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Abstract: In times of global environmental change, the sustainability of human–environment 

systems is only possible through a better understanding of ecosystem processes. An 

assessment of anthropogenic environmental impacts depends upon monitoring natural 

ecosystems. These systems are intrinsically complex and dynamic, and are characterized 

by ecological gradients. Remote sensing data repeatedly collected in a systematic manner 

are suitable for describing such gradual changes over time and landscape gradients, e.g., 

through information on the vegetation’s phenology. Specifically, imaging spectroscopy is 

capable of describing ecosystem processes, such as primary productivity or leaf water 

content of vegetation. Future spaceborne imaging spectroscopy missions like the 

Environmental Mapping and Analysis Program (EnMAP) will repeatedly acquire high-

quality data of the Earth’s surface, and will thus be extremely useful for describing natural 

ecosystems and the services they provide. In this conceptual paper, we present some of the 

preparatory research of the EnMAP Scientific Advisory Group (EnSAG) on natural 

ecosystems and ecosystem transitions. Through two case studies we illustrate the usage of 
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spectral indices derived from multi-date imaging spectroscopy data at EnMAP scale, for 

mapping vegetation gradients. We thus demonstrate the benefit of future EnMAP data for 

monitoring ecological gradients and natural ecosystems.  

Keywords: complex landscapes; Earth observation; ecosystem monitoring;  

ecosystem transitions; EnMAP; gradients; hyperspectral; imaging spectroscopy; savannah;  

shrub encroachment 

 

1. Introduction 

Global environmental change is occurring at unprecedented rates, resulting in a sharp decrease in 

pristine ecosystems globally [1,2]. This urges systematic monitoring of the Earth’s surface, and 

particularly of natural or quasi-natural areas from local to global scales. Only through monitoring and 

analysis of ecosystem processes it is possible to deepen our understanding of anthropogenic global 

environmental impacts, e.g., by feeding information into complex ecosystem models [3].  

Natural ecosystems, unlike managed ones, are intrinsically heterogeneous and dynamic, formed of 

vegetation continua and ecological gradients [4,5]. With gradients we refer to gradual changes or 

transitions, both in time and in space [6], of ecosystem characteristics, be it biotic or abiotic. Spatial 

gradients result from the spatial patterns of ecosystems and living communities, which include  

large-scale geographical and climatic (e.g., latitudinal and altitudinal) variability [7], as well as  

small-scale spatial variation in the respective system’s biogeochemical cycle [8]. Temporal gradients 

refer to the change in ecosystems or their conditions from one point in time to the next. This can include 

short-term, seasonal or phenological changes within a year-time [9], or longer-term changes such as e.g., 

changing ecosystems as a result from changing climatic conditions [10]. Ecological gradients can also be 

the direct outcome of human disturbances to the system. Most typical gradients of anthropogenic origin 

include spatial or temporal rural-to-urban transitions (Figure 1) [11], shrub encroachment following 

agricultural land abandonment [12], forest degradation [13], overgrazing [14] or exotic species  

invasions [15]. Indeed, successional shrub encroachment following agricultural land abandonment, or 

vegetation regeneration at the deforestation frontier constitute typical examples of spatio-temporal 

gradients. Both typically show a landscape (spatial) gradient of patches at different stages of vegetation 

regeneration and re-growth, in itself a gradual process in time [16,17]. Additionally, ecological gradients 

largely determine the patterns and composition of biotic communities with direct implications on 

ecosystem functioning and the provided services [18–20], thus highlighting the importance of monitoring 

ecosystem transitions.  

Quantifying ecosystem characteristics, however, requires using information at the meso- to  

macro-scale, which needs to be consistent and reproducible through space and time. Remotely sensed 

data of the Earth´s surface is thus the ideal source of such information [21,22]. On the temporal 

domain, time-series of remotely sensed data allow ecosystem monitoring based on climate or 

disturbance related vegetation changes and their phenological patterns [23,24]. Moreover, the recent 

opening of the Landsat archive has made available a valuable dataset, which enables a detailed 

characterization of dynamic ecosystem processes at landscape scales, such as e.g., disturbances or 
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long-term trends [25]. This has been followed by a wealth of studies recurring to this archive for 

ecosystem change monitoring [26,27]. 

 

Figure 1. Gradient of vegetation cover fractions along a rural-to-urban transect in Berlin 

captured by simulated Environmental Mapping and Analysis (EnMAP) data (white line): 

(Top) false-color simulated EnMAP data (Red-Green-Blue: 833, 1652, and 632 nm). 

(Bottom) Different mean (across track) vegetation cover fractions along the transect (for 

further details on the vegetation fraction mapping see [28]). 

Imaging spectroscopy (IS) data, i.e., data with a high number of contiguous and narrow spectral 

bands, allow a precise characterization and quantification of relevant ecosystem properties, such as 

vegetation physiognomies or plant functional types [29,30]. Numerous studies made use of field-based or 

airborne spectral measurements for quantifying biophysical parameters related to the natural vegetation, 

such as primary production, leaf area index or photosynthetic activity [31,32], biomass [33], carbon 

storage and water fluxes [34], ecosystem structure [35], species turnover [36,37], or vegetation 

successional stage [38]. These highly detailed data have also been used for monitoring anthropogenic 

ecosystem disturbances, such as overgrazing [39] or species invasions [40].  

Most of these studies, however, were limited to few acquisitions (one per year or less), and none of 

those studies could use high quality, landscape scale IS data, as the Environmental Mapping and Analysis 

(EnMAP) mission will provide [41]. Few studies have so far used simulated EnMAP data [42] to monitor 

gradual ecosystem changes [28,37,43]. The high temporal and systematic coverage of the EnMAP system 
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will allow for continuous monitoring and the study of ecosystem processes and properties [44], as 

demonstrated by some pilot studies using data from experimental spaceborne systems [45,46]. Currently, 

the only spaceborne full width IS sensor in orbit is the Hyperion onboard the Earth Observing One (EO-1) 

platform, which delivers a low Signal to Noise Ratio (SNR), particularly in the shortwave infrared (SWIR) 

spectral region. Despite these limitations, a few studies have made use of time series of Hyperion data for 

ecosystem monitoring, covering topics like seasonal vegetation dynamics [47,48] and invasive species 

mapping [49,50]. These studies show that repeatedly acquired high spectral resolution data are likely to 

reveal new insights on vegetation condition, change and phenology, thus improving existing carbon 

emission accounts and monitoring efforts effective [51]. Such findings, which would have not been 

possible to achieve solely based on multispectral imagery, are of fundamental relevance to global change 

mitigation programs such as the Reducing Emissions from Deforestation and forest Degradation (REDD), 

REDD+ or the Convention on Biological Diversity [52]. These studies hence highlight the importance of 

hyperspectral satellite sensors, which can assure multiple and systematic acquisitions of highly detailed 

data suitable for monitoring ecosystem dynamics. 

In this paper, we present some of the preparatory research activities of the EnMAP Scientific 

Advisory Group (EnSAG) on natural ecosystems and ecosystem transitions (EnSAG-Ecosystems), 

alongside the work previously published [37,43] and that published in the current issue [53]. Our aim 

is to demonstrate the benefit from high quality spaceborne IS data, like EnMAP, for characterizing and 

quantifying gradual ecosystem transitions and natural ecosystems. We also include two illustrative 

case studies using IS data at the EnMAP scale to describe gradients of vegetation: one in Southern 

Portugal and another in Central Brazil. 

2. Monitoring Ecological Gradients with Spaceborne IS Data 

While physically-based modeling of natural vegetation is in many cases unfeasible due to its 

complexity and heterogeneity, advances in statistical and machine learning (e.g., Support Vector 

Machines or Random Forests) provide great opportunities for analyzing complex data problems [54,55] 

with clear advantages over traditional methods, e.g., when dealing with high-collinear datasets [56]. 

Indeed, spaceborne IS data collected over heterogeneous landscapes and covering ecological gradients 

are characterized by high complexity and gradually changing mixtures (fractions) of diverse surface 

covers. Utilizing machine learners thus bears great potential for adequate information extraction of 

highly detailed and complex data such as the forthcoming EnMAP data for ecosystem analysis and 

monitoring [37,57]. Additionally, these methods allow the combination of empirical relations between 

specific spectral regions (e.g., in the form of spectral indices) and biophysical parameters.  

IS data also create challenges for analysis and transferability of modeled relationships, as, e.g., spectral 

autocorrelation in high-dimensional feature space hampers straightforward information extraction. Feature 

reduction or extraction becomes important, e.g., in-built in machine learning algorithms [58] or based on 

statistical redundancy [59]. Nevertheless, the use of narrow-band spectral indices have been shown very 

useful for quantifying vegetation foliar and canopy chemistry patterns [60–62], thus constituting a great 

potential for dealing with data redundancy. In addition, as they directly describe ecosystem properties, they 

can be considered proximal predictors. While modeling with such type of predictors ensures model 
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transferability [63], the combined use of advanced machine learning algorithms, further allows maximal 

information extraction. 

In the following, we present two case studies using spectral indices derived from IS data at the 

EnMAP scale to analyze vegetation cover gradients. One refers to a gradual ecosystem transition (from 

grassland to shrublands) in a study site in Southern Portugal that faces successional shrub encroachment. 

The second case study builds upon work-in-progress in the Brazilian Cerrado, a spatio-spectrally 

complex savanna ecosystem. While the usage of narrow-band spectral indices does not cover all 

possibilities of use of the future EnMAP data for ecosystem research, it does however illustrate one 

potential research avenue to be considered. 

2.1. Common Methodological Approach 

Both cases make use of multi-date narrow-band spectral indices, this way coupling the spectral and 

temporal information domains. To this effect, we used six indices (Table 1), which relate to different 

biophysical and physiological properties of the surface’s vegetation, such as chlorophyll, water or 

lignin content. Information on these properties and their development along the phenological cycle 

should allow a detailed characterization of the vegetation condition and cover, at the sub-pixel level 

(fractions). All spectral indices were calculated in the EnMAP-Box [64]. 

Table 1. Narrow band spectral indices used in the analysis, usage and spectral bands used 

Name Usage Spectral Bands (nm) Reference 

Normalized Difference Vegetation Index (NDVI) Structure, vigor 670, 800 [60] 

Modified Chlorophyll Absorption in Reflectance Index (MCARI) Chlorophyll 550, 670, 700 [65] 

Leaf Water Vegetation Index (LWVI2) Leaf water 1094, 1205 [66] 

Cellulose Absorption Index (CAI) Cellulose 2000, 2100, 2200 [67] 

Normalized Difference Lignin Index (NDLI) Lignin 1680, 1754 [61] 

Normalized Difference Nitrogen Index (NDNI) Nitrogen 1510, 1680 [61] 

Both case studies aim at estimating vegetation cover fractions by fitting either subsets or the full 

spectral index time series data, as described below. The data analysis was done using Boosted 

Regression Trees (BRT), a machine learning approach that combines the strengths of decision trees 

and boosting [68]. Decision trees analyze the variation of a response variable for a set of predictor 

variables, which are then subject to subsequent binary splits that fits simple models to each resulting 

section until achieving the best model split [68]. BRT is based on an ensemble approach, which fits 

multiple decision trees to the data, in order to optimize the predictive performance of the final model. 

BRT are highly performing as they incorporate stochasticity in the models, using only a random subset 

from the data to fit each tree, and its sequential (stage-wise) model fitting, meaning that each new tree 

builds on previously fitted trees [68]. Furthermore, this approach allows for prediction, the inspection 

of individual variable responses (through partial dependency plots), and ranking of predictor variable 

importance, and has thus been widely used in various research domains [69–71]. This approach should 

thus allow maximal information extraction from the spectral indices. 

The reference data were fit to the spectral indices using BRT, which was done in R [72] using 

modified code from the “gbm” package [68,73]. In this implementation, the BRT parameterization 
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requires the input of two parameters, one relating to the level of shrinkage, i.e., the contribution of 

each tree to the growing model, and the other to the maximum level of interactions, i.e., the tree 

complexity or tree depth. These two parameters then define the number of trees to be fitted for optimal 

prediction [68]. We did this through a heuristic grid search based on a five-fold cross-validation, to 

optimize for withheld variance explained (coefficient of determination r2). The best parameter pair was 

selected and the subsequent models were reduced by eliminating the least explanatory variables in a 

back selection manner [68]. The models were validated by a 10-fold cross-validation using the r2 

measure—in the current implementation of BRT, the only performance measure available for models 

with Gaussian-like response variables. All models were re-iterated 21 times, which allows the 

inference of statistical significance (p < 0.05) of the model performances and the importance of the 

input variables. The mean (out of all iterations) model performances, and importance of the significant 

variables were thus calculated. Finally, the differences in model performances between different 

models were also tested for their significance. 

It is expected that adding temporal information to that provided by the spectral indices, by 

describing changes in biophysical conditions of vegetation throughout the phenological cycle, 

improves its characterization. It is also expected that the usefulness of the different spectral indices 

(describing different biophysical conditions of the vegetation) for characterizing the vegetation cover 

varies throughout the phenological cycle. In order to test the tradeoffs between the temporal and 

spectral data domains, we ran (multi-index) models (fitting all six spectral indices) for each available 

data acquisition (single-date) and for the time-stack (multi-date), on both case studies. Additionally 

(for the second case study only), we ran single-index models fitting the temporal profiles (i.e., all 

acquisitions) of each individual spectral index at a time. The model results were finally compared in 

terms of their performances and of the importance of the variables selected by the models.  

2.2. Gradual Ecosystem Transitions: Shrub Encroachment in Southern Portugal 

The cultural landscapes of Southern Portugal (Figure 2), known as pseudo-steppes, are characterized 

by very extensive agriculture, largely dominated by grazed fallow grasslands and scattered winter cereals 

on a rotation basis [74]. The NW part of the study area is within a designated Special Protection Area 

(SPA) for birds, holding internationally important populations of several steppe bird species, and is 

subject to a specific agri-environment scheme [75]. This scheme is based on subsidy payment to farmers 

to maintain traditional agricultural practices, this way conserving the pseudo-steppe landscape and 

promoting its local biodiversity. Outside the SPA, the region’s poor and skeletal soils and the lack of 

land use incentives, lead to widespread land abandonment and subsequent successional shrub 

encroachment [43]. This is a typical case of an ecosystem transition (spatio-temporal gradient), observed 

in other parts of the world, as e.g., in Eastern Europe after the fall of the Socialist regimes [76]. While the 

successional encroachment of shrubby and woody vegetation has deep implications on ecosystem 

functioning [12], the study region presents a management challenge with conflicting interests between 

biodiversity and soil conservation [77]. Monitoring this ecological gradient is therefore of major 

relevance towards the sustainable management of these landscapes. 

We thus aim at modeling the fractional shrub cover along the shrub cover gradient in the region, by 

recurring to multi-date EnMAP-like data. In this case study, we used simulated EnMAP data corrected 
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to surface reflectance [42], which was derived from the Airborne Imaging Spectrometer for 

Applications (AISA) Eagle and Hawk data at a ground sampling distance (g.s.d.) of 5.4 m, acquired 

(from an altitude of 4500 m) in two airborne campaigns in April (7 April 2011) and August 2011  

(11 August 2011) over the study region [43]. From these data, the described spectral indices (Table 1) 

were calculated for use in the analyses. 

 

Figure 2. Study area in the Castro Verde region in Southern Portugal, characterized by 

agricultural land abandonment (NW–SE gradient) leading to successional shrub encroachment. 

As reference data, we used an independent high spatial resolution (g.s.d. of 1.8 m) land cover map 

(overall accuracy of 94.2%), derived from AISA Eagle and Hawk imagery acquired from an altitude of 

1500 m obtained during the abovementioned air campaigns. This land cover map was resampled to the 

EnMAP pixel size to calculate the respective shrub cover fractions [43], used as the response variable 

in the models.  

Both predictors and response variables were thus calculated from these datasets. For the analysis we 

sorted 80 sample points in a stratified random manner, which can be considered a realistic (field 

collected) sample size.  

BRT models were used to fit the spectral index values on the shrub cover fractions (multi-index 

models), for each of the single time-steps (April and August), and for the time-stack. The single-index 

models, based on the temporal profiles of each spectral index, were skipped in this case study, as the 

time-stack and respective profiles are constituted of just two acquisitions. 

The April models were the weakest, with a mean predictive performance of only ca. 0.16 (Table 2). 

The background (herbaceous) vegetation is highly heterogeneous at this time of year (spring greening 

peak), with various degrees of cover from photosynthetically active vegetation, possibly dominating 

the pixel’s reflectance. In August, the annual (herbaceous) vegetation is dry and the contrast between 
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shrub and background is highest. This period of the year is therefore considered the best time for 

discriminating shrubby vegetation from the background [78]. These models delivered a mean 

predictive performance of ca. 0.33, which is significantly different to that of the April models. Our 

results, however, show a significant increase in model performance when using the time-stack (close to 

the sum of the performances of both single-date models), so that we can conclude that the temporal 

(phenological) information was an added value to the models.  

Table 2. Mean model performances (r2) and variable importance (%) in the respective 

Boosted Regression Trees (BRT) models. Variables not significantly selected by the models 

have no importance reported. 

 April August Time-Stack 

NDVI 23% 61% 46% (August) 

MCARI 24% • 13% (April) 

LWVI2 • 24% 19% (August) 

CAI 19% • • 

NDLI 34% • 18% (April) 

NDNI • • • 

r2 0.159 0.331 0.446 

The models fitted on the April data had a greater contribution (34%) of the lignin index (NDLI), 

followed by those relating to chlorophyll (MCARI) or vegetation vigor (NDVI)—with respective 

levels of importance of 24% and 23%. This makes sense, as during this period the background 

herbaceous vegetation dominates the signal of MCARI and NDVI indices. Of least importance (19%), 

though significantly selected by the models was the cellulose absorption index (CAI). Indices related 

to leaf water or nitrogen contents were not significantly selected in the models. In the models based on 

the August data, on the other hand, the NDVI showed to be the most relevant index to model fractional 

shrub cover (with an importance of 61%). This is not surprising as the herbaceous vegetation is dry in 

August and shrub cover alone provides the spectral signature in the visible red and near infrared 

wavelengths regions. The index related to leaf water content (LWVI2) was weighted second 

importance (24%), and none of the remaining indices were significantly included in the models. In the 

time-stack models, the most contributing variable (46%) was the NDVI from August, followed by the 

water content (August) and lignin (April) indices. Of least importance (13%), although significantly 

selected in the time-stack models, was the chlorophyll index for April. All other indices were not 

significantly selected by the models. 

This case study served to illustrate the added value of IS data for modeling and mapping vegetation 

cover along a spatial gradient of shrub encroachment (see Figure 3), as several of the indices selected 

(like the LWVI2 or the NDLI) by the models require spectral regions that are not covered by the most 

common multi-spectral sensors. The availability of multi-date imagery further improved the models, 

thus highlighting the importance of repeated IS data acquisitions, such as coming from a spaceborne 

platform like the future EnMAP. The results from such a study allows the assessment of system’s 

condition. The systematic mapping of these landscapes using a comparable approach (e.g., by 

transferring a model to a new set of imagery data), would allow measuring the gradual changes 

(temporal gradients) of shrub cover, and this way monitor the development of the encroachment 
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process. This would provide the necessary knowledge for adopting adequate management options 

towards the sustainability of the system. 

 

Figure 3. Spatial gradients of shrub cover, as derived from the land cover map of the study 

area resampled to a ground sample distance (g.s.d.) of 30 m (adapted from [43]). In this 

image, brighter pixels correspond to areas with low shrub cover, and darker ones 

correspond to areas with higher (successional) shrub cover. The gradual transitions from 

bright to dark pixels illustrate the described vegetation gradients.  

2.3. Brazilian Cerrado  

The Brazilian Cerrado covers ca. 20% of Brazil’s surface and it holds the richest biodiversity of all 

of the world’s savannas, thus constituting one of the global biodiversity hotspots [79,80]. This system, 

however, is mostly unprotected and highly threatened, with an estimated conversion rate of over 40%, 

resulting in considerable biodiversity loss and carbon emissions [81–83]. The need for monitoring the 

Cerrado system is obvious to better understand its dynamics and thus support its sustainable 

management [84]. The Cerrado exhibits high climatic, edaphic and structural gradients [85–87], 

resulting in heterogeneous patterns of vegetation structure and density, which poses numerous 

challenges to remote sensing analyses. The Cerrado constitutes a major focus of our current research 

within the EnSAG-Ecosystems activities, where we focus on modeling and mapping the different 

Cerrado vegetation physiognomies [88], Cerrado vegetation cover, and ultimately its aboveground 

biomass and plant community transitions [37]. 

The current case study, although still preliminary, aims at modeling the vegetation cover, which 

intrinsically relate to vegetation biomass and respective carbon storage potential of these landscapes. 

The study is conducted in a region within the Estação Ecológica de Águas Emendadas (ESECAE), in 

the Brazilian Federal District, where most Cerrado vegetation physiognomies are present (Figure 4).  
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Figure 4. Study area in the Brazilian Cerrado: Estação Ecológica de Águas Emendadas (ESECAE). 

Here we referred to a six-step time series of EO-1 Hyperion data (acquired between August 2006 

and May 2007) for analysis, which cover most of the yearly phenological cycle (Table 3). These data 

allow us to infer on the value of future EnMAP data, as both sensors (Hyperion and EnMAP) share the 

same spatial resolution (g.s.d. of 30 m), although Hyperion’s low SNR will be clearly outperformed by 

EnMAP [41]—most particularly in the SWIR region, with a reported SNR of 180:1 at 2200 nm, 

instead of 40:1 for Hyperion at similar wavelengths. The data were pre-processed (radiometric 

atmospheric and geometric corrections), including the correction of known problems of data striping, 

pixel shift, keystone and spectral smiling, resulting in surface ready-to-use reflectance data [89].  

This time series was the base for calculating the six narrow-band spectral indices (Table 1) for each 

time-step. This also allowed us to build temporal profiles for each spectral index for the use in the 

(multi-date) single-index models (Figure 5).  

Table 3. EO-1 Hyperion data acquisitions over the study area 

Date View Angle (°) Season 

2006-08-29 6.25 Dry season 
2006-09-13 13.12 End of dry season 
2006-11-19 −5.77 Beginning of wet season 
2007-02-10 17.51 Wet season 
2007-03-02 2.20 Wet season 
2007-05-17 6.70 End of wet season 
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Figure 5. Screenshot of the temporal profiles of the six spectral indices plotted in RGB  

(Red-Green-Blue: 2007-02-10; 2006-11-19; 2006-09-13), with central pixel profiles 

displayed in the respective lower right corner: (a) NDVI; (b) MCARI; (c) LWVI2;  

(d) CAI; (e) NDLI; and (f) NDNI, as visualized in the EnMAP-Box [64]. Particularly in 

the CAI and NDNI plots, it is possible to observe high level of noise in the data (due to the 

low SNR of Hyperion). 

Due to the lack of field-based data, we derived the reference data directly from image data. For this 

purpose we used the panchromatic band of the Advanced Land Imager (ALI) sensor, which is (alike 

Hyperion) onboard of the EO-1 platform and captures the surface’s albedo at a high spatial resolution 

(g.s.d. 10m). At the end of the dry season (August image), the contrast between the dark woody 

(perennial) vegetation and the light background (soil and yearly herbaceous vegetation) is at  

its highest [90], which makes the surface’s albedo a good proxy for (woody) vegetation cover. We 

have thus resampled the ALI panchromatic data to the Hyperion g.s.d. to serve as a measure of 

vegetation cover for the use as response variable in the conducted analyses (Figure 6). 

Both predictors and response variables were calculated from these datasets. In this case study, due 

to its higher complexity (full vegetation gradient from grassland to woodland), we sorted 150 sample 

points in a stratified random manner, equivalent to a higher field sampling effort (when compared to 

the previous case study).  

BRT models were used to fit the spectral index values to the vegetation cover (multi-index models), 

for each of the single time-steps, and for the full time-stack. The dry season acquisition (August), 

however, was excluded from the analyses due to its high dependency with the reference data—both 
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data were acquired simultaneously from the same platform (EO-1), so they share, e.g., the same view 

angle bias effects. Single-index models, based on the temporal profiles of each spectral index, were 

also performed in this case study. 

 

Figure 6. Spatial gradients of Cerrado vegetation cover, as captured by the panchromatic 

band of the Earth Observing One (EO-1) Advanced Land Imager (ALI) sensor (resampled 

to a g.s.d. of 30 m). In this image, brighter pixels correspond to low vegetated areas (bare 

soil and grasslands) where darker ones correspond to more densely vegetated areas (dense 

savannah woodlands and riparian galleries). The gradual transitions from bright to dark 

pixels illustrate the described vegetation gradients. 

Our results showed that the best performing models were the ones based on the (multi-index)  

time-stack (with a cross-validated r2 of 0.681), on the (multi-index) September data (0.688) and on the 

(single-index) NDVI temporal profiles (0.680), with no significant differences between them. Indeed, 

all of these models included only one (and the same) significant variable, namely the NDVI for the 

September acquisition—this variable alone contributed with 85%, 96% and 94% to the respective models. 

Within the multi-index models (Table 4), those based on the November and May data followed in 

performance (respective mean r2 of 0.608 and 0.590, non-significantly different). The March models 

had a mean predictive performance of 0.492, and the weakest models were those using the February 

data with a mean r2 of 0.392. While the NDVI was always the most important (and significant) 

variable on all models, the leaf water content index was also significantly selected in the November, 

February and the May models, with a variable importance up to 34% (in the February models). 

Additionally, the cellulose absorption index was significantly selected by the March models. 

The single-index models (Table 5) that followed in performance were those based on the leaf water (r2 

of 0.581) and lignin (0.572) indices, non-significantly different. The models based on the chlorophyll 

absorption followed (with a mean performance of 0.539), and then those based on the cellulose index 
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(0.477). Finally, the models based on the nitrogen content were the weakest, with a mean performance of 

only 0.097. In these models, the data from the nearest date to that of the reference data (September) were 

always significantly selected, being this the most important model variable in the NDVI (94%), MCARI 

(81%) and NDNI (60%) models. On the other hand, data from November were also significantly used in 

the MCARI, LWVI2 and NDLI models, being the most important variable in the two latter ones 

(respective importance of 77% and 79%). The CAI based model had the data from March as the most 

important (50%), followed by September (25%) and May (22%). 

Table 4. Mean performances of the multi-index models (r2) and importance of the spectral 

indices, according to their contributions in the BRT models. Variables not significantly 

selected by the models have no importance reported. 

 September November February March May Time-Stack 

NDVI 96% 33% 57% 70% 77% 85% (September) 

MCARI • • • • • • 

LWVI2 • 28% 34% • 19% • 

CAI • • • 20% • • 

NDLI • • • • • • 

NDNI • • • • • • 

r2 0.688 0.608 0.392 0.492 0.590 0.681 

Table 5. Mean performances of the single-index models (r2) and ranking of acquisition 

dates, according to their contributions in the BRT models. Variables not significantly 

selected by the models have no importance reported. 

 NDVI MCARI LWVI2 CAI NDLI NDNI 

September 94% 81% 18% 25% 16% 60% 

November • 19% 77% • 79% • 

February • • • • • 39% 

March • • • 50% • • 

May • • • 22% • • 

r2 0.680 0.539 0.581 0.477 0.572 0.097 

In this case study, we illustrated the usefulness of multi-date IS data for modeling (spatial) gradients 

of vegetation cover, while testing the tradeoffs between the spectral and temporal domains of 

information. When dealing with ecological gradients, the Cerrado is possibly the ideal system to study, 

as it is constituted by the combination of several different spatial gradients (as previously described), 

which result in a complex mosaic of different vegetation physiognomies. It is also a highly dynamic 

system, including a high frequency of fire occurrence and resulting vegetation successional dynamics. 

Only through the usage of replicable and transferable methods, such as the ones presented, it is 

possible to assess this complex system. Indeed, the monitoring of this globally important yet 

threatened ecosystem requires the systematic quantification and mapping of the spatial and temporal 

gradients of ecosystem properties such as vegetation cover, biomass or carbon stored. 
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3. Discussion  

Our case studies demonstrated that spaceborne IS data collected at repeated times have the potential 

to monitor gradual ecosystem transitions as well as heterogeneous landscapes. While the use of 

narrow-band spectral indices could relate to specific vegetations properties, their development through 

time could depict changes in vegetation conditions along the phenological cycle. This had also been 

demonstrated in a study in the Cerrado, which made use of spectral indices derived from MODIS to 

describe annual vegetation dynamics [90]. Indeed, we observed that while the narrow-band NDVI was 

determinant in explaining the variance in most models, the leaf water content index (LWVI2) was also 

highly contributing in models fit on the EnMAP simulated data and in most multi-index models fit on 

(single-date) Hyperion data. This finding is particularly relevant, as this narrow-band spectral index 

uses a spectral region not available in multispectral sensors. We also found that the several spectral 

indices contributed differently in the models depending on the respective stage of the vegetation’s 

phenological cycle. For example, in the first case study the lignin index (NDLI) was the second most 

contributing variable when fitting the shrub fractional cover to the August EnMAP simulated data, 

whereas it was the third in the time-stack models, being LWVI2, respectively, the second most 

contributing variable. This emphasizes that both spectral and temporal data domains contribute with 

complementary information for describing such complex systems. The potential usage of narrow-band 

spectral indices as an expert-based feature reduction method for IS data was also demonstrated in the 

first case study. Indeed, making use of six spectral indices, effectively using information from 13 

spectral bands, we achieved good results. On the other hand, similar studies covering the same study 

region, which made use of the full EnMAP simulated spectra achieved better results [43,53]. Indeed, 

not all important spectral features from these studies were covered by the six spectral indices here 

used, thus suggesting the potential relevance of further research, e.g., in identifying important (and 

robust) spectral regions (or indices) for the characterization of specific ecosystem properties. 

Our second case study has more limitations, particularly in what relates with the reference data. On 

the one side, the reference data was derived from an image and has therefore no direct translation into 

field measures. On the other side, it was derived from data collected by a sensor onboard the same 

platform (the EO-1 satellite), therefore sharing data bias resulting from the acquisition of orbital 

imagery, such as local atmospheric effects or view angle effects. For this reason, and as we used ALI 

data collected at the peak of the dry season for the extraction of the reference data (August), we could 

not use Hyperion data from this date for modeling (to ensure a certain level of reference data 

independency). This is clearly a limitation as the dry season is the considered to be the best period to 

discriminate the different Cerrado vegetation physiognomies [91]. Indeed, the respective model results 

were also more limited. For example, the fact that all three best performing models (multi-index 

September and time stack, and single-index NDVI models) only significantly used the NDVI variable 

from a single acquisition date (September), does not allow us to draw any conclusions relating to the 

usage of multi-date IS data for ecosystem monitoring. In fact, the temporal phenological gradient of 

the Cerrado vegetation probably results in a high temporal dependence of this variable and the 

reference data, as both images were acquired only 15 days from each other (29 August 2006 and  

13 September 2006). On the other hand, the significant selection of, e.g., the leaf water and cellulose 

indices in several of the multi-index models, which use spectral regions not covered by multi-spectral 



Remote Sens. 2015, 7 13112 

 

systems, highlight the usefulness of IS data for ecosystem modeling. In addition, the relatively good 

results of some of the single-index models, further highlight the value of time series of spaceborne IS 

data for monitoring ecosystem parameters in complex landscapes. 

We have thus demonstrated that time series of spaceborne IS data, by linking both the spectral and 

the temporal domains of information, are suitable for characterizing ecosystem processes and patterns, 

such as ecological gradients or complex (heterogeneous) landscapes. Our tests on Hyperion data were 

also successful in demonstrating this. While data coming from the Hyperion sensor is known to be 

noisy, and most particularly in the SWIR spectral region (see, e.g., Figure 4d,f), we found that most 

indices used were able to deliver reasonable results, with the exception of the nitrogen index (with 

spectral bands on the 1510 and 1680 nm). For example, while the CAI index showed erroneous values 

at random pixel locations, the BRT models were still able to extract useful information from the 

temporal profiles. This further demonstrates the strengths of machine learning algorithms in dealing 

with complex (and noisy) data problems [56,68]. 

The Hyperion sensor, though with its limitations relating to data quality, by being the only 

spaceborne full width IS sensor available, showed to be essential for demonstrating the benefits of 

usage of these types of data for ecosystem monitoring. Data coming from the forthcoming EnMAP 

sensor, on the other hand, with highly increased data quality (much higher SNR values on all spectral 

regions), and with much larger image swath (30 km instead of 7.5 km), will allow for a better 

description of natural ecosystem processes, with much higher precision than ever before. It is thus 

important to develop robust models, capable of being transferred to larger or other regions (e.g., 

through the use of proximal predictors, such as spectral indices), to take the most benefit of these 

improved properties of the EnMAP sensor for ecosystem monitoring. 

Furthermore, it is expected that the synergies between the spectral and temporal information from 

multiple acquisitions of EnMAP data will be crucial in describing ecosystem gradients of higher 

complexity. As such, ongoing research within our activities focus on mapping vegetation communities, 

aboveground biomass and carbon storage in the Cerrado, as a demonstration of the usage of EnMAP 

data for natural (complex) ecosystem monitoring in a detailed manner [41]. 

The usage of narrow-band spectral indices clearly does not exhaust the full potential of the future 

EnMAP data for ecosystem monitoring, but rather illustrates one possible research avenue. Indeed, 

continued work within the EnSAG-Ecosystems activities has been making use of several statistical and 

machine learning methods for inferring different ecosystem properties from EnMAP-like data [37,43,53]. 

Nevertheless, further research is still necessary for a full assessment of the value of EnMAP for 

ecosystem research. Particularly the analysis of trade-off and synergies between real EnMAP data, once 

available, and those from other platforms, such as airborne IS or spaceborne multispectral systems (e.g., 

Landsat OLI or the Sentinel’s). Finally, the continuous work of the EnSAG further contributes to the 

development of methods and algorithms for handling such complex data [41]. 

4. Conclusions  

We conclude that EnMAP data will be extremely useful for mapping and monitoring natural 

ecosystems and their services, by allowing the detailed characterization of complex and heterogeneous 

landscapes. Indeed, its high spectral resolution with much improved SNR, allied to its wide spatial 
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coverage and frequent revisit period will guarantee a highly detailed spectral, spatial and temporal 

coverage of the Earth’s surface. With EnMAP, we will be a step further towards accurately and 

systematically mapping and quantifying gradual biophysical parameters at the sub-pixel level, such as 

e.g., species communities, primary production, aboveground biomass, or carbon storage potential. It 

will constitute a major technological development and a valuable tool for addressing urging global 

challenges, such as understanding current anthropogenic impacts and their effects on ecosystem 

dynamics. EnMAP will hence contribute to global mitigation programs, such as REDD and REDD+ or 

the Convention on Biological Diversity. 
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