143, mar. 2012. ISSN 0963-9314. Available from:
<http://dx.doi.org/10.1007/s11219-011-9155-6>. 28

SANTIAGO, V.; MATTIELLO-FRANCISCO, M.; COSTA, R.; SILVA, W.;
AMBROSIO, A. Qsee project: an experience in outsourcing software development
for space applications. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING & KNOWLEDGE ENGINEERING, 19., 2007, Boston, MA,
USA. Proceedings... Boston - USA: Citeseer, 2007. p. 51–56. 5, 89

SANTIAGO, V.; VIJAYKUMAR, N.; GUIMARÃES, D.; AMARAL, A.;
FERREIRA, E. An environment for automated test case generation from
statechart-based and finite state machine-based behavioral models. In: IEEE
INTERNATIONAL CONFERENCE ON SOFTWARE TESTING
VERIFICATION AND VALIDATION WORKSHOP, 2008, Lillehammer,Norway.
Proceedings... Washington, DC, USA: IEEE, 2008. p. 63–72. ISBN
978-0-7695-3388-9. 28

SANTOS, L. B. R. d.; JÚNIOR, V. A. d. S.; VIJAYKUMAR, N. L.
Transformation of uml behavioral diagrams to support software model checking.
Electronic Proceedings in Theoretical Computer Science, v. 147, p.
133–142, 2014. 4, 39, 40, 121

133

http://dx.doi.org/10.1007/s11219-011-9155-6

SANTOS, L. B. R. dos; ERAS, E. R.; JR., V. A. de S.; VIJAYKUMAR, N. L. A
formal verification tool for UML behavioral diagrams. Lecture Notes in
Computer Science, v. 8579, p. 696–711, 2014. 4, 5, 77, 121

SARMA, M.; MALL, R. Automatic generation of test specifications for coverage of
system state transitions. Information and Software Technology, Elsevier,
v. 51, n. 2, p. 418–432, 2009. 10, 31, 36, 39, 46, 47

SCHÄFER, T.; KNAPP, A.; MERZ, S. Model checking uml state machines and
collaborations. Electronic Notes in Theoretical Computer Science, Elsevier,
Reisensburg, Germany, v. 55, n. 3, p. 357–369, 2001. 3, 33, 36, 39

SETZER, A. Interactive theorem proving. 2008. Available from:
<http://www.cs.swan.ac.uk/~csetzer/lectures/intertheo/07/
interactiveTheoremProvingForAgdaUsers.html>. Access in: 02 Jul. 2015. 18

SIAU, K.; HALPIN, T. A. (Ed.). Unified modeling language: systems analysis,
design and development issues. US: Idea Group, 2001. ISBN 1-930708-05-X. 40

SPIVEY, J. M.; ABRIAL, J. The Z notation. UK: Prentice Hall Hemel
Hempstead, 1992. 91

The Eclipse Foundation. Eclipse. Available from: http://eclipse.org. Access
in: Feb. 4, 2015. 2015. 78, 161

THE OBJECT MANAGEMENT GROUP (OMG). OMG Unified Modeling
Language (OMG UML), Superstructure, V2.4.1. Needham, MA, USA,
2011. 722 p. 12, 15, 39

UBM TECH. 2013 embedded market study. In: DESIGNWEST CONFERENCE
AND EXHIBITION, 2013, McEnergy Convention Center. Proceedings... San
Jose - CA: USA Conference Series, 2013. 2

UCHITEL, S.; KRAMER, J. A workbench for synthesising behaviour models from
scenarios. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING, 23., 2001, Toronto, Ontario, Canada. Proceedings...
Washington, DC, USA: IEEE Computer Society, 2001. p. 188–197. ISBN
0-7695-1050-7. 4, 6, 32, 36, 123

WIKI. Method or Methodology? 2015. Available from:
<http://c2.com/cgi/wiki?MethodOrMethodology>. Access in: 15 out. 2015. 4

134

http://www.cs.swan.ac.uk/~csetzer/lectures/intertheo/07/interactiveTheoremProvingForAgdaUsers.html
http://www.cs.swan.ac.uk/~csetzer/lectures/intertheo/07/interactiveTheoremProvingForAgdaUsers.html
http://c2.com/cgi/wiki?MethodOrMethodology

WOODCOCK, J.; CAVALCANTI, A.; FITZGERALD, J.; LARSEN, P. G.;
MIYAZAWA, A.; PERRY, S. Features of cml: A formal modelling language for
systems of systems. In: INTERNATIONAL CONFERENCE ON SYSTEM OF
SYSTEMS ENGINEERING, 7., 2012, Genoa, Italy. Proceedings... Washington,
DC, USA: IEEE, 2012. ISBN 978-1-4673-2974-3. 34

135

APPENDIX A - ADDITIONAL INFORMATION ABOUT SWPDC
CASE STUDY

A.1 Verified Properties

This section presents all the properties which have been verified for all scenarios
of SWPDC. Table A.1 shows the properties descriptions and their respective CTL
formalization for each one of the eight scenarios analyzed.

Table A.1 - Verified Properties of SWPDC case study

Scenario 1
Property Description CTL formalization

1) The POST (Power-On Self Test) shall comprise: Existence Pattern and
(i) Power status of the PDC itself; Globally Scope :

(ii) Power satus of the two EPP-HXI sets; ∀♦(PowerstatusPDC)
(iii) Current internal temperature of the PDC; ∀♦(PowerstatusEPP-HXI)

(iv) Coherent information of the PDC Program Memory; ∀♦(temperaturePDC)
(v) Reading of SRAM (Data Memory) and; ∀♦(PDCProgramMemory)

(vi) Correct operation of the watchdog timer circuit ∀♦(ReadDataMemory)
∀♦(OperationWatchdog)

2) The SWPDC should know how to distinguish between Existence Pattern and
a power-on process and a reset process Scope After Q :

¬∃ [¬ (Q ∧ ∀♦ (P)) ∪ (Q ∧ ¬ (Q ∧ ∀♦ (P)))]
where

P = modoIniciacaoPowerOn=true
Q = DeterminarMododeIniciacao

3) The SWPDC should report processing of the POST Existence Pattern and
through reports of events Globally Scope :

∀♦(RecordEventReport)
4)In the case of any unrecoverable problem not being Response Pattern and
identified in the PDC after the initiation process, the Globally Scope :

PDC shall automatically enter into the safety operation mode ∀� ((State=_–Avaliarprocessodeiniciacao–_
∧ bemSucedido=true) → ∀♦ (State=

–MudarparamododeoperacaoSEGURANCA–))
Scenario2

Property Description CTL formalization

1)The SWPDC/PDC can switching on and off the set EPP-HXI-1 Response Pattern and
and EPP-HXI-2 through command execution from the OBDH Globally Scope :

∀� (CommandSwitchOnEH1 → ∀♦ (SwitchOnEH1))
∀� (CommandSwitchOffEH1 → ∀♦ (SwitchOffEH1))
∀� (CommandSwitchOnEH2 → ∀♦ (SwitchOnEH2))
∀� (CommandSwitchOffEH2 → ∀♦ (SwitchOffEH2))

Scenario3
Property Description CTL formalization

1) The time for generation of housekeeping data can Universality Pattern and
be changed by means of command sent by OBDH. Globally Scope :

The minimum value of time to generate housekeeping ∀�(ModifyParameters(HK,60s))
is 60s, and and the maximum value is 1000s ∀�(ModifyParameters(HK,1000s))

2) A session for transmission of housekeeping data Precedence Chain and
begins with the command PREPARE HOUSEKEEPING Scope After Q :

DATA. In this case, the SWPDC interrupts the ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪
acquisition of scientific data of EPPs. The (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]

session continues with one or more commands where,
TRANSMIT HOUSEKEEPING DATA (RETRANSMIT ANSWER, Q = PREPARE HOUSEKEEPING DATA

when necessary) and ends with the command S = STOP DATA ACQUISITION
TRANSMIT SCIENTIFIC DATA, where SWPDC returns T = TRANSMIT HOUSEKEEPING DATA

to acquire scientific data of EPPs P = TRANSMIT SCIENTIFIC DATA
Scenario7

Property Description CTL formalization

1) A session for transmission of housekeeping data Precedence Chain and
begins with the command PREPARE HOUSEKEEPING Scope After Q :

DATA. In this case, the SWPDC interrupts the ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪
acquisition of scientific data of EPPs. The (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]

session continues with one or more commands where,
TRANSMIT HOUSEKEEPING DATA (RETRANSMIT ANSWER, Q = PREPARE HOUSEKEEPING DATA

when necessary) and ends with the command S = STOP DATA ACQUISITION
Continued on next page

137

TRANSMIT SCIENTIFIC DATA, where SWPDC returns T = TRANSMIT HOUSEKEEPING DATA
to acquire scientific data of EPPs P = TRANSMIT SCIENTIFIC DATA

Scenario8
Property Description CTL formalization

1) A session for transmission of housekeeping data Precedence Chain and
begins with the command PREPARE HOUSEKEEPING Scope After Q :

DATA. In this case, the SWPDC interrupts the ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪
acquisition of scientific data of EPPs. The (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]

session continues with one or more commands where,
TRANSMIT HOUSEKEEPING DATA (RETRANSMIT ANSWER, Q = PREPARE HOUSEKEEPING DATA

when necessary) and ends with the command S = STOP DATA ACQUISITION
TRANSMIT SCIENTIFIC DATA, where SWPDC returns T = TRANSMIT HOUSEKEEPING DATA

to acquire scientific data of EPPs P = TRANSMIT SCIENTIFIC DATA
2)The PDC can also have a situation of not Precedence Chain and
receiving the command sent. After identifying Scope After Q :
delimiter of start the PDC waits for a time ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪
of 600 ms for the rest of the command. This (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]

time is equivalent to 2 times as long to transmit where,
command with maximum size (1128 Bytes). In Q = StartCommand & Wait600ms
the case of expiry of the stipulated time, a S = Timeout

timeout occurs and the PDC aborts the communication, T = GenerateReportEvent
the command is discarded, one event is raised to it, P = ExpectNewCommandOBDH
and the PDC expects a new command from OBDH
3)The OBDH checks all fields of the replies sent by Precedence Chain and

the PDC. In the case of OBDH send a command TRANSMIT Scope After Q :
DATA and if there is inconsistency in the values ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪
received in any of the fields of a data response (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]

(SCIENTIFIC DATA, HOUSEKEEPING DATA, DUMP DATA where,
MEMORY, DIAGNOSTIC DATA, AND TEST DATA), the OBDH Q = TRANSMIT DATA & PDCResponseProblem

uses the command RETRANSMIT RESPONSE to try get a S = RETRANSMIT RESPONSE 1 & PDCResponseProblem
consistent data response. The command RETRANSMIT T = RETRANSMIT RESPONSE 2 & PDCResponseProblem
RESPONSE refers only to the last data response sent P = Stop Sending & GenerateReportEvent

by the PDC. Therefore, the PDC must maintain,
temporarily, always the latest data response that
was sent to the OBDH for case of error in receipt

of this response by the OBDH. The OBDH sends this
same command for maximum two more times. If after
these other two attempts still there is problem in

the response received from the PDC, the OBDH does
not transmit this command and generates a bug report

which should be sent to the ground station
4)The SWPDC should allow uploading of programs in this Precedence Chain and

operation mode. The first command to be sent to the Scope After Q :
SWPDC is STOP DATA ACQUISITION, for the SWPDC interrupts ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪

scientific data acquisition of the EPPs. After this (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]
command, one or more commands to LOAD DATA MEMORY where,

should be sent to the new program to be loaded in Q = STOP DATA ACQUISITION
the data memory of PDC. Later, a command RUN PROGRAM S = LOAD DATA MEMORY
LOADED INTO MEMORY should be sent to the PDC to have T = RUN PROGRAM LOADED

the program loaded to run. At the end of the process P = RESTART DATA ACQUISITION
of loading and executing of the program, a command

RESTART DATA ACQUISITION causes the SWPDC return to
acquire scientific data of EPPs

Scenario9
Property Description CTL formalization

1)A session for transmission of data dump begins with Precedence Chain and
the command PREPARE DUMP DATA MEMORY. In this case, Scope After Q :

the SWPDC interrupts the acquisition of scientific ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪
data of EPPs. The session continues with one (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]

or more commands TRANSMIT DUMP DATA MEMORY where,
and ends with the command TRANSMIT SCIENTIFIC DATA, Q = PREPARE DUMP DATA MEMORY

where the SWPDC returns to acquire the scientific S = STOP DATA ACQUISITION
data of EPPs T = TRANSMIT DUMP DATA MEMORY

P = TRANSMIT SCIENTIFIC DATA
Scenario10

Property Description CTL formalization

1)A session for transmission of data dump begins with Precedence Chain and
the command PREPARE DUMP DATA MEMORY. In this case, Scope After Q :

the SWPDC interrupts the acquisition of scientific ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪
data of EPPs. The session continues with one (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]

or more commands TRANSMIT DUMP DATA MEMORY where,
and ends with the command TRANSMIT SCIENTIFIC DATA, Q = PREPARE DUMP DATA MEMORY

where the SWPDC returns to acquire the scientific S = STOP DATA ACQUISITION
data of EPPs T = TRANSMIT DUMP DATA MEMORY

Continued on next page

138

P = TRANSMIT SCIENTIFIC DATA
2) The PDC checks all fields of commands sent by the OBDH. Precedence Chain and

In case of inconsistency in the values received in any Scope After Q :
of the fields of the OBDH command, the PDC aborts the ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪

communication, the command is dropped, an event is raised, (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]
the PDC awaiting a new OBDH command where,

Q = SyntaticErrorCommand
S = Timeout

T = GenerateReportEvent
P = ExpectNewCommandOBDH

3)The PDC can also have a situation of not receiving the Precedence Chain and
command sent. After identifying delimiter of start the Scope After Q :

PDC waits for a time of 600 ms for the rest of the command. ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪
This time is equivalent to 2 times as long to transmit (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]

command with maximum size (1128 Bytes). In the case of where,
expiry of the stipulated time, a timeout occurs and Q = StartCommand & Wait600ms
the PDC aborts the communication, the command is S = Timeout
discarded, one event is raised to it, and the PDC T = GenerateReportEvent

expects a new command from OBDH P = ExpectNewCommandOBDH
Scenario12

Property Description CTL formalization

1)A session for transmission of data dump begins with Precedence Chain and
the command PREPARE DUMP DATA MEMORY. In this case, Scope After Q :

the SWPDC interrupts the acquisition of scientific ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪
data of EPPs. The session continues with one (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]

or more commands TRANSMIT DUMP DATA MEMORY where,
and ends with the command TRANSMIT SCIENTIFIC DATA, Q = PREPARE DUMP DATA MEMORY

where the SWPDC returns to acquire the scientific S = STOP DATA ACQUISITION
data of EPPs T = TRANSMIT DUMP DATA MEMORY

P = TRANSMIT SCIENTIFIC DATA
2) The PDC checks all fields of commands sent by the OBDH. Precedence Chain and

In case of inconsistency in the values received in any Scope After Q :
of the fields of the OBDH command, the PDC aborts the ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪

communication, the command is dropped, an event is raised, (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]
the PDC awaiting a new OBDH command where,

Q = SyntaticErrorCommand
S = Timeout

T = GenerateReportEvent
P = ExpectNewCommandOBDH

3)The PDC can also have a situation of not receiving the Precedence Chain and
command sent. After identifying delimiter of start the Scope After Q :

PDC waits for a time of 600 ms for the rest of the command. ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪
This time is equivalent to 2 times as long to transmit (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]

command with maximum size (1128 Bytes). In the case of where,
expiry of the stipulated time, a timeout occurs and Q = StartCommand & Wait600ms
the PDC aborts the communication, the command is S = Timeout
discarded, one event is raised to it, and the PDC T = GenerateReportEvent

expects a new command from OBDH P = ExpectNewCommandOBDH

139

A.2 Tansition System for Scenario 1

Node Children

{1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2,
1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 1, 2,
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 1, 1, 0, 2, 0, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 1, 1, 0, 2, 0, 1,
1, 0, 2, 0, 1, 1, 0, 2, 0, 1, 0, 2, 0, 1, 1, 0, 2, 0, 1, 1, 0, 2, 0, 1, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1,
0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}

Transition System Output

Message: (Verificar memoria de programa, 1: powerOn(), PDCOff)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Verificar memoria de dados, 2:iniciar(), switchPDCOn/start60s & Idle and IniM_POST)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Verificar status da alimentacao do PDC, 3:verificarHardware(), switchPDCOn/start60s & Idle and IniM_POST)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Verificar status da alimentacao EPP HXi, 4: obterStatusAlimentacao(HX1,HX2), switchPDCOn/start60s & Idle and IniM_POST)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Verificar temperatura atual do PDC, 5:gerarRelatoPOST(), switchPDCOn/start60s & Idle and IniM_POST)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Verificar circuito de Cao-de-Guarda, 6:reconfigurar(), switchPDCOn/start60s & Idle and IniM_POST)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, 7:mudarModoOperacao(), switchPDCOn/start60s & Idle and IniM_POST)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, 8:ativarModuloPrincipal(), switchPDCOn/start60s & Idle and IniM_POST)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & CountingTime and IniM_POST)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & CountingTime and SafeM_Entered)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & SafeM_Entered and Idle)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & IniM_POST)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & SafeM_Entered)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & SafeM_Entered and CountingTime)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & SafeM_Entered)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, tsinc & SafeM_VerOp)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

140

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & CountingTime)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & Idle)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & CountingTime)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & CountingTime and SafeM_Entered)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, POSTOk & SafeM_Entered)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, tsinc & SafeM_VerOp)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & CountingTime)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, tsinc & SafeM_VerOp)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & SafeM_Entered)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, tsinc & SafeM_VerOp)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, VER_OP_MODE/INFO_OP_MODE & SafeM_EPPsOff)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, tsinc & SafeM_VerOp)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, CountingTime)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, tsinc & SafeM_VerOp)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & SafeM_Entered)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, tsinc & SafeM_VerOp)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, switchPDCOn/start60s & CountingTime)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, tsinc & SafeM_VerOp)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, VER_OP_MODE/INFO_OP_MODE & SafeM_EPPsOff)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

141

Message: (Determinar Modo de Iniciacao, -, tsinc & SafeM_VerOp)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, VER_OP_MODE/INFO_OP_MODE & SafeM_EPPsOff)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, tsinc & SafeM_VerOp)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, VER_OP_MODE/INFO_OP_MODE & SafeM_EPPsOff)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Limpar memoria flash, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Determinar Modo de Iniciacao, -, VER_OP_MODE/INFO_OP_MODE & SafeM_EPPsOff)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, tsinc & SafeM_VerOp)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, VER_OP_MODE/INFO_OP_MODE & SafeM_EPPsOff)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, tsinc & SafeM_VerOp)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, VER_OP_MODE/INFO_OP_MODE & SafeM_EPPsOff)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, tsinc & SafeM_VerOp)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Determinar Modo de Iniciacao, -, VER_OP_MODE/INFO_OP_MODE & SafeM_EPPsOff)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Limpar memoria flash, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Determinar Modo de Iniciacao, -, VER_OP_MODE/INFO_OP_MODE & SafeM_EPPsOff)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Limpar memoria flash, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Determinar Modo de Iniciacao, -, VER_OP_MODE/INFO_OP_MODE & SafeM_EPPsOff)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Limpar memoria flash, -, -)

142

Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Iniciar memoria de configuracao com valores padrao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Limpar memoria flash, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Determinar Modo de Iniciacao, -, VER_OP_MODE/INFO_OP_MODE & SafeM_EPPsOff)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Limpar memoria flash, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Determinar Modo de Iniciacao, -, VER_OP_MODE/INFO_OP_MODE & SafeM_EPPsOff)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Limpar memoria flash, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Determinar Modo de Iniciacao, -, VER_OP_MODE/INFO_OP_MODE & SafeM_EPPsOff)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = DC

Message: (Limpar memoria flash, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Iniciar memoria de configuracao com valores padrao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Limpar memoria flash, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Iniciar memoria de configuracao com valores padrao, -, -)
Guard: bemsucedido = DC

143

Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Limpar memoria flash, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Iniciar memoria de configuracao com valores padrao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = False

Message: (Iniciar memoria de configuracao com valores padrao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Limpar memoria flash, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Iniciar memoria de configuracao com valores padrao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Limpar memoria flash, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Iniciar memoria de configuracao com valores padrao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Limpar memoria flash, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

144

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Iniciar memoria de configuracao com valores padrao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = False

Message: (Iniciar memoria de configuracao com valores padrao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = False

Message: (Iniciar memoria de configuracao com valores padrao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = False

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

145

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = False

Message: (Iniciar memoria de configuracao com valores padrao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = False

Message: (Iniciar memoria de configuracao com valores padrao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = False

Message: (Iniciar memoria de configuracao com valores padrao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = False

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = False

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Gravar relato de eventos, -, -)

146

Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = False

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = False

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = False

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC

147

Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = False

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Gravar relato de eventos, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = False

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = True

148

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = True

Message: (Avaliar processo de iniciacao, -, -)
Guard: bemsucedido = DC
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = False

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

149

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Re-configurar, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Voltar ao Inicio, -, -)
Guard: bemsucedido = False
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

Message: (Mudar para modo de operacao SEGURANCA, -, -)
Guard: bemsucedido = True
Guard: modoiniciacao-poweron = True

NUMBER OF STATES: 243

150

A.3 NuSMV File for Scenario 1

MODULE main

VAR

State: {_1powerOn$$--Verificarmemoriadeprograma--PDCOff,
_2iniciar$$--Verificarmemoriadedados--IdleANDIniM_POST,
_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDIniM_POST,
_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDSafeM_Entered,
_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--SafeM_EnteredANDIdle,
_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--IniM_POST,
_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_Entered,
_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_EnteredANDCountingTime,
_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_VerOp,
_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--Idle,
_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--CountingTime,
_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_Entered,
_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_VerOp,
_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--CountingTime,
_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_EPPsOff,
_6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--SafeM_VerOp,
_6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--SafeM_EPPsOff,
6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--,
_7mudarModoOperacao$$--DeterminarMododeIniciacao--SafeM_EPPsOff,
7mudarModoOperacao$$--DeterminarMododeIniciacao--,
8ativarModuloPrincipal$$--DeterminarMododeIniciacao--,
--Limparmemoriaflash--,
--Gravarrelatodeeventos--,
--Iniciarmemoriadeconfiguracaocomvalorespadrao--,
--Avaliarprocessodeiniciacao--,
--Re-configurar--,

--VoltaraoInicio--,
--MudarparamododeoperacaoSEGURANCA-- };

bemSucedido: {dc,false,true};

modoIniciacaoPowerOn: {dc,false,true};

ASSIGN

init(State):= _1powerOn$$--Verificarmemoriadeprograma--PDCOff;

next(State):=
case

State = _1powerOn$$--Verificarmemoriadeprograma--PDCOff & bemSucedido=dc & modoIniciacaoPowerOn=dc :
_2iniciar$$--Verificarmemoriadedados--IdleANDIniM_POST;

State = _2iniciar$$--Verificarmemoriadedados--IdleANDIniM_POST & bemSucedido=dc & modoIniciacaoPowerOn=dc :
{_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDIniM_POST,
_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDSafeM_Entered,
_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--SafeM_EnteredANDIdle};

--State = _2iniciar$$--Verificarmemoriadedados--IdleANDIniM_POST & bemSucedido=dc & modoIniciacaoPowerOn=dc :
_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDSafeM_Entered;

--State = _2iniciar$$--Verificarmemoriadedados--IdleANDIniM_POST & bemSucedido=dc & modoIniciacaoPowerOn=dc :
_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--SafeM_EnteredANDIdle;

State = _3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDIniM_POST & bemSucedido=dc &
modoIniciacaoPowerOn=dc : {_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--IniM_POST,
_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_EnteredANDCountingTime,
_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_Entered};

--State = _3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDIniM_POST & bemSucedido=dc &
modoIniciacaoPowerOn=dc : _4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_EnteredANDCountingTime;

--State = _3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDIniM_POST & bemSucedido=dc &
modoIniciacaoPowerOn=dc : _4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_Entered;

State = _3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDSafeM_Entered & bemSucedido=dc &
modoIniciacaoPowerOn=dc : {_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_VerOp,
_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_Entered,
_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--CountingTime};

151

--State = _3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDSafeM_Entered & bemSucedido=dc &
modoIniciacaoPowerOn=dc : _4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_Entered;

--State = _3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDSafeM_Entered & bemSucedido=dc &
modoIniciacaoPowerOn=dc : _4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--CountingTime;

State = _3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--SafeM_EnteredANDIdle & bemSucedido=dc & modoIniciacaoPowerOn=dc :
{_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--Idle,
_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--CountingTime,
_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_EnteredANDCountingTime};

--State = _3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--SafeM_EnteredANDIdle & bemSucedido=dc & modoIniciacaoPowerOn=dc
: _4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--CountingTime;

--State = _3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--SafeM_EnteredANDIdle & bemSucedido=dc & modoIniciacaoPowerOn=dc
: _4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_EnteredANDCountingTime;

State = _4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--IniM_POST & bemSucedido=dc & modoIniciacaoPowerOn=dc
: _5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_Entered;

State = _4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_EnteredANDCountingTime & bemSucedido=dc &
modoIniciacaoPowerOn=dc : {_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_Entered,
_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_VerOp,
_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--CountingTime};

--State = _4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_EnteredANDCountingTime & bemSucedido=dc &
modoIniciacaoPowerOn=dc : _5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_VerOp;

--State = _4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_EnteredANDCountingTime & bemSucedido=dc &
modoIniciacaoPowerOn=dc : _5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--CountingTime;

State = _4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_Entered & bemSucedido=dc &
modoIniciacaoPowerOn=dc : _5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_VerOp;

State = _4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_VerOp & bemSucedido=dc &
modoIniciacaoPowerOn=dc : _5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_EPPsOff;

State = _4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--CountingTime & bemSucedido=dc &
modoIniciacaoPowerOn=dc : _5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_VerOp;

State = _4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--Idle & bemSucedido=dc & modoIniciacaoPowerOn=dc :
_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--CountingTime;

State = _5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_Entered & bemSucedido=dc & modoIniciacaoPowerOn=dc :
_6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--SafeM_VerOp;

State = _5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_VerOp & bemSucedido=dc & modoIniciacaoPowerOn=dc :
_6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--SafeM_EPPsOff;

State = _5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--CountingTime & bemSucedido=dc & modoIniciacaoPowerOn=dc :
_6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--SafeM_VerOp;

State = _5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_EPPsOff & bemSucedido=dc & modoIniciacaoPowerOn=dc :
6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--;

State = _6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--SafeM_EPPsOff & bemSucedido=dc & modoIniciacaoPowerOn=dc :
7mudarModoOperacao$$--DeterminarMododeIniciacao--;

State = _6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--SafeM_VerOp & bemSucedido=dc & modoIniciacaoPowerOn=dc :
_7mudarModoOperacao$$--DeterminarMododeIniciacao--SafeM_EPPsOff;

State = _6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--_ & bemSucedido=dc & modoIniciacaoPowerOn=dc :
7mudarModoOperacao$$--DeterminarMododeIniciacao--;

State = _7mudarModoOperacao$$--DeterminarMododeIniciacao--SafeM_EPPsOff & bemSucedido=dc & modoIniciacaoPowerOn=dc :
8ativarModuloPrincipal$$--DeterminarMododeIniciacao--;

State = _7mudarModoOperacao$$--DeterminarMododeIniciacao--_ & bemSucedido=dc & modoIniciacaoPowerOn=dc :
8ativarModuloPrincipal$$--DeterminarMododeIniciacao--;

State = _8ativarModuloPrincipal$$--DeterminarMododeIniciacao--_ & bemSucedido=dc & modoIniciacaoPowerOn=true :
--Limparmemoriaflash--;

State = _8ativarModuloPrincipal$$--DeterminarMododeIniciacao--_ & bemSucedido=dc & modoIniciacaoPowerOn=false :
--Gravarrelatodeeventos--;

152

State = _--Limparmemoriaflash--_ & bemSucedido=dc & modoIniciacaoPowerOn=true : _--Iniciarmemoriadeconfiguracaocomvalorespadrao--_;

State = _--Gravarrelatodeeventos--_ & bemSucedido=dc & modoIniciacaoPowerOn=false : _--Avaliarprocessodeiniciacao--_;

State = _--Iniciarmemoriadeconfiguracaocomvalorespadrao--_ & bemSucedido=dc & modoIniciacaoPowerOn=true
--Gravarrelatodeeventos--;

State = _--Avaliarprocessodeiniciacao--_ & bemSucedido=true & modoIniciacaoPowerOn=false : _--Re-configurar--_;

State = _--Avaliarprocessodeiniciacao--_ & bemSucedido=false & modoIniciacaoPowerOn=false : _--VoltaraoInicio--_;

State = _--Gravarrelatodeeventos--_ & bemSucedido=dc & modoIniciacaoPowerOn=true : _--Avaliarprocessodeiniciacao--_;

State = _--Re-configurar--_ & bemSucedido=true & modoIniciacaoPowerOn=false : _--MudarparamododeoperacaoSEGURANCA--_;

State = _--Avaliarprocessodeiniciacao--_ & bemSucedido=true & modoIniciacaoPowerOn=true : _--Re-configurar--_;

State = _--Avaliarprocessodeiniciacao--_ & bemSucedido=false & modoIniciacaoPowerOn=true : _--VoltaraoInicio--_;

State = _--Re-configurar--_ & bemSucedido=true & modoIniciacaoPowerOn=true : _--MudarparamododeoperacaoSEGURANCA--_;

TRUE: State;

esac;

modoIniciacaoPowerOn:=case

(State=_1powerOn$$--Verificarmemoriadeprograma--PDCOff | State=_2iniciar$$--Verificarmemoriadedados--IdleANDIniM_POST |
State=_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDIniM_POST |
State=_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDSafeM_Entered |
State=_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--SafeM_EnteredANDIdle |
State=_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--IniM_POST |
State=_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_Entered |
State=_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_EnteredANDCountingTime |
State=_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_VerOp |
State=_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--Idle |
State=_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--CountingTime |
State=_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_Entered |
State=_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_VerOp |
State=_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--CountingTime |
State=_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_EPPsOff |
State=_6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--SafeM_VerOp |
State=_6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--SafeM_EPPsOff |
State=_6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--_ | State=_7mudarModoOperacao$$--DeterminarMododeIniciacao--SafeM_EPPsOff
| State=_7mudarModoOperacao$$--DeterminarMododeIniciacao--_) : dc;

(State=_--Limparmemoriaflash--_ | State=_--Iniciarmemoriadeconfiguracaocomvalorespadrao--_) : true;

(State=_--Gravarrelatodeeventos--_ | State=_--Avaliarprocessodeiniciacao--_ | State=_--Re-configurar--_ |
State=_--VoltaraoInicio--_ | State=_--MudarparamododeoperacaoSEGURANCA--_):{false,true};

TRUE: {dc,true,false};
esac;

bemSucedido:=case

(State=_1powerOn$$--Verificarmemoriadeprograma--PDCOff | State=_2iniciar$$--Verificarmemoriadedados--IdleANDIniM_POST |
State=_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDIniM_POST |
State=_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--CountingTimeANDSafeM_Entered |
State=_3verificarHardware$$--VerificarstatusdaalimentacaodoPDC--SafeM_EnteredANDIdle |
State=_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--IniM_POST |
State=_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_Entered |
State=_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_EnteredANDCountingTime |
State=_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--SafeM_VerOp |
State=_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--Idle |
State=_4obterStatusAlimentacao$HX1-HX2$--VerificarstatusdaalimentacaoEPPHXi--CountingTime |
State=_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_Entered |
State=_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_VerOp |
State=_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--CountingTime |
State=_5gerarRelatoPOST$$--VerificartemperaturaatualdoPDC--SafeM_EPPsOff |
State=_6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--SafeM_VerOp |

153

State=_6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--SafeM_EPPsOff |
State=_6reconfigurar$$--VerificarcircuitodeCao-de-Guarda--_ | State=_7mudarModoOperacao$$--DeterminarMododeIniciacao--SafeM_EPPsOff
| State=_7mudarModoOperacao$$--DeterminarMododeIniciacao--_ | State=_8ativarModuloPrincipal$$--DeterminarMododeIniciacao--_ |
State=_--Limparmemoriaflash--_ | State=_--Gravarrelatodeeventos--_ | State=_--Iniciarmemoriadeconfiguracaocomvalorespadrao--_) :
dc;

(State=_--Re-configurar--_ | State=_--MudarparamododeoperacaoSEGURANCA--_) : true;

State=_--VoltaraoInicio--_ : false;
TRUE: {dc,true,false};
esac;

154

APPENDIX B - ADDITIONAL INFORMATION ABOUT SWPDCpM
CASE STUDY

B.1 Verified Properties

This section presents all the properties which have been verified for all scenarios of
SWPDCpM. Table B.1 shows the properties descriptions and their respective CTL
formalization for each one of the twelve scenarios analyzed.

Table B.1 - Verified Properties of SWPDCpM case study

Scenario 1
Property Description CTL formalization

1)The CTL process should receive the package of TC and Precedence Pattern and
validate its syntax, making it available to Scope After Q :

forwarding to the target AP. If the syntax of ¬∃[¬ (Q ∧ ¬∃ [¬ S ∪ (¬ P ∧ ¬ S)])
the remote control is invalid, an event report must ∪ (¬Q ∧ ¬ (Q ∧ ¬∃ [¬ S ∪ (¬ P ∧ ¬ S)]))]

be generated and sent to the CTL.TM_OUT. Otherwise, where,
the remote control must be available for forwarding Q = ReceiveTC
to the target application process. This function S = SyntaxErrorinTC
should be carried out in all computer software P = GenerateReportEvent

operation modes, except in Inactive and Automatic
Shutdown modes

2)The CTL process should receive the package of TC and Precedence Pattern and
validate its syntax, making it available to Scope After Q :

forwarding to the target AP. If the syntax of ¬∃[¬ (Q ∧ ¬∃ [¬ S ∪ (¬ P ∧ ¬ S)])
the remote control is invalid, an event report must ∪ (¬Q ∧ ¬ (Q ∧ ¬∃ [¬ S ∪ (¬ P ∧ ¬ S)]))]

be generated and sent to the CTL.TM_OUT. Otherwise, where,
the remote control must be available for forwarding Q = ReceiveTC
to the target application process. This function S = NotSyntaxErrorinTC
should be carried out in all computer software P = SubmitTelecommand

operation modes, except in Inactive and Automatic
Shutdown modes

Scenario2
Property Description CTL formalization

1)If the target AP is SCA, the TC should be sent to CTL. SCA_TC Response Pattern and
Globally Scope :

∀� (AP_SCA → ∀♦ (TC_CTL.SCA_TC))
2)If the target AP is CRX, the TC should be sent to CTL. CRX_TC Response Pattern and

Globally Scope :
∀� (AP_CRX → ∀♦ (TC_CTL.CRX_TC))

3)If the target AP is SYN, the TC should be sent to CTL. SYN_TC Response Pattern and
Globally Scope :

∀� (AP_SYN → ∀♦ (TC_CTL.SYN_TC))
4)If the target AP is HK, the TC should be sent to CTL. HK_TC Response Pattern and

Globally Scope :
∀� (AP_HK → ∀♦ (TC_CTL.HK_TC))

5)If AP is intended for own CTL, the TC should be executed Response Pattern and
immediately. Globally Scope :

∀� (AP_CTL → ∀♦ (TCExecutado))
6)If AP indicated in TC is unknown, a report of event should Response Pattern and

be generated and sent to CTL.TM_OUT and TC should be thrown Globally Scope :
∀� (Unknown_AP → ∀♦ (GenerateReportEvent))

7)If it is detected that the current operation mode does not Response Pattern and
enable the TC routing (or application), an event report should Globally Scope :

be generated and sent to CTL.TM_OUT ∀� ((InactiveOperationMode ∨ StartOperationMode
∨ AutomaticShutDownOperationMode)
→ ∀♦ (GenerateReportEvent))

Scenario3
Property Description CTL formalization

1)The package of TM should be forwarded as specified Precedence Pattern and
below: (i) A copy of the TM package, regardless of the source, Scope After Q :
should be forwarded to CTL.MMFS, where will be stored in a ¬∃[¬ (Q ∧ ¬∃ [¬ S ∪ (¬ P ∧ ¬ S)])
log file, except if TM is a TM_DM. The other copy continues ∪ (¬Q ∧ ¬ (Q ∧ ¬∃ [¬ S ∪ (¬ P ∧ ¬ S)]))]
as follows: (ii) If the package of TM is the scientific type, where,

this must be forwarded to CTL.TC_CI_OUT. (iii) All other types Q = ForwardTM_CTL.MMFS
of TM should be forwarded to CTL.TM_OP S = PackageTMscientific

Continued on next page

155

P = Forward_CTL.TM_CI
2)The package of TM should be forwarded as specified Precedence Pattern and

below: (i) A copy of the TM package, regardless of the source, Scope After Q :
should be forwarded to CTL.MMFS, where will be stored in a ¬∃[¬ (Q ∧ ¬∃ [¬ S ∪ (¬ P ∧ ¬ S)])
log file, except if TM is a TM_DM. The other copy continues ∪ (¬Q ∧ ¬ (Q ∧ ¬∃ [¬ S ∪ (¬ P ∧ ¬ S)]))]
as follows: (ii) If the package of TM is the scientific type, where,

this must be forwarded to CTL.TC_CI_OUT. (iii) All other types Q = ForwardTM_CTL.MMFS
of TM should be forwarded to CTL.TM_OP S = OtherPackages

P = Forward_CTL.TM_OP
Scenario4

Property Description CTL formalization

1) The CTL process must allow the enabling and disabling Response Pattern and
of the TM forwarding, through specific TC obtained from CTL.TC, Globally Scope :

intended for the CTL process itself ∀� (ReceiveTC_CTL.TC
→ ∀♦ (EnableDisableForwardTM))

Scenario5
Property Description CTL formalization

1) When receiving a TC of CTL.TC requesting a consult of Response Pattern and
current operation mode, the value corresponding to the current Globally Scope :

operation mode must be submitted in the form of package TM for ∀� (ReceiveTC_CTL.TC_ConsultOperationMode
CTL.TM_OUT. Get current computational operation mode and → ∀♦ (Generate_TM_RM))

generate package TM_RM in response
Scenario6

Property Description CTL formalization

1) Upon receipt a TC, if the command change mode Response Pattern and
is valid, the process must change the operation mode Scope After Q :

¬∃ [¬ (Q ∧ ∀� (P → ∀♦ (S)))
∪ (Q ∧ ¬ (Q ∧ ∀� (P → ∀♦ (S))))]

where,
Q = ReceiveTC_CTL
P = ValidChangeMode

S = ChangeOperationMode
2) Upon receipt a TC, if the command change mode Response Pattern and

is invalid, the process must generate _TM_RE Scope After Q :
¬∃ [¬ (Q ∧ ∀� (P → ∀♦ (S)))

∪ (Q ∧ ¬ (Q ∧ ∀� (P → ∀♦ (S))))]
where,

Q = ReceiveTC_CTL
P = InvalidChangeMode
S = Generate_TM_RE

Scenario7
Property Description CTL formalization

1)The CTL process should distribute commands Precedence Pattern and
on/off requested by TC. The following sequence Scope After Q :

of operations must be performed: 1) Get command ¬∃ [¬ (Q ∧ (¬∃ [¬ S ∪ (P ∧ ¬ S)]))
word on/off of the input TC; 2) Acting in hardware ∪ (Q ∧ ¬ (Q ∧ (¬∃ [¬ S ∪ (P ∧ ¬ S)])))]

to perform the commands on/off through the where,
CTL.ON_OFF_TC interface Q = ReceiveTC_CTL

P = ObtainwordOnOff
S = ActingHardware_CTL.ON_OFF_TC

Scenario8
Property Description CTL formalization

1)This function meets the telecommand of memory dump request. Precedence Chain and
The following sequence of operations must be performed: 1) Get Scope After Q :
address and memory size required for dump; 2) Copy memory to ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪
dumpfile CTL.MMFS, reporting the progress of the operation (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]
through TM_VC, up to a maximum of 4MB; 3) Start transfer where,

process of file generated in CTL.MMFS. Report TM_RE and ignore Q = ReceiveTC_CTL.TC_DumpMemory
the request when: 4) The requested memory is invalid; S = GetAddressMemorySize

5) The requested size exceeds the maximum dump capacity; T = (¬(InvalidMemory ∨ InvalidSize
6) A memory transfer process is still in progress ∨ ProcessTransferProgress) →

(CopyMemoryDumpfile → Forward_TM_VC))
P = StartTransferDumpFile

2)This process is initiated by CTL automatically when a dumpfile Precedence Chain and
is generated in CTL.MMFS. The following operation must be done in Scope After Q :
parallel with other software functions: 1) Generate TM_DM packages ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪
limited by the maximum size set to a TM package, considering that (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]
the last TM_DM package may have a size less than or equal to the where,

maximum size of a packet TM; 2) Send TM_DM packages to CTL.TM_OUT Q = DumpFileGenerated
at a rate not greater than four packets per second; 3) Report S = (¬(ErrorIODumpFile
TM_VC indicating the completion status of the operation; ∨ ChangeOperationModeNDump)

4) Delete dumpfile when finished. Report TM_RE and cancel → GeneratePackageDM)
transfer process when: 5) Occur I/O error in dumpfile; 6) A change T = SendPackagesTM_DM_CTL.TM_OUT

occurs for computer mode operation that does not allow dump P = (Report_TM_VC → DeleteDumpFile)
Continued on next page

156

memory during dump process
Scenario9

Property Description CTL formalization

1)This function must meet the TC of request to report the Precedence Pattern and
current software version. The following sequence of operations Scope After Q :

must be performed: (i) Get the current version code of the software. ¬∃ [¬ (Q ∧ (¬∃ [¬ S ∪ (P ∧ ¬ S)]))
(ii) Report the code version in the form of a TM_RV package ∪ (Q ∧ ¬ (Q ∧ (¬∃ [¬ S ∪ (P ∧ ¬ S)])))]

where,
Q = ReceiveTC

P = ObtainCurrentVersionCode
S = ReportCode_TM_RV

Scenario10
Property Description CTL formalization

1)This function attempts to TC request of state of charge Response Pattern and
of a new version. A TM_RC report must be sent Globally Scope :

∀� (ReceiveTC_ChargeState → ∀♦ (Report_TM_RC))
Scenario11

Property Description CTL formalization

1)This function attempts to TC request of charge initiation Precedence Chain and
of new version of the software. When receiving TC, extract the Scope After Q :
data and validate them. After validate such data, the following ¬∃[¬ Q ∪ (Q ∧∃ [¬S ∪ P] ∧∃ [¬P ∪

operations must be performed: (i) Persist the data into CTL.MMFS (S ∧ ¬P ∧ ∃© (∃[¬T ∪ (P ∧ ¬T)]))])]
(ii) Report TM_RE informing success or anomaly where,

Q = ReceiveTC_ChargeInitiation
S = ValidateData

T = PersistDataCTL.MMFS
P = Report_TM_RE

Scenario12
Property Description CTL formalization

1) The SCA process should pass TC packets intended for the Response Pattern and
SCA as soon as they arrive in SCA.TC. Forward TC for SCA_TC_HK Globally Scope :

∀� (ReceivePackagesTC_SCA.TC
→ ∀♦ (ForwardTC_SCA_TC_HK))

2) The SCA process should pass TM packets originated in Response Pattern and
SCA as soon as they arrive in SCA_TC_HK to be forwarded by Globally Scope :

the CTL process. Forward TM for SCA_TM ∀� (ReceivePackagesTM_SCA_TC_HK
→ ∀♦ (ForwardTM_SCA.TM))

157

B.2 Tansition System for Scenario 6

Node Children

{1, 1, 1, 1, 1, 0}

Transition System Output

Message: (_tc$_$sgb$coma$__st$equals$130$coma$__sst$equals$2$coma$__modo$_$)

Message: (_tc$_$modo$_$)

Message: (_#accept#$dots$tm_vc)

Message: (_#not__modo__ok#$dots$tm_re)

Message: (_#modo__ok#$dots$altera$_$modo$_$)

Message: (_encaminhar__tm)

NUMBER OF STATES: 6

158

B.3 NuSMV File for Scenario 6

MODULE main

VAR

State: {
tc$$sgb$coma$__st$equals$130$coma$__sst$equals$2$coma$__modo$_$,
tc$$modo$_$,
_#accept#$dots$tm_vc,
_#not__modo__ok#$dots$tm_re,
_#modo__ok#$dots$altera$_$modo$_$,
_encaminhar__tm};

ASSIGN

init (State):= _tc$_$sgb$coma$__st$equals$130$coma$__sst$equals$2$coma$__modo$_$;

next (State):= case
State = _tc$_$sgb$coma$__st$equals$130$coma$__sst$equals$2$coma$__modo$_$: _tc$_$modo$_$;
State = _tc$_$modo$_$: _#accept#$dots$tm_vc;
State = _#accept#$dots$tm_vc: _#not__modo__ok#$dots$tm_re;
State = _#not__modo__ok#$dots$tm_re: _#modo__ok#$dots$altera$_$modo$_$;
State = _#modo__ok#$dots$altera$_$modo$_$: _encaminhar__tm;

TRUE: State;
esac;

159

APPENDIX C - XMITS USABILITY ASPECTS

To present the application, Eclipse (The Eclipse Foundation, 2015) was considered, as it
is one of the most used IDE for Java programming. However, XMITS is compatible
with any other Java development environment.

Figure C.1 - Screen of Modelio

The first step is to create a UML sequence, activity or state machine diagram using
Modelio 3.2, exactly as shown in Figure C.1. In the first version of XMITS, Papyrus
(ECLIPSE.ORG, 2014) was used for modeling the UML diagrams. However, it leads
to several inconsistencies in the XMI files. Then, after a few searches and tests, it
was decided to change for the Modelio tool. Once the diagrams are finished, it is
necessary to generate an XMI file for each one of them.

Figure C.2 - Adding the build path in Eclipse

161

Figure C.3 - Preparing the class to run XMITS

Figure C.4 - Java class ready to run XMITS

XMITS is distributed in a Java package. This package should be added to the build
path of the project that is being created, as can be seen in Figure C.2.

In the Java class where one wants to include the XMITS, a new object of TUTS type
must be created, as in Figure C.3.

To run the XMI file exported by Modelio, it is necessary to call a function add and
pass the name of the file as parameter of the function (Figure C.4).

162

Figure C.5 - Output as a Transition System displayed on the console

There are three modes to visualize the XMITS output: the first one is as a Tran-
sition System, using the TUTS module (displayed on the console), as explained in
Subsection 4.1.5. The second one is as an input of NuSMV, using the Bridge module
(displayed on the console). And the third one is as an input of NuSMV, but as a
file. Each one of these outputs are displayed in Figures C.5, C.6, and C.7, respec-
tively. Note that the changes to address each one of the three different outputs are
implemented on the last line of the code.

163

Figure C.6 - Output as an input of NuSMV displayed on the console

C.1 XMITS Class Diagrams

This section presents the class diagrams of Reader, Bridge, and Global modules of
XMITS. The Converter and TUTS modules have a very large number of classes,
which makes it impractical to show their class diagrams. The package diagrams of
these two modules were shown in Chapter 4.

164

Figure C.7 - Output as an input file of NuSMV

165

Figure C.8 - Class Diagram of Reader Module

166

Figure C.9 - Class Diagram of Bridge Module

167

Figure C.10 - Class Diagram of Global Module

168

PUBLICAÇÕES TÉCNICO-CIENTÍFICAS EDITADAS PELO INPE

Teses e Dissertações (TDI) Manuais Técnicos (MAN)

Teses e Dissertações apresentadas nos
Cursos de Pós-Graduação do INPE.

São publicações de caráter técnico que
incluem normas, procedimentos, in-
struções e orientações.

Notas Técnico-Científicas (NTC) Relatórios de Pesquisa (RPQ)

Incluem resultados preliminares de
pesquisa, descrição de equipamentos,
descrição e ou documentação de progra-
mas de computador, descrição de sis-
temas e experimentos, apresentação de
testes, dados, atlas, e documentação de
projetos de engenharia.

Reportam resultados ou progressos de
pesquisas tanto de natureza técnica
quanto científica, cujo nível seja com-
patível com o de uma publicação em
periódico nacional ou internacional.

Propostas e Relatórios de Projetos
(PRP)

Publicações Didáticas (PUD)

São propostas de projetos técnico-
científicos e relatórios de acompan-
hamento de projetos, atividades e con-
vênios.

Incluem apostilas, notas de aula e man-
uais didáticos.

Publicações Seriadas Programas de Computador (PDC)

São os seriados técnico-científicos: bo-
letins, periódicos, anuários e anais de
eventos (simpósios e congressos). Con-
stam destas publicações o Internacional
Standard Serial Number (ISSN), que é
um código único e definitivo para iden-
tificação de títulos de seriados.

São a seqüência de instruções ou códi-
gos, expressos em uma linguagem de
programação compilada ou interpre-
tada, a ser executada por um computa-
dor para alcançar um determinado obje-
tivo. Aceitam-se tanto programas fonte
quanto os executáveis.

Pré-publicações (PRE)

Todos os artigos publicados em periódi-
cos, anais e como capítulos de livros.

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	EPIGRAPHY
	DEDICATORY
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	CONTENTS
	1 INTRODUCTION
	1.1 Motivation
	1.2 Objective
	1.3 Proposal to Meet the Objective
	1.4 Contributions
	1.5 Document Organization

	2 THEORETICAL BASIS
	2.1 Basic Concepts
	2.2 Unified Modeling Language - UML
	2.2.1 Use Case
	2.2.2 Sequence Diagram
	2.2.3 Activity Diagram
	2.2.4 Behavioral State Machine Diagram

	2.3 Formal Verification Methods
	2.3.1 Theorem Proving
	2.3.2 Model Checking
	2.3.2.1 Temporal Logic and Properties
	2.3.2.1.1 Linear Temporal Logic (LTL)
	2.3.2.1.2 Computation Tree Logic (CTL)
	2.3.2.1.3 Properties

	2.3.2.2 NuSMV
	2.3.2.3 Strengths and Weaknesses

	2.4 SOLIMVA 1.0 and 2.0 Methodologies
	2.5 Formal Verification and UML
	2.6 Final Remarks

	3 APPROACH TO APPLY FORMAL VERIFICATION TO UML-BASED SOFTWARE
	3.1 The SOLIMVA 3.0 Methodology
	3.2 Transforming UML Behavioral Diagrams into Transition Systems (TS)
	3.2.1 Generation of Individual TSs
	3.2.1.1 Translating Sequence Diagrams
	3.2.1.2 Translating Activity Diagrams
	3.2.1.3 Translating State Machine Diagrams

	3.2.2 The Unified Transition System

	3.3 Generation of Model Checker Notation
	3.4 A Running Example
	3.5 Final Remarks

	4 XMITS - XML Metadata Interchange to Transition System
	4.1 XMITS Architecture
	4.1.1 The Reader Module
	4.1.2 The Converter Module
	4.1.3 The TUTS Module
	4.1.4 The Bridge Module
	4.1.5 The Global Module

	4.2 Final Remarks

	5 APPLICATION OF SOLIMVA 3.0 TO SPACE SOFTWARE
	5.1 SWPDC - Software for the Payload Data Handling Computer
	5.1.1 Scenarios of SWPDC
	5.1.1.1 Scenario 1: PDC Initiation Process
	5.1.1.2 Scenario 3: Changing software parameters in the Safety Operation Mode
	5.1.1.3 Scenario 8: Housekeeping Data Transmission in the Nominal Operation Mode, Robustness (reception), Load new programs

	5.1.2 Summary of the results for SWPDC case study

	5.2 SWPDCpM - Software for the Payload Data Handling Computer - protoMIRAX experiment
	5.2.1 Scenarios of SWPDCpM
	5.2.1.1 Scenario 6: Changing Computer Operation Mode
	5.2.1.2 Scenario 7: Distribute Commands On and Off
	5.2.1.3 Scenario 8: Control of Dump Memory Process

	5.2.2 Summary of the results of SWPDCpM

	5.3 Final Remarks

	6 CONCLUSIONS AND FINAL REMARKS
	6.1 Limitations
	6.2 Suggestions for Future Research

	REFERENCES
	 APPENDIX A - ADDITIONAL INFORMATION ABOUT SWPDC CASE STUDY
	A.1 Verified Properties
	A.2 Tansition System for Scenario 1
	A.3 NuSMV File for Scenario 1

	 APPENDIX B - ADDITIONAL INFORMATION ABOUT SWPDCpM CASE STUDY
	B.1 Verified Properties
	B.2 Tansition System for Scenario 6
	B.3 NuSMV File for Scenario 6

	 APPENDIX C - XMITS USABILITY ASPECTS
	C.1 XMITS Class Diagrams

