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“Oh, you can’t help that,” said the cat:  

“We’re all mad here. I’m mad. You’re mad.” 

“How do you know I’m mad?” said Alice.  

“You must be,” said the cat, 

 “or you wouldn’t have come here.” 

 

Lewis Carrol, Alice in Wonderland 
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ABSTRACT 

 

Seasonality and drought in Amazon rainforests have been controversially discussed in 

the literature, partially due to a limited ability of current remote sensing techniques to 

detect drought impacts on tropical vegetation. Detailed knowledge of vegetation 

structure is required for accurate modeling of terrestrial ecosystem. However, direct 

measurements of the three dimensional distribution of canopy elements using LiDAR 

are not widely available, especially in the Amazon region. This thesis explores a novel 

multi-angle remote sensing approach to determine changes in vegetation structure from 

differences in directional scattering (anisotropy) observed from the analysis of Moderate 

Resolution Imaging Spectroradiometer (MODIS) data, atmospherically corrected using 

the Multi-Angle Implementation Atmospheric Correction Algorithm (MAIAC). Chapter 

1 presents a general overview of the topic, followed by a theoretical background of the 

most important types of remote sensing data used in this thesis (Chapter 2). Chapter 3 

describes the retrieval of BRDF from MODIS data. Chapters 4 and 5 present two 

distinct approaches using multi-angular MODIS data. In Chapter 4, the potential of 

using MODIS anisotropy for modeling vegetation roughness from directional scattering 

of visible and near-infrared (NIR) reflectance was evaluated across different forest 

types. Derived estimates were compared to independent measures of canopy roughness 

(entropy) obtained from the: 1) airborne laser scanning (ALS), 2) spaceborne LiDAR 

Geoscience Laser Altimeter System (GLAS), and 3) spaceborne SeaWinds/QSCAT. 

GLAS-derived entropy presented strong seasonality and varied between different forest 

types. Results from Chapter 4 showed linear relationships between MODIS-derived 

anisotropy and ALS-derived entropy with a coefficient of determination (r
2
) of 0.54 and 

a root mean squared error (RMSE) of 0.11, even in high biomass regions. Significant 

relationships were also obtained between MODIS-derived anisotropy and GLAS-

derived entropy (0.52≤r
2
≤0.61; p<0.05), with similar slopes and offsets found 

throughout the season. The RMSE varied between 0.26 and 0.30 (units of anisotropy). 

The relationships between the MODIS-derived anisotropy and backscattering 

measurements (σ
0
) from SeaWinds/QuikSCAT were also significant (r

2
=0.59, 

RMSE=0.11). Results also showed a strong linear relationship of the anisotropy with 

field- (r
2
=0.70) and LiDAR-based (r

2
=0.88) estimates of leaf area index (LAI). In 

Chapter 5, the method was used to analyze seasonal changes in the Amazonian forests, 

comparing them to spatially explicit estimates of onset and length of dry season 

obtained from the Tropical Rainfall Measurement Mission (TRMM). The results of 

Chapter 5 showed an increase in vegetation greening during the beginning of dry season 

(7% of the basin), which was followed by a decline (browning) later during the dry 

season (5% of the basin). Anomalies in vegetation browning were particularly strong 

during the 2005 and 2010 drought years (10% of the basin). The magnitude of seasonal 

changes was significantly affected by regional differences in onset and duration of the 



x 

 

dry season. Seasonal changes were much less pronounced when assuming a fixed dry 

season from June through September across the Amazon basin. The findings reconcile 

remote sensing studies with field-based observations and model results, supporting the 

argument that tropical vegetation growth increases during the beginning of the dry 

season, but declines after extended dry season and drought periods. Overall, we 

concluded that multi-angle approaches, as the one used in this thesis, are suitable to 

extrapolate measures of canopy structure across different forest types, and may help 

quantify drought tolerance and seasonality in the Amazonian forests. 
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UTILIZAÇÃO DE DADOS MULTIANGULARES DO SENSOR MODIS PARA 

ANÁLISE DA DINÂMICA DA VEGETAÇÃO NA FLORESTA AMAZÔNICA 

 

RESUMO 

 

Os temas sazonalidade e secas severas na Amazônia vêm sido discutidos de maneira 

controversa na literatura, parcialmente devido à habilidade limitada das atuais técnicas 

de sensoriamento remoto para detecção e análise da resposta de florestas tropicais a 

estes eventos. O conhecimento detalhado da estrutura da vegetação constitui um dado 

fundamental para melhoria da modelagem dos ecossistemas terrestres. No entanto, 

medições diretas da distribuição tridimensional dos elementos do dossel, por exemplo, 

oriundas de LiDAR, não são disponíveis amplamente, especialmente na região 

Amazônica. Neste estudo, é proposta uma abordagem de sensoriamento remoto 

multiangular para avaliar mudanças na estrutura da vegetação a partir de diferenças do 

espalhamento direcional (anisotropia) observado pelo Moderate Resolution Imaging 

Spectroradiometer (MODIS), que teve seus dados atmosfericamente corrigidos usando 

o Multi-Angle Implementation Atmospheric Correction Algorithm (MAIAC). O 

Capítulo 1 apresenta uma visão geral do problema, seguido de uma base teórica sobre os 

mais importantes temas e dados de sensoriamento remoto usados nesta tese (Capítulo 

2). O Capítulo 3 descreve o modelo utilizado para recuperação dos dados da Função de 

Distribuição da Reflectância Bidirecional (BRDF) a partir dos dados MODIS. Os 

Capítulos 4 e 5 apresentam duas abordagens distintas usando dados multiangulares do 

MODIS. No Capítulo 4 foi avaliado o potencial dos dados de anisotropia de superfície 

para modelar a rugosidade dos dosséis através do espalhamento direcional nas bandas 

de reflectância do visível e infravermelho próximo sobre diferentes tipologias florestais. 

Foram efetuadas comparações entre os dados de anisotropia em relação à medidas 

independentes de rugosidade de dosséis (entropia) obtidos de dados: 1) LiDAR 

aerotransportado (ALS), 2) LiDAR orbital do Geoscience Laser Altimeter System 

(GLAS), e 3) radar orbital do SeaWinds/QSCAT. Dados de entropia do GLAS 

apresentaram forte sazonalidade entre as tipologias florestais analisadas. Os resultados 

mostraram uma relação linear entre os dados de anisotropia derivados do sensor 

MODIS com os dados de entropia estimados do LiDAR aerotransportado com 

coeficiente de determinação (r
2
) de 0.54 e erro médio quadrático (RMSE) de 0.11, 

mesmo em regiões de floresta densa. Relações significantes foram também obtidas entre 

anisotropia derivada do MODIS e entropia derivada do GLAS (0.52≤r2≤0.61; p<0.05), 

com inclinações e interceptos aproximadamente similares ao longo de diferentes meses. 

O RMSE variou entre 0.26 e 0.30 (unidades de entropia). A correlação entre anisotropia 

do MODIS com medidas de retroespalhamento (σ
0
) do sensor SeaWinds/QuikSCAT foi 

estatísticamente significante (r
2
=0.59, RMSE=0.11). Os resultados também mostraram 
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uma forte correlação linear entre os dados de anisotropia e as estimativas de índice de 

área foliar (LAI) obtidas em campo (r
2
=0.70) e a partir de dados LiDAR (r

2
=0.88). No 

Capítulo 5, analisou-se as variações sazonais das florestas Amazônicas, em que foram 

calculadas estimativas espacialmente explícitas do início e duração da estação seca na 

região utilizando dados do Tropical Rainfall Measurement Mission (TRMM). Os 

resultados mostraram um aumento em verdejamento da vegetação (“greening”) durante 

o início da estação seca (7% da bacia), seguido de um subsequente declínio 

(“browning”) no final da estação seca (~5% da bacia). As anomalias negativas 

(“browning”) foram particularmente mais fortes durantes os anos de seca extrema na 

região, em 2005 e 2010 (~10% da bacia). Os resultados mostraram que a magnitude 

dessas mudanças sazonais pode ser significantemente afetada pelas diferenças regionais 

de início e duração da estação seca. Mudanças sazonais foram muito menos 

pronunciadas quando se assumiu um período fixo de estação seca (junho até setembro) 

sobre a bacia Amazônica. Os resultados reconciliam estudos baseados em dados de 

sensoriamento remoto com observações de campo e modelagem, uma vez que fornecem 

uma base mais sólida sobre o argumento de que a vegetação tropical aumenta seu 

crescimento durante o início da estação seca, mas sofre um declínio com o seu 

prolongamento, e especialmente após períodos de secas severas. Como conclusão geral, 

a abordagem multiangular utilizada neste trabalho se mostrou satisfatória, permitindo a 

extrapolação de estimativas estruturais do dossel sobre diferentes tipologias florestais, 

podendo auxiliar na quantificação sobre os impactos e resiliência das florestas 

Amazônicas em relação a ocorrências de secas severas. 
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1 INTRODUCTION  

 

Satellite-remote sensing is the only practical way to observe Amazon vegetation and 

ecosystem dynamics at useful spatial and temporal scales (SHUKLA et al., 1990). Since 

its launch in 2000, NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) 

has been the workhorse of Amazon remote sensing (HILKER et al., 2014; HUETE et 

al., 2002). However, considerable deficiencies in estimation of atmospheric aerosol 

loadings (SAMANTA et al., 2010, 2012b) and cloud screening (HILKER et al., 2012b) 

over tropical regions (ASNER; ALENCAR, 2010; HILKER et al., 2012b; SAMANTA 

et al., 2012b; ZELAZOWSKI et al., 2011) have led to conflicting findings. Over the last 

decade, the Amazon region has experienced two severe droughts, one in 2005 and 

another in 2010 (MARENGO et al., 2011). Saleska et al. (2007) reported an increase in 

greenness based on the interannual analysis of the Enhanced Vegetation Index (EVI) for 

the 2005 drought, a result that was subsequently challenged (ATKINSON et al., 2011; 

SAMANTA et al., 2010). In contrast, Xu et al., (2011) observed a widespread decline in 

greening for the 2010 drought.  

Similar to the drought events, the prevailing view of seasonality of vegetation in the 

Amazonian forests has recently been discussed. Several findings (BRANDO et al., 

2010; GRAHAM et al., 2003; HUETE et al., 2006a; HUTYRA et al., 2007; MYNENI 

et al., 2007; SAMANTA et al., 2012a; WAGNER et al., 2013) support the view that 

photosynthetic activity increases initially during the dry season in response to an 

increase in incident photosynthetically active radiation (PAR). On the other hand, a 

recent study based on NASA's Moderate Resolution Imaging Spectroradiometer 

(MODIS) (MORTON et al., 2014) argued that seasonal changes are driven by artifacts 

of the sun-sensor geometry. To date, inter and intra-annual ecosystem dynamics of 

Amazonian forests remain unclear and debated (HUETE et al., 2006a; MORTON et al., 

2014; MYNENI et al., 2007; SAMANTA et al., 2010, 2012b).  

One potential reason for these conflicting results might be the range of  measurement 

uncertainties in remote sensing data; a growing body of literature suggests that the 
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atmospheric correction process, including aerosol retrievals and cloud cover detection 

(SAMANTA et al., 2010, 2012b; HILKER et al., 2012), could be partially responsible 

for these contradicting evidences. While progress has been made addressing some of 

these challenges by using alternative datasets (HILKER et al., 2012b, 2014) remotely 

sensed images are often limited in their ability to detect changes in vegetation cover. 

The spectral sensibility and temporal resolution are also sources of uncertainties, as well 

as, factors that are not sensor-dependent as the differences between forests typologies 

and climatological variations across the area. 

Conventional remote sensing approaches to monitor changes in the Amazon forest rely 

on vegetation indices to estimate “greenness” as a surrogate for photosynthetic activity. 

Arguably, most prominently, the Normalized Difference Vegetation Index (NDVI) 

(TUCKER, 1979) has been used for several decades to provide global measures of 

vegetation conditions. While this approach can provide simple estimates of the 

vegetation ”greenness”, these estimates are empirical in nature and subject to a well-

documented saturation effect in areas with high biomass and leaf area (CARLSON; 

RIPLEY, 1997), as the case for Amazonian forests. Similarly, the EVI (HUETE et al., 

1994) was also designed to measure greenness and to reduce the saturation effect. 

However, recent studies have shown that EVI is also dependent on sun-viewing 

geometry (GALVÃO et al., 2011; KEMPENEERS et al., 2008; MOURA et al., 2012). 

This dependence of canopy level estimates on viewing and solar geometry 

(VERSTRAETE et al., 1996) limits our ability to compare between measurements taken 

from different directions or during different times of the day or year (LOS et al., 2005). 

Complementary to passive remote sensing techniques, significant advances have been 

made measuring canopy vegetation structure from Light Detection and Ranging 

(LiDAR), a laser scanning technique. It allows direct measurements of the three-

dimensional distribution of vegetation elements within the canopy from ground-based, 

airborne and spaceborne platforms. Such measurements have been extensively used to 

estimate vegetation density, leaf area, height and biomass, among others (COOPS et al., 

2007; HILKER et al., 2012a; LEFSKY et al., 2002; POPESCU et al., 2011). While 

these techniques can potentially improve our knowledge on tropical forests and provide 
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accurate estimates of vegetation structure, their current availability is limited in space 

and time. As a result, our ability to evaluate inter-annual and seasonal dynamics of 

vegetation structure over large areas using LiDAR alone is not feasible. 

As an alternative to conventional mono-angle observations, and as a potential tool for 

scaling between existing or upcoming LiDAR observations, multi-angular data, 

acquired simultaneously at the same location, provide a means to characterize the 

anisotropy of surface reflectance (LEBLANC et al., 2005). The anisotropy contains 

information on the structure of vegetated surfaces and shaded parts of the canopy 

(CHEN et al., 2003; GAO, 2003b). The combination of multiple view angles may 

provide new opportunities to mitigate these saturation effects, and allow better insights 

into seasonal and inter-annual changes of tropical forests. Biophysical changes in the 

canopy structure affect the directional scattering of light and these effects are observable 

from multi-angular observations (CHEN et al., 2005). This may help in the 

discrimination between forests with structural differences and specifically seasonal 

patterns. The theoretical basis for the influence of canopy structure on multi-angle 

reflectance has been already developed and well established in the literature 

(BICHERON, 1999; CHEN et al., 2003; GAO, 2003b; LEBLANC et al., 2005; 

MYNENI et al., 2002). As a result, multi-angular observations can help overcome the 

limitations faced by traditional remote sensing techniques and yield reliable estimates of 

canopy structure. MODIS observations are acquired at different sun-observer 

geometries depending on orbital overpass and time of the year, and could therefore 

potentially be combined to derive multi-angle observations. However, bi-directional 

reflectance is not easily obtained from traditional surface reflectance algorithms, even 

when data is acquired from multiple view angles. Pixel based algorithms often assume a 

Lambertian reflectance model, which reduces the anisotropy of the derived surface 

reflectance (LYAPUSTIN; MULDASHEV, 1999; WANG et al., 2010), thus decreasing 

the ability to detect directional scattering (HILKER et al., 2009). 

New methods for processing MODIS data have been proposed. The Multi-Angle 

Implementation of Atmospheric Correction (MAIAC) uses an advanced radiative 

transfer model and does not make a Lambertian assumption. MAIAC can assist in the 
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generation of a new dataset that preserves the anisotropy of the surface (LYAPUSTIN; 

KNYAZIKHIN, 2001). MAIAC is a new generation cloud screening and atmospheric 

correction algorithm that uses an adaptive time series analysis and processing of groups 

of pixels to derive atmospheric aerosol concentration, cloud mask and surface 

reflectance without typical empirical assumptions (LYAPUSTIN et al., 2011, 2012b).  

In this work, we take advantage of multi-angle derived MODIS data processed by 

MAIAC to derive anisotropy and study changes in canopy structure across the Amazon 

basin. We state the following hypotheses: 

- Multiple overpasses of MODIS observations process with the MAIAC algorithm may 

be combined to provide anisotropy of the surface reflectance in spatially and temporally 

comprehensive manner;  

- MODIS derived anisotropy can describe changes in canopy structure in space and 

time; 

- Such derived estimates can help to improve our knowledge of inter-annual and 

seasonal variability in the Amazonian forests. 

The objectives of this thesis were: 1) proposing a new model to derive anisotropy 

surface reflectance from multi-angle MODIS data to characterize the dynamics of 

canopy structure in mature Amazonian forests; 2) applying a spatial scaling approach, 

from airborne to spaceborne LiDAR, to validate MODIS-derived anisotropy and to 

model continuous coverage of canopy structure across tropical forests, and 3) using a 

time series approach of anisotropy in order to investigate seasonal and inter-annual 

variations, as well as, extreme events of droughts across the Amazon basin. 

 

 

 

 



5 

 

 

2 THEORETICAL BACKGROUND 

 

2.1. Directional scattering in vegetated surfaces  

Surface reflectance is a function of the geometry of data acquisition composed of the 

sun-sensor-target configuration (Figure 2.1). Differences in this configuration cause the 

so-called bidirectional reflectance (BRF) effects, which alter the amount of energy 

received by a sensor. As a result, bi-directional scattering can produce variations in the 

reflectance that are not necessarily associated with physical variations over the surface 

(RANSON et al., 1985). Consequently, the effects of surface BRF are important to 

consider when interpreting remotely sensed changes in vegetation and, particularly, 

seasonal cycles (ASNER et al., 1998).  

 

Figure 2.1. Illustration for the land surface reflectance anisotropy. Specular scattering, as 

sunlint are observed where forward scattering or soil elements are presented. 

Volumetric scattering, by finite scatterers (leaves or canopies) have anisotropic 

reflectance. Geometric scattering, given by shadow-casting of three dimensional 

elements, for example trees or brushland.  

                Source: Adapted from Strahler; Muller (1999).  
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Across vegetated surfaces, directional scattering is predominant in the near infrared 

(NIR) because the energy in this spectral interval is almost entirely reflected by the 

leaves and other canopy components. Nonetheless, directional scattering significantly 

affects also the visible reflectance. The BRF effect on vegetation indices, such as NDVI 

and EVI, which are commonly used to describe vegetation properties, has been 

discussed intensively in the literature (GALVÃO et al., 2013; KEMPENEERS et al., 

2008; MOURA et al., 2012). Bhandari et al., (2011) demonstrated that the view-

illumination effects diminish the ability of vegetation indices to detect seasonal 

variations over vegetated surfaces. Galvão et al., (2011), using MODIS and 

Hyperion/Earth Observing-One (EO-1) data, showed that view-illumination geometry 

influence seasonal signals of EVI in the dry season over tropical forests in the Amazon 

basin. For instance, the EVI variability at nadir viewing was driven by solar 

illumination effects rather than changes in LAI. BRDF effects were also demonstrated 

by Sims et al., (2011) over forested regions (dense evergreen and deciduous forests) in 

the United States. The authors concluded that view angle effects were stronger on EVI 

than NDVI, which presented substantial variations across seasons and years. The 

increased sensitivity of EVI to bidirectional reflectance effects may be explained by the 

strong NIR band dependence or the influence of empirical weight factors such the L 

coefficient (GALVAO et al., 2011; HILKER et al., 2015a; MOURA et al., 2012). In 

case of a normalized difference index (e.g., NDVI), reflectance changes in forward and 

backscattering are less pronounced, particularly in dense vegetation (HU et al., 2003). 

Changes in one band are compensated by the relative changes in the other band during 

the rationing or normalization procedure (KAUFMANN et al., 2000).  

Different methods have been proposed for BRDF correction (FRANCH et al., 2013; 

SCHAAF et al., 2002), thereby eliminating the variability derived from view angle 

effects. Brando et al., (2010) suggested the use of the MODIS nadir bidirectional 

reflectance distribution function (BRDF)-adjusted reflectance product to reduce view 

angle effects on EVI. However, standard correction approaches do typically not account 

for sun angle effects; an important consideration when observing vegetation seasonality 
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(BI et al., 2015; MORTON et al., 2014). Besides, other effects (i.e. atmospheric 

correction) can also have influence in the seasonal patterns. 

While eliminating BRF effects can help to reduce signal variations with respect to 

differences in acquisition angles, it is important to understand that these effects are a 

function of structural composition of the surface. For instance, the directional pattern of 

the scattering is largely controlled by the physical properties and geometrical 

arrangements of the elements that constitute the surface (WIDLOWSKI et al., 2004). As 

a result, BRDF can contain useful information on vegetation structure. Rather than 

trying to correct for these effects, which essentially eliminates this structural 

information, a number of studies have tried to incorporate view-illumination effects in 

order to obtain information on structural changes in addition to greenness. View-

illumination effects may be modeled in terms of the BRDF. BRDF is a wavelength 

dependent model, which considers directional scattering as a function of surface 

properties and the amount of energy present in a photon. Chen et al., 2003; Gao, 2003a; 

Rautiainen, 2005; Zhang et al., 2002, used BRDF models to characterize the anisotropy 

of the surface, retrieving useful information from that about the vegetation structure. 

The acquisition of measurements over a range of observation angles also allows the 

estimation of shaded components in the surface, which is dependent of the structural 

form of the surface, to derive the surface anisotropy (CHEN et al., 2005). The 

interaction between canopy structure and multi-angle reflectance is associated with 

canopy elements, expressed by the density (LI, X., STRAHLER, 1986), architecture, 

foliage orientation and shadow within the canopy (GOEL, 1988), as well as the 

roughness of the surface in sparse canopies (JACQUEMOUD et al., 1992), among 

others. Figure 2.2 demonstrates how differences in the geometry of data acquisition can 

affect the scattering of light and its detection by the sensor in vegetated surfaces.  



8 

 

 

 

Figure 2.2. Diagram of different geometry acquisitions over vegetated surfaces. 1) 

backscattering: represents the configuration where the sensor direction is the 

same as the incident light (sun); 2) nadir: represents the direction pointing 

directly below a location, orthogonal to a horizontal flat surface; and 3) forward 

scattering: where the sensor and sun are in opposite direction. 

  

The availability of multi-angular observations over the same target by the Multi-angle 

Imaging SpectroRadiometer (MISR) has provided new inputs for the characterization of 

the surface anisotropy. Several studies have shown that the scattering of light is deeply 

related to structural properties of the surface (CHEN et al., 2005; HAPKE et al., 1998; 

WIDLOWSKI et al., 2004). In addition to along-track MISR observations, successive 

cross-track MODIS over-passes provide potentially the necessary multi-angular data to 

characterize the anisotropy of vegetated surfaces. The use of multi-angle data has 

indicated also improvements with respect to simulations in ecosystem models (KNORR 

et al., 2004). However, despite the potentiality of multi-angle data, the complexity of 

using such approach is still a challenge (WIDLOWSKI et al., 2004). 
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2.2. Moderate Resolution Imaging Spectroradiometer (MODIS) 

The advent of the Earth Observing System program (EOS, KING & GREENSTONE, 

1999) has provided a high quality Earth observation collection, allowing important 

advances in many fields of earth system science. Since its launch in 2000, NASA’s 

MODIS has been the workhorse of Amazon remote sensing (HUETE et al., 2002). The 

MODIS sensor is flown on two spacecraft. The Terra satellite, launched in 2000, is on 

an AM overpass, whereas the Aqua platform provides complementary observations in 

the afternoon. With their wide swath of 2300 km, the MODIS instruments have been 

providing daily global data of planetary atmospheric aerosol for one and a half decade, 

allowing scientists to evaluate impacts of population growth as well as climate change 

on global vegetation (KING & GREENSTONE, 1999). Studies of the Amazonian 

ecosystem have heavily relied on MODIS daily surface reflectance or 8- and 16-day 

composite products to analyze seasonal changes as well as severe droughts 

(ANDERSON, 2012). Despite its undisputed success, MODIS data processing is not 

free of weaknesses and several issues have been identified, particularly for the 

frequently cloud covered tropical regions (SAMANTA et al., 2012b). The conventional 

correction algorithm for atmospheric scattering effects is pixel-based and relies on 

observations acquired over a single orbit. As a result, only one measurement is available 

for every pixel characterized by two main unknown parameters: aerosol optical 

thickness (AOT) and surface reflectance (SR). This lack of information constitutes a 

fundamental problem of the atmospheric correction process that cannot be resolved 

without a priori information. As a result, assumptions have to be made. For instance, 

atmospheric correction is based on the MODIS Dark Target algorithm (KAUFMAN et 

al., 1997; LEVY et al., 2007; REMER et al., 2005), currently complemented with the 

Deep Blue method (HSU et al., 2004). Further assumptions include a Lambertian 

property of surface and the use of ancillary data obtained from other sources and 

models. While these assumptions may hold over temperate latitudes, previous results 

(SAMANTA et al., 2012b) have suggested that they may compromise subsequent 

atmospheric correction, thereby affecting the quality of the reflectance product. 
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2.3. Multi-Angle Implementation of Atmospheric Correction (MAIAC) 

New methods for processing MODIS data, such as the MAIAC, can help overcome 

some of these limitations by using an advanced radiative transfer model that reduces the 

number of assumptions made (LYAPUSTIN & KNYAZIKHIN, 2001). Based on a 

sliding window approach, MAIAC simultaneously processes between 5 (at the poles) 

and 16 (at the equator) observations gridded to 1 km resolution, exploiting the 

advantages of time series processing for cloud masking and aerosol-surface retrievals 

(LYAPUSTIN et al., 2011). For instance, time series processing allows to 

simultaneously retrieval of atmospheric optical thickness (AOT) and surface bi-

directional reflectance factor (BRF).  The multi-day data provide different view angles, 

which are required for the surface BRF retrieval. The algorithm is based on the 

supposition that the surface reflectance changes little during accumulation period. It 

assumes that the AOT changes little at short distances (~25 km), because aerosols have 

a mesoscale range of global variability of 50 to 60 km (LYAPUSTIN et al., 2008).  

MAIAC includes water vapor retrievals, cloud masking, aerosol retrievals and 

atmospheric correction. The separate processing blocks are interdependent because they 

share the data through the common algorithm memory and may update each other’s 

output. A brief description of MAIAC, based on the Algorithm Theoretical Basis 

Document (ATBD) (LYAPUSTIN et al., 2008), is illustrated in the diagram of Figure 

2.3.  
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Figure 2.3.  Block-diagram of MAIAC algorithm. 

                   Source: Adapted from Lyapustin et al. (2008). 

 

1) The process starts by gridding the received MODIS calibrated and geo-located 

(L1B) data (WOLFE et al., 2002a), splitting them into tiles, and placing the new data in 

the processing queue with the previous data. In order to limit variation of the footprint 

with changing view zenith angle (VZA), the resolution is coarsened (by a factor of 2). 

For example, the grid cell size is 1 km for MODIS 500-m channels B1-B7. MAIAC 

then uses the MODIS land gridding algorithm (WOLFE et al., 2002b) with minor 

modifications to better preserve the anisotropy of signal in the gridded data when the 

measured reflectance is high, for example, over snow, thick clouds or water with sun 

glint effects. 

2) To retrieve the water vapor, MAIAC uses a modified version of (GAO, 2003a) 

algorithm, based on the last MODIS tile in the NIR channels located close to the water 

vapor absorption at 0.94 μm. The water vapor retrievals are implemented internally to 

exclude dependence on other MODIS processing streams and unnecessary data 

transfers. 

3) The cloud mask (CM) algorithm takes advantage of the time series 

measurements and use covariance analysis to identify cloud-free blocks. The model 

assumes that the surface spatial pattern is stable and reproducible in the short-term 

frame in cloud-free conditions, whereas clouds randomly disturb this pattern. A 
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reference of clear-skies images are build, which are then used in the pixel level cloud 

masking as an additional reference. Internally, the MAIAC CM algorithm also has a 

dynamic land-water-snow classification used to guide the processing of the surface 

image.  

4) The algorithm simultaneously retrieves AOT and spectral regression coefficient 

(bij) for the blue band. If the surface reflectance of B7 is not known, MAIAC uses a 

simplified version of the MODIS Dark Target algorithm.  

5) In this step, retrievals of AOT are processed at high 1 km resolution from the 

last tile, once the surface boundary condition is known. The algorithm uses previous 

information from spectral regression coefficient for the blue band at a grid resolution.  

Surface BRF and albedo are calculated for the reflective MODIS bands for the k-day 

queue. 

MAIAC offers substantial improvement over conventional algorithms by mitigating 

atmospheric interference and advancing the accuracy of surface reflectance over tropical 

vegetation by factor of 3-10 (HILKER et al., 2012b). Previous analysis has linked 80% 

of this improvement to a more accurate and less conservative, but more rigorous cloud 

mask, which increases the number of clear-sky observations by a factor of 2 to 5 

(HILKER et al., 2012b). 

 

2.4. Light Detection and Ranging (LiDAR) 

Arguably, the most direct and accurate remote sensing measurements of vegetation 

structure, cover and density are possible using Light Detection and Ranging (LiDAR). 

LiDAR is an active remote sensing technique that facilitates direct measurements of the 

three-dimensional distribution of vegetation canopy components as well as sub-canopy, 

thereby providing high spatial resolution topographic elevation, and accurate estimates 

of vegetation height, cover density, and other parameters of canopy structure (LEFSKY 

et al., 2002). The LiDAR fundamentals are based on the emission of a pulse of light, in 

which the reflection of that pulse is detected and the precise time of return is recorded. 

Using the constant speed of light, the time shifts can be then converted into a slant range 
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distance. With position and orientation of the sensor known, the coordinates (x, y, and 

z) of the reflective surface can be calculated (Figure 2.4).  

 

Figure 2.4. Illustration of the conceptual basis of LiDAR remote sensing. At the left, the 

intersection of the laser illumination area, or footprint, with a portion of a 

simplified tree crown, is represented. At the right, the hypothetical return signal 

(the lidar waveform) recorded by the sensor over the area is shown. By 

subtracting the range of the ground (last return) from the first detectable canopy 

return (first return), the canopy height is determined.  

                Source: Adapted from Lefsky et al., (2002)  

 

Each laser pulse emitted from a LiDAR instrument is either reflected from the terrain or 

from objects on the terrain, such as vegetation or buildings. As a result, they can be 

distinguished between the first and last pulse returns (LIM et al., 2003a). While the first 

pulse hits are reflected from the highest surface (e.g. tree canopies), the last hit returns 

are reflected from the lowest points in the landscape, most often the terrain surface, 
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except in situations of dense understorey or overstorey vegetation cover. The distance 

between the LiDAR source and the point of reflectance is determined by the time the 

light beam requires to travel from the emitting sensor to the surface and back to the 

sensor. LiDAR measurement error for individual tree heights (of a given species) is 

typically less than 1.0 m (PERSSON et al., 2002), and less than 0.5 m for plot-based 

estimates of maximum and mean stand height with full canopy closure (MAGNUSSON 

et al., 1999; MAGNUSSEN; BOUDEWYN, 2011; MAGNUSSON et al., NÆSSET, 

2002). Furthermore, LiDAR estimates of tree and stand height have been shown to be 

more consistent than field based measurements (NÆSSET, 2002b). LiDAR 

observations can be distinguished between full waveform and discrete return recording. 

A full waveform system records the intensity of a reflected light pulse in its entirety, 

whereas discrete return systems result in binary recordings based on thresholds of light 

intensity returned.  

Most vegetation related LiDAR applications rely on airborne platforms for data 

acquisition, with measurements acquired at altitudes between 500 and 3000 m 

(HILKER et al., 2010). While airborne systems are able to cover moderately large 

vegetation stands to measure vegetation structure (COOPS et al., 2007; NÆSSET, 

1997b; WULDER et al., 2012), their availability over the Amazon basin, is limited. 

Recently, some improvements of airborne LiDAR coverage over the Amazon basin 

have been made by the Sustainable Landscapes Brazil project, a partnership between the 

United States Agency for International Development (USAID), the United States Forest 

Service (USDA) and the Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA).  

Alternatively to airborne LiDAR, a few studies have also explored the potential of using 

spaceborne LiDAR observations for estimating tree heights and mapping biomass 

(POPESCU et al., 2011; SAATCHI et al., 2011). Most notably, the GLAS (Geosciences 

Laser Altimeter System) instrument on NASA’s ICESat (Ice, Cloud, and land 

Elevation) satellite, has collected full waveform recordings of spatially discrete samples 

from 2002 to 2008 (HEALEY et al., 2012a). GLAS measurements (“shots”) are based 

upon time variation in the intensities of returned laser pulses, and resolve elliptical areas 

approximately 65 meters in diameter (HEALEY et al., 2012b). While not primarily 
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designed for estimating vegetation heights, GLAS measurements have been shown to be 

strongly correlated with biomass (SAATCHI et al., 2011), and may be suitable for 

vegetation monitoring. Across the Amazon basin, GLAS footprints form a dense mesh 

with footprints spaced at 170 m intervals along the surface, temporal coverage of 

observations but data availability is still limited.  
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3 A NEW APPROACH TO CHARACTERIZE ANISOTROPY SURFACE 

REFLECTANCE FROM MULTI-ANGLE MODIS/MAIAC DATA 

 

Accurate estimates of vegetation structure and its variation in space and time are 

essential for scientific understanding of the ecological and ecosystem processes in the 

Amazon (ANDERSON, 2010; ARAGÃO et al., 2009). To date, these observations are 

limited to spatially discrete field plots or ground surveys. Scaling such measurements 

across the basin has been extremely challenging. Remote sensing is the main alternative 

to observe vegetation dynamics in the Amazon basin. As tropical forests are primarily 

characterized of structurally complex canopies, its reflectance signal tends to be 

anisotropic. The anisotropy brings information of the structural features of the surface 

(HAPKE et al., 1998), that is affected by the reflectance scattering. Thus, surface 

anisotropy may provide more useful information of the structure of the canopies than 

that provided only by surface reflectance, mostly based on mono angle observations.   

Due to the anisotropic behavior of scattering in vegetated surface, there has been an 

upsurge interest in the potential of off-nadir sensing to provide information regarding 

canopy structure (BARNSLEY et al., 2004b; DISNEY et al., 2006). For instance, multi-

angle remote sensing has the potential to derive information on vegetation canopy 

structure. However, multi-angle reflectance is not easily obtained and there is still some 

challenges regarding the processing to retrieve bi-directional reflectance, including 

issues associated with atmospheric aerosol loadings and cloud screening. Conventional 

aerosol retrieval algorithms assume a Lambertian surface model, which reduces the 

anisotropy of the derived reflectance and introduces an error that depends on the aerosol 

amount and the view-observer geometry (LYAPUSTIN, 1999; WANG et al., 2010). 

Multi-angular data, simultaneously acquired at the same location, provide a means to 

characterize the anisotropy of surface reflectance (LEBLANC et al., 2005), which has 

been shown to contain information on the structure of vegetated surfaces and shaded 

parts of the canopy (CHEN et al., 2003; GAO, 2003b). Multi-angular data also allow 

characterization of the bi-directional reflectance distribution of surface reflectance 
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(CHEN; LEBLANC, 1997; GAO, 2003b), which facilitates modeling of canopy 

reflectance independently of the sun-observer geometry. As a result, it can help 

overcome the limitations faced by traditional mono-angle remote sensing techniques 

and yield more robust estimates of canopy structure. 

MODIS observations are acquired at different sun-observer geometries depending on 

orbital overpass and time of the year. Using MAIAC algorithm to derive BRDF 

reflectance, combinations of several MODIS observations may be used to describe the 

anisotropy of surface reflectance. The novelty of the approach is take an advantage of 

the use of multi-angle MODIS data processed by MAIAC to describe structural 

characteristics of the canopies in the Amazonian forests. The MAIAC datasets allow to 

re-assess the status and dynamics of Amazon vegetation from multi-angle remote 

sensing, providing a more comprehensive understanding of seasonal and spatial 

dynamics of ecosystem processes. In this Chapter, I describe the steps to derive multi-

angle information from MODIS images and the procedures to obtain anisotropy images 

for the Amazon basin. 

3.1. BRDF retrievals from MODIS/MAIAC 

In order to quantify multi-angle scattering, MAIAC data were obtained from 12 MODIS 

tiles (h10v08 to h13v10, spanning 10⁰N to 20⁰S in latitude and 80⁰ W to 42⁰W in 

longitude) from Terra and Aqua satellites between 2000 and 2012. MAIAC is based on 

MODIS Level 1B (calibrated and geometrically corrected) observations, which remove 

major sensor calibration degradation effects present in earlier collections (LYAPUSTIN 

et al., 2014). MAIAC grids MODIS L1B data to a 1 km resolution, and accumulates 

measurements of the same surface area from different orbits (view geometries) for up to 

16 days using a moving window approach. These data are used to derive spectral 

regression coefficients relating surface reflectance in the blue (0.466 m) and shortwave 

infrared (2.13 m) for aerosol retrievals, and to obtain parameters of surface BRDF 

(LYAPUSTIN et al., 2011, 2012a). Assuming that vegetation is relatively stable during 

this period, the surface directional scattering can be characterized using the Ross-Thick 

Li-Sparse (RTLS) BRDF model (ROUJEAN et al., 1992). During periods of rapid 
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surface change (e.g., green-up or senescence), MAIAC follows the approach of the 

MODIS BRDF/albedo algorithm (MOD43 product; SCHAAF et al., 2002) to scale the 

BRDF model with the latest measurement to adjust the magnitude of reflectance while 

assuming that the shape of BRDF does not change significantly. This approach 

preserves spectral contrasts of actual surface characteristics.  

To first order, reflectance anisotropy can be characterized as the difference of 

reflectance hotspot (Solar Zenith Angle (SZA) = 45°, VZA = 35°, Relative Azimuth 

Angle (RAA) = 180°) and darkspot (SZA = 45°, VZA = 35°, RAA = 0°), derived from 

modeling the BRDF. Under the assumption that the vegetation surface remains constant 

over a period (16 days), its directional scattering can be characterized in terms of a 

BRDF model. Different BRDF models exist. One of the most commonly used is the 

Ross-Thick and Li-Sparse kernel functions (ROUJEAN et al., 1992). In our study, the 

Ross-Thick and Li-Sparse kernel functions were used based on the radiative transfer 

theory of (ROSS, 1981) and the geometric-optical model of (LI, X., STRAHLER, 

1986):  

 

                      ),,(),,,,(),,(   svRvr
b

b
h

svLgisv KkKkk         (3.1) 

 

where 

ki  isotropic scattering component  

kg   geometric scattering component 

KL  Li-Sparse kernel 

kv  volumetric scattering component 

KR  Ross-Thick kernel 

v  view zenith angle (VZA) 

s  solar zenith angle (SZA) 

  relative azimuth angle (RAA) 

b
h   crown relative height =1 (JUSTICE et al., 1998; WANNER et al., 1995) 

r

b   crown relative shape =2 (JUSTICE et al., 1998; WANNER et al., 1995) 
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ki, kg and kv are the empirical components (kernel weights) and are derived from 

mathematical inversion of the linear model using the MODIS reflectance observations. 

Once ki, kg and kv are acquired,  can be obtained for any view observer geometry by 

setting  ,, sv .   

One advantage of using the RTLS model rather than reflectance directly is the 

possibility to maintain constant sun-observer geometry and extrapolate measurements to 

the principal plane to describe backscatter and forward scatter directions. In this study, 

we selected a view zenith angle (VZA) of 35° rather than the absolute hotspot location 

at VZA = 45° in order to keep the modeled reflectance closer to the actual range of 

angles observed by MODIS, thereby minimizing potential errors resulting from 

extrapolation of the BRDF. For land vegetated surfaces, directional scattering 

dominates in the NIR region due to the high absorption of visible light. Rather than 

obtaining anisotropy of the NIR band alone, we calculated forward and backscatter data 

for blue, red and NIR reflectance and then obtained the Enhanced Vegetation Index 

(three-band version EVI) for both directions, calculated as: 

 

          
LCC

GEVI

svsvsv

svsv

bluerednir

rednir

sv
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           (3.2) 

 

where   ,, sv  is the atmospherically corrected surface reflectance for a give sun 

sensor geometry; L is the canopy background adjustment (1.0); C1 (6.0) and C2 (7.5) are 

the coefficients of the aerosol resistance term; and G (2.5) is a scaling factor (HUETE et 

al., 1994).  

The objective of using EVI rather than surface reflectance of a given band was to 

minimize the effect of non-photosynthetically active elements while optimizing the 

sensitivity to green canopy structure. However, it can be shown that differences between 

forward and backward scatter EVI is largely the result of differences in scattering in the 

NIR region (GALVAO et al., 2011; MOURA et al., 2012).  
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The left column in Figure 3.1 shows an example of a BRDF surface fitted to retrieve 

forward and backscatter for red reflectance (a) and NIR reflectance (c). We also 

illustrated a BRDF surface calculated for EVI (e) to demonstrate the anisotropy of this 

index. The RTLS surfaces are shown for a 1x1 km area of Amazon forest (65°0’0” W, 

5°0’0” S) using all observations acquired between January 1 and 14, 2006. The polar 

coordinates represent the view zenith and azimuth angles, whereas the z-axis shows the 

corresponding reflectance (ρ) in the red and NIR bands, and EVI, respectively. The 

black dots represent the MODIS observations that were used to parameterize the BRDF 

surface. The red and blue dots show the modeled forward and backscatter reflectance 

(Figure 3.1, left column) with a fixed sun-observer geometry (SZA = 45°, VZA = 35°, 

RAA = 180° in the backscatter direction and SZA = 45°, VZA = 35°, RAA = 0° in the 

forward scatter direction). We fitted one such surface for each pixel and 16-day period 

to derive bi-weekly anisotropy across the Amazon basin.  

Figures 3.1b, 3.1d and 3.1f show temporal variations in anisotropy (for red, NIR and 

EVI, respectively) for different sun-observer geometries to verify the robustness of the 

method applied. The time series shows a spatial average of MODIS tile h12v09 (south-

central Amazon) as an example. We varied the solar zenith angle between 45° (which is 

the default angle for BRDF normalization in MAIAC) and 25° degrees (which is more 

commonly found in tropical latitudes).  
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Figure 3.1. Modeled BRDF surface for a 1x1 km area of Amazon forest (65°0’0” W, 5°0’0” 

S) for red reflectance (a), NIR reflectance (c) and EVI (e). The black dots 

represent the actual MODIS observations accumulated over a 14-day period. The 

blue dot represents the modeled forward scatter direction (darkspot), while the 

red dot represents the modeled backscatter direction (hotspot). Figures b, d and f 

show a time series of anisotropy (red, NIR and EVI, respectively) using the mean 

time series of MODIS tile h12v09. Sun Zenith Angles (SZA) varied between 45° 
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and 25° degrees to investigate the sensitivity with respect to the sun-sensor 

configuration. 

 

Figure 3.1 illustrates strong seasonal variations for red and NIR reflectance (variations 

in the blue band are not shown), and resulting EVI, irrespective of the modeled SZA. 

While reflectance and EVI anisotropy increased with increasing SZA, the seasonal 

difference is still apparent in all the profiles. The seasonal robustness with respect to a 

given SZA may be explained by the fact that the region around hotspot and darkspot 

area is relatively smooth (Figures 3.1a, 3.1c and 3.1e), making estimates of seasonal 

anisotropy relatively insensitive to the particular sun-sensor configuration selected, as 

long as this configuration remains constant. While the range of view angles acquired 

from MODIS is relatively small (Figure 3.1), as the instrument was not specifically 

designed for multi-angle acquisitions, anisotropy still provided an effective means to 

characterize vegetation structure across the Amazon forest. Changes in the sun-sensor 

configuration over the year do not always allow to model forward and backscattering 

observations within the sampling range of the MODIS instruments. However, the 

analysis presented in Figure 3.1 has demonstrated a relative robustness with respect to 

the selected sun-sensor configuration.  

The spectral error of MAIAC surface reflectance may be evaluated as the standard error 

between observed surface reflectance (BRF) and BRDF model prediction: 1) over a 

time using an area of 50 x 50 km to obtain sufficient statistics given high cloud cover in 

Amazonia; and 2) in space (pixel by pixel) for the example of two 14 day periods, in 

June and October. Figures 3.2 and 3.3 provide a quantitative analysis of the standard 

error (σ) between observed surface reflectance and BRDF model prediction. Figure 3.2 

shows the behavior of the standard deviation over a time, using an area of 50 x 50 km 

area as an example (65°0’0” W, 5°0’0” S). The mean standard error were 0.005 and 

0.019 for the red and NIR reflectance, respectively, which is about 10-15% of the 

seasonal changes illustrated in Figures 3.1a and 3.1b. Slight seasonal variability in σ 

was found likely because of increased cloud cover during the wet season. Figure 3.3 

illustrates the spatial variability of the standard deviation in June (Figure 3.3a) and 

October (Figure 3.3b). For reasons of brevity, only the variability in EVI is presented. 
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Similar to Figure 3.2, the standard deviation between observed EVI and model 

prediction presented in Figure 3.3 was on average about 5-10 % of the observed 

seasonal changes (compare Figure 3.1). 

 

Figure 3.2. Temporal variability of the standard deviation (σBRDF) between observed and 

modeled MAIAC reflectance (red and NIR). The graph represents an area of 100 

x 100 km to obtain sufficient statistics given high cloud cover in the Amazon 

(65°0’0” W, 5°0’0” S). 

 

 
Figure 3.3. Spatial variability of the standard deviation between observed and modeled 

MAIAC EVI in (a) June and (b) September. Data were averaged over a 30-day 
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period to obtain sufficient statistics given high cloud cover in the Amazon. The 

Amazon delimitation used in this study follows the definition proposed by Eva et 

al., 2005. 

 

The standard deviation between observed and modeled MAIAC reflectance (Figures 3.2 

and 3.3) was about 10% of the observed variation in anisotropy (Figure 3.1), confirming 

the ability of our approach to detect seasonal and inter-annual changes. The results were 

further within the range of the RMSE reported in next results (see chapter 5, Figure 

5.2), thereby confirming the significance of the relationship to canopy structure. The 

approach should account for error sources from undetected clouds to gridding 

uncertainties. It should further account for limitations of the RTLS model to describe 

the BRDF shape and anisotropy of the MAIAC data. 

The BRDF model selected in this study allowed us to derive seasonal anisotropy 

independent of the sun-observer geometry, which is an important consideration for 

separating vegetation seasonality from artifacts due to seasonal changes in the 

sun/sensor configuration (MORTON et al., 2014). While it is acknowledged that 

vegetation may change over a 14 day period, as used in our BRDF approach, this 

technique should still allow us to observe most seasonality of vegetation and has proven 

useful in other composite products (HUETE et al., 2002; SCHAAF et al., 2002). Data 

scarcity may prevent frequent updates of BRDF shapes, which in some cases limit the 

ability to determine anisotropy and may lead to misinterpretation of changes in canopy 

structure. However, analysis of observation frequency across the Amazon basin 

(HILKER et al., 2015b) has shown that MAIAC provides on average between 10 and 60 

observations in any given month from Terra and Aqua, respectively, which should 

allow stable BRDF inversions for most pixels. Other methods to derive multidirectional 

reflectance (FRANCH et al., 2013; SCHAAF et al., 2002) have been published. Their 

usefulness to derive MODIS anisotropy will have to be addressed separately. 
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4 VALIDATION OF VEGETATION STRUCTURE DERIVED FROM 

ANISOTROPY USING DIFFERENT DATASETS 

 

4.1. Introduction  

Terrestrial vegetation plays a significant role in the re-distribution of moisture and heat 

in the surface boundary layer, as well as in the energy balance of the planet 

(BASTIAANSSEN et al., 1998). Land atmosphere interactions are driven by the three-

dimensional structure of vegetated land cover, including surface roughness, leaf area 

and canopy volume (VOURLITIS et al., 2015). Canopy roughness, defined as vertical 

irregularities in the height of the canopy (CHAPIN et al., 2011), plays a key role in 

earth system modeling. For instance, evapotranspiration is controlled much more by 

canopy roughness and, therefore, by aerodynamic conductance, than by canopy leaf area 

or maximum stomatal conductance (CHAPIN et al., 2011).  

At stand level scales, significant advances have been made measuring canopy 

vegetation structure from Light Detection and Ranging (LiDAR). LiDAR allows direct 

measurements of the three-dimensional distribution of vertical vegetation elements from 

ground-based (STRAHLER, 2009a), airborne (WULDER et al., 2012) and orbital 

platforms (SUN et al., 2008). To date, most vegetation related LiDAR applications rely 

on airborne platforms for data acquisition, with measurements acquired at altitudes 

between 500 and 3000 m (HILKER et al., 2010).  

The Geoscience Laser Altimeter System (GLAS), onboard the Ice, Cloud, and land 

Elevation Satellite (ICESat), has provided additional capability to map vegetation 

characteristics from the space (ZWALLY et al., 2002). GLAS is a large-footprint, 

waveform-recording LiDAR that measures the timing and power of the 1064 nm laser 

energy returned from illuminated surfaces (SCHUTZ et al., 2005). While not configured 

for vegetation characterization, the GLAS instrument allows quantification of the 

vertical distribution of plant components and the underlying ground within each 

footprint in vegetated terrain  (HARDING, 2005; YU et al.; 2015). GLAS has been 
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successfully used to discriminate forest structure across various biome types  

(BOUDREAU et al., 2008; GONÇALVES, 2016; LEFSKY et al., 2005; PANG et al., 

2008).  

Clearly, LiDAR can provide valuable insights into the distribution of canopies, 

structural elements and vegetation types. However, its availability is currently limited in 

both space and time. As a result, our ability to evaluate seasonal, degradation levels and 

spatial variation in the roughness of vegetated canopies using LiDAR alone is limited. 

On the other hand, optical remote sensing instruments, such as those available from 

conventional satellite observations acquired at single view angles, are not designed to 

provide information on the vertical organization of forest canopies. These data provide 

general information on vegetation “greenness” (CARLSON & RIPLEY, 1997), 

especially when using vegetation indices (VI’s). Although VIs have been employed as 

proxies for greenness and vegetation structure, including the roughness lengths for 

turbulent transfer, field estimates of vegetation structure attributes are often only 

moderately correlated with VIs and their derivatives (GLENN et al., 2008).   

As an alternative to mono-angle observations, the combination of multiple view angles 

may provide new opportunities for modeling the structure of vegetated land surfaces, 

which in turn is a function of leaf area distribution and canopy roughness (BREUNIG et 

al., 2015; SHAW; PEREIRA, 1982). With the advance of multi-angular sensors such as 

the Multi-angle Imaging SpectroRadiometer (MISR) (DINER et al., 1998), progress has 

been made in describing the dependence of reflectance on observation angles 

(BARNSLEY et al., 2004a; DINER et al., 1998). Changes in canopy structure are 

driven primarily by tree crown size, shape, density and spatial distribution of leaves, all 

of which affect the directional scattering of light observable from multi-angular remote 

sensing (CHEN et al., 2005). Data acquired from multiple view angles further decrease 

the dispersion and saturation in geometrically complex canopies (ZHANG et al., 2002). 

Therefore, they are better suited to describe the three-dimensional structure of dense 

vegetation (CHEN; LEBLANC, 1997; STRAHLER; JUPP, 1990). Multi-angular 

scattering of surface reflectance (anisotropy) has been linked to optical properties and 

geometric structure of the target (WIDLOWSKI et al., 2004, 2005b), including canopy 
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roughness (STRAHLER, 2009a), leaf angle distribution (ROUJEAN, 2002), leaf area 

index (LAI) (WALTHALL, 1997) and foliage clumping (CHEN; MENGES; 

LEBLANC, 2005; CHOPPING et al., 2011).  

Recent progress using the Multi-Angle Implementation of Atmospheric Correction 

Algorithm (MAIAC) has allowed the acquisition of multi-angle reflectance at high 

observation frequencies by combining satellite imagery obtained from NASA’s 

Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua platforms 

during a few overpasses. MAIAC is a cloud screening and atmospheric correction 

algorithm that uses an adaptive time series analysis and processing of groups of pixels 

to derive atmospheric aerosol concentration and surface reflectance without empirical 

assumptions of the Lambertian reflection of light. A detailed description of the 

algorithm can be found in Chapter 2 and in LYAPUSTIN et al., 2011, 2012a.  

MODIS observations processed with MAIAC could potentially allow periodic and 

spatially contiguous estimates of vegetation structure parameters from multi-angle 

reflectance accumulated over a short period of time when the surface properties do not 

change. Such data, if correlated with more direct measurements of canopy structure by 

other instruments, such as LiDAR, could allow us to extrapolate canopy roughness 

estimates in space and time filling key data gaps for improving our understand of 

ecosystem structure and functioning. In addition to orbital and airborne laser 

instruments, previous studies have shown the applicability of scatterometers to obtain 

vegetation structure over dense forests. For instance, the SeaWinds microwave radar, 

onboard NASA’s QuikSCAT satellite, was primarily designed to measure near-surface 

wind speed and direction over the oceans. However, due to its high sensitivity to water 

content that drives canopy dielectric properties, it has been also used to study canopy 

structure (FROLKING et al., 2011; SAATCHI et al., 2013).  

In this Chapter, we used different estimates of canopy roughness obtained from 1) 

airborne laser scanning (ALS), 2) spaceborne LiDAR GLAS, and 3) the spaceborne 

SeaWinds scatterometer, to evaluate the potential of multi-angular MODIS data for 

modeling vegetation roughness from directional scattering of visible and NIR 
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reflectance. We implemented a spatial scaling approach, from airborne to orbital levels 

of data acquisition, to model continuous coverage of roughness across tropical forests of 

the Xingu basin area in Brazilian Amazon. Therefore, our objective was to test whether 

multi-angle MODIS reflectance can be used as a proxy for canopy roughness over 

Amazonian tropical forests, including different forest types such as Dense and Open 

ombrophilous Forests, and Semi-Deciduous Forest. 

 

4.2. Material and Methods 

4.2.1. Study area 

 

The study area is located in the southeast part of the Amazon, including the Xingu basin 

and adjacent areas (Figure 4.1). Figure 4.1 also shows the GLAS transects for the study 

area (SCHUTZ et al., 2005) as well as the ALS and the field data plots. The study area 

presents a south-north gradient with respect to climate. Following the Kӧppen 

classification, the southern portion of the study area is dominated by tropical wet and 

dry climate (Aw), while the north portion is characterized by tropical monsoon climate 

(Am). Length and duration of the dry season, defined as months with rainfall less than 

100 mm or less than one third of precipitation range (ASNER; ALENCAR, 2010; 

MYNENI et al., 2007), also varies across the study area. In the southern parts, the dry 

season lasts about five months, from May to September (MOURA et al., 2012). In the 

northern parts, a drier climate prevails between July and November (VIEIRA et al., 

2004). The area is characterized by three predominant forest types: Dense 

Ombrophilous Forest (Dse), Open Ombrophilous Forest (Asc) and Semi-Deciduous 

Forest (Fse) (IBGE, 2004). 
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Figure 4.1. Location of the study area within the Amazon basin. The inset shows the 

Geoscience Laser Altimeter System (GLAS) coverage (strings), airborne laser 

scanning (ALS) data acquisition and the available field inventory plots across the 

Xingu basin. 

 

4.2.2. Field inventory data 

 

Estimates of vegetation structure were derived for each of the three different forest 

types using available inventory plots across the region. For two vegetation types (Asc 

and Fse), the surveys were provided by the Sustainable Landscapes Brazil project in 

collaboration with the Brazilian Agricultural Research Corporation (EMBRAPA), the 

US Forest Service, the USAID, and the US Department of State 
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(http://mapas.cnpm.embrapa.br/paisagenssustentaveis/). The Asc forest type was 

represented by 22 plots of 40 m x 40 m each. All the trees with a diameter at breast 

height (DBH) equal to or greater than 10 cm were measured within each plot. For Fse, 

10 sample plots (20 m x 500 m) were used. The field data for Dse was obtained in 2012 

and described by Silva et al. (2014). The floristic and structural surveys included seven 

sample plots of 25 m x 100 m over mature forests. Trees with DBH equal to or greater 

than 10 cm were measured within each plot. 

 

4.2.3. Airborne Laser Scanning (ALS) data 

 

ALS data were acquired by GEOID Ltd. using an Altm 3100/Optech instrument and 

provided by the Sustainable Landscapes Brazil project 

(http://mapas.cnpm.embrapa.br/paisagenssustentaveis/). The positional accuracy (1σ) of 

the LiDAR measurements was approximately 0.10 m horizontally and 0.12 m vertically. 

We used ALS data to obtain structural information in the Tapajós National Forest, Pará 

State between September and November 2012, for São Félix do Xingu municipality, 

Pará state (August 2012) and Canarana/Querência municipality, Mato Grosso State 

(August 2012), to represent Dse, Asc and Fse, respectively. Table 1 shows the 

specifications of LiDAR data for each site. 

 

Table 4.1. Characteristics of the airborne laser scanning (ALS) data acquired over Dense 

Ombrophilous (Dse), Open Ombrophilous (Asc) and Semi-Deciduous (Fse) Forests 

in the Brazilian Amazon. 

 

ALS data were delivered as classified LAS-formatted point clouds, along with 1-m 

resolution bare earth digital terrain models (DTM). For comparison with GLAS, 

discrete-return data were aggregated to produce pseudo-waveforms. Waveforms were 
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synthesized by subsetting the LiDAR point cloud co-located with each field plot and 

counting the number of points observed in vertical bins of 50 cm. In each resulting 

waveform, the ground (i.e. 0 m) was defined as the vertical bin showing the maximum 

amplitude in the elevation range associated with the returns classified as “ground”. 

Using samples of 1 x 1 km of ALS data for each vegetation type, canopy volume 

models (CVMs) were obtained to quantify the three-dimensional structure of the forest 

canopies based on the incident radiation levels and photosynthetic potential (HILKER et 

al., 2010; LEFSKY et al., 2005). The models divide the canopy space into sunlit and 

shaded vegetation elements as well as gap spaces enclosed within. 

 

4.2.4. GLAS/ICESat data and structural metrics from vertical profiles 

 

We used cloud-free GLAS profiles obtained across the Xingu basin (Figure 1) between 

2006 and 2008 (laser operating periods 3E through 2D). Each GLAS footprint is 

elliptical in shape, spaced at approximately 170-m intervals along-track. In general, the 

GLAS LiDAR profiles characteristics varied between the campaigns across the study 

area. The near-infrared elliptical footprint and eccentricity varied between 51.2 (±1.7) to 

58.7 (±0.6) and 0.48 (±0.02) to 0.59 (±0.01), respectively, while the horizontal and 

vertical geolocation accuracy varied between 0.00 (±3.41) to 1.72 (±7.36) and 0.00 

(±2.38) to 1.2 (±5.14), respectively.  

To process GLAS waveforms, we used parameters reported in the GLA01, GLA05, and 

GLA14 data products following methods described by (GONÇALVES, 2014). First, the 

waveforms were filtered by convolution with a discrete Gaussian kernel with the same 

standard deviation as the transmitted laser pulse. This procedure reduced the 

background noise, while preserving an adequate level of detail for characterization of 

the canopy (SUN et al., 2008). 

The GLAS waveforms used in this study were calibrated and digitized into 1000 

discrete bins at a time resolution of 1 ns (~15 cm). The locations of the highest (signal 
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start) and lowest (signal end) detected surfaces within the 150-m waveform were 

determined, respectively, as the first and last elevations at which the amplitude 

exceeded a threshold level, for a minimum of n consecutive bins. The peak of the 

ground return was determined as the lowest peaks in the smoothed waveforms with at 

least the same width as the transmitted laser pulse, after taking into account the mean 

noise level.  

From the GLAS profiles, we extracted the maximum canopy height, defined as the 

vertical distance between the ground peak and the signal start. The mean canopy height 

(MCH) and the standard deviation (SD) of the height profile (HARDING, 2005) were 

calculated using Equations 1 and 2: 

 

𝑀𝐶𝐻 =
∫ 𝑧 𝑤(𝑧) 𝑑𝑧

𝐻100

0

∫ 𝑤(𝑧) 𝑑𝑧
𝐻100

0

 

           (4.1) 

𝑆𝐷 = √
∫ 𝑧2 𝑤(𝑧) 𝑑𝑧

𝐻100

0

∫ 𝑤(𝑧) 𝑑𝑧
𝐻100

0

− 𝑀𝐶𝐻2           

           (4.2) 

where w(z) is the laser power received from the 15-cm bin centered at height z;  

 

Entropy, a measure of canopy structural diversity, sensitive to crown depth and leaf area 

(PALACE et al., 2015; STARK et al., 2012), was used as a proxy of canopy roughness. 

Entropy (Sz), was calculated using Equations 3 and 4: 

 

𝑆𝑧 = − ∑ 𝑝(𝑤𝑖) ln(𝑝(𝑤𝑖))

𝑛𝑏

𝑖=1

,   𝑤𝑖𝑡ℎ 

           (4.3) 

𝑝(𝑤𝑖) =
𝑤𝑖(𝑧)

∫ 𝑤𝑖(𝑧) 𝑑𝑧
𝐻100

0

           

           (4.4) 
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where nb is the number of vertical bins from the ground peak to the signal start, and w(z) 

and z are defined as in Equation 1 and 2, but with a vertical resolution of ~1 m. 

 

4.2.5. SeaWinds/QuikSCAT data 

 

Estimates of canopy structure were also obtained from SeaWinds Scatterometer data, 

provided by NASA’s Scatterometer Climate Record Pathfinder project. The SeaWinds 

Scatterometer operates at microwave frequency of 13.4 GHz (Ku-band) with mean 

incidence angle of 54º for V-polarization and 46º for H-polarization. The sensitivity of 

radar data to variations in vegetation canopy structure can be explained by the 

dependence of radar backscatter to surface dielectric properties, which are strongly 

dependent on the liquid water content of the canopy constituents (FROLKING et al., 

2006). Given that the SeaWinds instrument operates at a higher frequency and higher 

incidence angle than other similar sensors, it has lower penetration into forest canopy. 

Therefore, it has almost no interference from soil moisture variations in densely 

vegetated forested areas (SAATCHI et al., 2013). 

The product used in this study combines ascending (morning) and descending (evening) 

orbital passes, and is based on SeaWinds "egg" images (FROLKING et al., 2006). The 

nominal image pixel resolution for egg images is 4.45 km/pixel. Only backscatter data 

for horizontal (H) polarization were used in this study, given that previous assessments 

indicate that results using vertical (V) polarization showed no significant differences 

(Saatchi et al., 2013). We used data obtained from January 2001 to November 2009, 

when the sensor stopped collecting data due to failure in the scanning capability. To 

better match the anisotropy observations from the MODIS instrument, we resample the 

nominal spatial resolution of the SeaWinds from 4.45 km to 1 km. 

 

 

 

 



36 

 

 

4.2.6. Determination of surface anisotropy from multi-angle MODIS data 

 

Using Ross-Thick Li-Sparse (RTLS) model (Wanner et al., 1995), we characterized the 

bidirectional reflectance distribution function (BRDF) of each 1 km x 1 km grid cell of 

MODIS data. Based on the RTLS BRDF model, we derived MODIS backscatter (SZA 

= 45°, VZA = 35°, RAA = 180°) and forward scatter (SZA = 45°, VZA = 35°, RAA = 

0°) observations for a fixed view and sun angle. We used estimates of anisotropy, 

defined as the difference between backscattering and forward scattering, based on the 

Enhanced Vegetation Index (EVI) to describe roughness of the surface for different 

vegetation types across the study area. The objective of using EVI rather than surface 

reflectance of a given band was to minimize the effect of non-photosynthetically active 

elements (i.e. soil fraction component) while optimizing the sensitivity to green canopy 

structure. 

MODIS-derived anisotropy values were regressed against ALS-derived entropy, GLAS-

derived entropy and SeaWinds/QuikSCAT backscatter (σ0), which were estimated on a 

per-pixel-basis to generate time series profiles of entropy for each forest type in the 

study area. 

 

4.3. Results 

 

The Xingu basin contains different forest types. However, it is dominated by Asc and 

Dse in the north, and by Fse in the south, as illustrated in the vegetation map (Figure 

4.2). The GLAS tracks are also shown in this figure to highlight the sampling density of 

the spaceborne LiDAR over each forest type. An illustration of the mean canopy height 

(MCH) derived from ALS for three sample areas of 1 ha each is provided in Figure 4.2. 

Airborne ALS measurements showed in average the greatest tree heights in the Dse 

domain with values up to 40 meters tall (red color in the inset of Figure 4.2). Asc and 

Fse reached up to 30 m and 25 meters in height, respectively.  
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Figure 4.2. Vegetation cover map adapted from IBGE (2004) in the left and diagrams of 

height estimates from ALS LiDAR data in the right to illustrate structural 

variation between the three predominant forest types in the study area (Dse, Asc 

and Fse). Each Airborne Laser Scanning (ALS) plot represents an area of 100 m 

x100 m to describe the heights values in the three different forests. 

 

LiDAR derived mean tree heights were consistent with existing field measurements, 

which showed that mean canopy heights from forest inventories were 19.8 m, 17.4 m 

and 17.0 m for Dse, Asc and Fse, respectively (Table 1). When compared to Asc and 

Fse, Dse presented larger values of metrics of diversity (species richness (S) and 

Shannon index (H’)) and structure (mean height (HT), mean diameter at breast height 

(DBH), basal area (BA) and leaf area index (LAI)) (Table 4.2). 
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Table 4.2. Floristic and structural metrics calculated from field inventory data 

(http://mapas.cnpm.embrapa.br/paisagenssustentaveis/) for Dense 

Ombrophilous Forest (Dse), Open Ombrophilous Forest (Asc) and Semi-

Deciduous Forest (Fse). The mean leaf area index (LAI), determined from 

Airborne Laser Scanning (ALS), is indicated in the last column of the table. 

 

 

Differences in canopy structure were also evident from the analysis of canopy volume 

models (CVMs) (Figure 4.3). While gap spaces were relatively small in all three 

vegetation types, Asc showed a notably higher proportion of sunlit vegetation that 

reached down deep into the canopy, suggesting a higher spatial variability of tree 

heights compared to the other two vegetation types. Similarly, gaps in the upper canopy 

were mostly present in Asc, as expected for open forest types. Fse showed gaps 

predominantly in lower height levels, and a higher overall proportion of shaded crown. 

The total contribution of the components of the canopy (100% of the canopy space 

filled by either sunlit or shaded canopy elements or fully enclosed gap space) was 

reached at about 15 m height for both Asc and Dse, and at about 20 m height for Fse.  

 

Figure 4.3. Canopy volume models (CVMs) based on the Airborne Laser Scanning (ALS) 

for (a) Dense ombrophilous forest (Dse); (b) Open ombrophilous Forest (Asc); 

and (c) Semi-deciduous forest (Fse).   
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Differences in vegetation structure derived from ALS data were confirmed also with 

spaceborne GLAS observations. GLAS-derived seasonal profiles of entropy for 2006 

showed spatial averages that differed over time between the three vegetation types 

(Figure 4.4). Despite the differences in the years of data acquisition (2006 for GLAS 

and 2012 for ALS), the shaded area in Figure 4 was plotted only for reference between 

the airborne and spaceborne data. GLAS derived seasonal profiles varied between 

different forest types. The lowest values of entropy were found for the Fse. In contrast, 

Asc for Dse showed GLAS entropy consistently higher throughout the measurement 

period. All forest types showed strong seasonality with increasing entropy from 

February to September, and decreasing values thereafter with predominance of higher 

entropy during the dry season.  

 

 

Figure 4.4. Seasonal profiles of GLAS-derived entropy for the three different forest types of 

the study area. GLAS data were obtained only for the months indicated in the x-

axis. Just for reference, the shaded area represents the quarter when the Airborne 

Laser Scanning (ALS) data were collected in 2012. 

 

Examples of MODIS anisotropy during March, June and October of 2006 illustrated 

seasonal and spatial changes in multi-angle reflectance across the Xingu basin (Figure 

4.5). The MODIS anisotropy was consistently higher in the northern part of the study 

area, and its spatial distribution coincided well with the forest types indicated in Figure 
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4.2. A clear limit between forested (high MODIS anisotropy) and non-forested (low 

anisotropy) areas was evident in the southern part of the map. Furthermore, higher 

values of anisotropy were found for the Asc and Dse compared to the Fse. While 

MAIAC observations allowed a notable number of measurements of anisotropy 

between June (Figure 4.5b) and October (Figure 4.5c), some data gaps were observed in 

March (Figure 4.5a) due to cloud cover in the rainy season.   

 

 

Figure 4.5. MODIS-derived anisotropy images during (a) March, (b) June and (c) October of 

2006 to illustrate seasonal and spatial changes in multi-angle reflectance across 

the Xingu basin. 

 

MODIS-derived anisotropy was linearly correlated to ALS-derived entropy (Figure 

4.6). The coefficient of determination (r
2
) of the relationship spanning the MODIS 

pixels that had coinciding within ALS observations was 0.54 and the RMSE was 0.11 

units of entropy. Much of the scattering presented in Figure 4.6 was limited to lower 

values of entropy while the residuals for the higher entropy range were reduced.  
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Figure 4.6. Relationship between MODIS-derived anisotropy and ALS-derived entropy (or 

canopy roughness). 

 

When we correlated the MODIS anisotropy with the GLAS entropy using GLAS data 

with five or more shots per 1 km x 1 km MODIS, significant relationships were 

obtained (Figure 4.7). In order to examine seasonal variability in the relationship, we 

performed the regressions separately for March (Figure 4.7a), June (Figure 4.7b) and 

October (Figure 4.7c) of 2006. The coefficient of determination varied between 0.52 for 

March and 0.61 for June (p<0.05) with similar slopes and offsets found throughout the 

observation period. RMSE varied between 0.26 and 0.30 units of entropy. The highest 

noise levels in the relationship were observed in March, which is corresponding also to 

the larger amount of data gaps during the rainy season (Figure 4.5). The availability of 

GLAS data was somewhat limited during June, but the relationships were still highly 

significant and consistent with those observed during other months of the year.  
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Figure 4.7. Relationship between MODIS-derived anisotropy and GLAS-derived entropy 

using observations for (a) March, (b) June and (c) October of 2006. 

 

A strong relationship between the MODIS-derived anisotropy and the backscattering 

measurements (σ
0
) from SeaWinds/QuikSCAT is also observed (Figure 4.8). The 

relationship was obtained for 10.000 randomly sampled MODIS pixels and 

corresponding SeaWinds/QuikSCAT (σ
0
) observations across the Xingu basin for all 

available QuikSCAT data between 2001 and 2009. It should be noted, however, that 
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when using radar observations, the relationship to MODIS-derived anisotropy was non-

linear (r
2
=0.59, RMSE=0.11). 

 

 

Figure 4.8. Relationship between MODIS-derived anisotropy and backscattering (σ0) 

measurements from SeaWinds/QSCAT over Amazonian tropical forests 

considering the period 2001 to 2009.   

 

Time series profiles of MODIS-derived entropy estimated from the regression model of 

Figure 4.7c and of MODIS-derived QuikSCAT-σ0 estimated from model of Figure 4.8 

were plotted as spatial averages for Dse, Asc and Fse (Figure 4.9). All three forest types 

displayed notable seasonal cycles, in terms of temporal variation as well as in terms of 

differences between vegetation types. The Ombrophilous Forests (Dse and Asc) 

consistently showed high values of entropy with less seasonal variation. By contrast, the 

seasonal cycles were much more pronounced in the Fse, as expected for semi-deciduous

 

vegetation. Both models (GLAS-derived entropy and QScat-derived σ0) yielded very 

similar seasonal patterns, in terms of temporal variation as well as in terms of 

differences between vegetation types. The results presented in Figure 4.9 were 

consistent also with those shown in Figure 4.4. A small negative trend in both entropy 
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and σ0 was observed from 2000 until 2009 and a positive trend in all three vegetation 

types was found from 2010 onwards. This trend was especially pronounced for the 

canopy entropy based on GLAS observations. 

 

Figure 4.9. Time series profiles of MODIS-derived (a) GLAS entropy estimated using the 

regression model of Figure 4.7c, and (b) MODIS-derived SeaWinds/QuikSCAT 

backscattering (σ0) from the model of Figure 4.8. Results are shown as spatial 

average for Dense (Dse) and Open (Asc) Ombrophilous Forests and the Semi-

Deciduous Forest (Fse) between 2000 and 2012 for the Xingu basin. 

 

4.4. Discussion 

This study investigated the potential of multi-angle reflectance obtained from MODIS 

to derive estimates of vegetated surface roughness as an important structural parameter 

of land atmosphere interactions. Aside from field observations, airborne laser scanning 

is arguably the most comprehensive tool to describe the three-dimensional vegetation 

structure at the stand level (COOPS et al., 2007; LIM et al., 2003b; WULDER et al., 
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2012) to date. Recent initiatives such as the “Sustainable Landscapes Brazil“ project 

(http://mapas.cnpm.embrapa.br/paisagenssustentaveis/) seek to improve upon existing 

lack of data availability and provide new opportunities to generate structural metrics 

across discrete locations within the Amazon basin. 

LiDAR based characterization of vegetation structure (Figures 4.2, 4.3, 4.4 and Table 

4.2) exposed a large heterogeneity across the Xingu basin, both spatially and seasonally. 

ALS observed structural differences between vegetation types that were detectable also 

from space using photon counting LiDAR (GLAS/IceSat) and microwave 

backscattering (SeaWinds/QuikSCAT) (Figures 4.4 and 4.9b). This is an important 

finding, as it opens an opportunity for scaling spatially discrete observations of canopy 

structure across larger areas from space (POPESCU et al., 2011). 

Spatial and temporal heterogeneity in Amazonian vegetation (SILVA et al., 2013a; 

TOWNSEND et al., 2008) is not easily obtained from conventional vegetation indices 

(HILKER et al., 2015a), as VIs cannot adequately capture differences in canopy 

structure among different vegetation types (GLENN et al., 2008; LAGOUARDE et al., 

2002). Findings presented in this study (Figures 4.6 to 4.9) suggest that such canopy 

structural variation may be determined from multi-angular reflectance. The ability of 

multi-angle observation to derive vegetation structural attributes is well supported by 

previous results (CHEN; LEBLANC, 1997; CHEN et al., 2003; GAO, 2003b; 

STRAHLER; JUPP, 1990; YU et al., 2015; ZHANG et al., 2002). While these authors 

have focused on smaller study areas using specialized sensors, our findings confirm 

such multi-angle potential to be acquired from the MODIS instrument. This is an 

important advancement, as it would allow structural estimates over large areas and at 

high temporal frequencies from space, complementing the data analysis of orbital 

LiDAR data.  

While the range of view angles acquired by MODIS is relatively small, as the 

instrument was not specifically designed for multi-angle acquisitions, MODIS-derived 

anisotropy still provided an effective means to characterize vegetation structure across 

large areas from space. Within the Amazon basin (or tropics in general), this is partially 
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facilitated by the fact that MODIS view geometry comes very close to the principal 

plane twice a year. As a result, our BRDF model is representative at the angles used in 

this study. Consequently, modeled anisotropy is close to its maximum range of possible 

values, contrary to observed in mid-latitudes where observation are further from the 

principal plane. In these cases, other geometric configurations might be preferable.  

Modeling MODIS anisotropy using the RTLS BRDF model further allowed us to derive 

anisotropy independent of the sun-observer geometry (ROUJEAN, 2002). As a 

limitation to this approach, changes in the sun-sensor configuration over the year do not 

always allow modeling the forward and backscattering observations within the sampling 

range of the MODIS instruments. Therefore, higher uncertainties may be observed 

during some times of the year than during others. 

The strong and positive correlation found between GLAS-measured entropy and 

MODIS anisotropy (Figure 4.7) may be explained by geometric scattering of individual 

tree crowns (CHOPPING et al., 2011; LI, X., STRAHLER, 1986). For instance, a large 

variability in canopy heights (high canopy roughness) will increase the geometric 

scattering component, especially of NIR reflectance. However, other structural changes 

may also influence seasonal patterns of anisotropy, as the canopy optical thickness. In 

addition to canopy roughness, anisotropy is also affected by leaf angle distribution 

(ROUJEAN, 2002) and foliage clumping (CHEN et al., 2005) among other variables 

related to the floristic variability, which tends to be high in tropical forests. The 

interaction between these variables and multi-angle scattering is not straightforward, 

requiring further investigation, especially in the components of scattering determined in 

the RTLS model. For example, increases in leaf area may increase the volumetric 

scattering component (ROSS, 1981; ROUJEAN et al., 1992) of multi-angle reflectance, 

but at the same time decrease the surface roughness, at least within a certain range of 

values. Therefore, the results presented in here should be understood as a first 

demonstration of the technique.  

Due to the complexities described as well as other limitations in terms of footprint size, 

and range of angular sampling, MODIS-derived estimates of canopy structure should 
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not be understood as a replacement for direct 3D measures of vegetation, but rather as a 

complimentary approach for scaling such observations in space and time. The 

consistency in the modeled relationship obtained from GLAS LiDAR and 

SeaWinds/QuikSCAT backscattering is encouraging in this respect, suggesting that 

such scaling approaches may be built on opportunistically sampled observations across 

platforms. For instance, MODIS data can help interpret estimates of canopy roughness 

in between GLAS footprints, as well as fill missing observations in time, enabling a 

more comprehensive seasonal and spatial analysis. Upcoming new LiDAR instruments, 

such as the Global Ecosystem Dynamics (GEDI) mission (DUBAYAH et al., 2014; 

STYSLEY et al., 2015), will allow further improvements in the measures of canopy 

structure, as well as, biomass. 

 

4.5. Conclusions 

Our analysis has demonstrated that multi-angular MODIS observations are suitable to 

determine canopy entropy at different scales of LiDAR measurements across the study 

area in the Amazon. The sparseness of existing, highly detailed LiDAR observations 

currently imposes severe restriction on accuracy of modeled carbon and water fluxes, 

particularly in remote regions, such as the Amazon basin. Complementary measures of 

vegetation structure from optical satellites are therefore highly desirable to extrapolate 

spatially or temporally sparse estimates of canopy structure across the landscape. Such 

approaches will be crucial for improving our understanding of climate tolerance and 

responses to Amazonian forests to extreme events. 
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5 USE OF MULTI-ANGLE MODIS ANISOTROPY TO STUDY SEASONAL 

AND DROUGHT EFFECTS IN THE AMAZONIAN FORESTS 

 

5.1. Introduction  

Vulnerability of tropical forests to climate change has received broad attention by the 

scientific community as increase in equatorial sea surface temperature (SST) can lead to 

longer dry seasons (FU et al., 2013; MARENGO et al., 2011) and more frequent, severe 

drought events (LEWIS et al., 2011; MALHI et al., 2009; MARENGO et al., 2008). The 

feedbacks of such drying on global climate change could be substantial; the Amazon 

rainforest alone accounts for about 15% of global photosynthesis and host perhaps a 

quarter of the world's terrestrial species (MALHI et al., 2008). Field studies have 

indicated that such extreme drought events could alter species composition, biodiversity 

(ASNER; ALENCAR, 2010; ASNER et al., 2004; PHILLIPS et al., 2009) and plant 

productivity (ARAGAO et al., 2007; GATTI et al., 2014; MEIR et al., 2008). 

Over the last decade, the Amazon region has experienced two severe droughts, one in 

2005 and another in 2010 (MARENGO et al., 2011). However, the broad scale response 

of vegetation to these events remains controversial. (SALESKA et al., 2007b) reported 

an increase in greenness (higher EVI) for the 2005 drought, a result that was 

subsequently challenged (ATKINSON et al., 2011; SAMANTA et al., 2010). Xu et al., 

(2011) observed a widespread decline in greening for the 2010 drought. Similarly, the 

prevailing view of seasonality of vegetation has recently been discussed. Several 

findings (BRANDO et al., 2010; GRAHAM et al., 2003; HUETE et al., 2006a; 

HUTYRA et al., 2007; MYNENI et al., 2007; SAMANTA et al., 2012a; WAGNER et 

al., 2013) support the view that photosynthetic activity increases initially during the dry 

season in response to an increase in incident photosynthetically active radiation (PAR). 

However, a recent study based on NASA's Moderate Resolution Imaging 

Spectroradiometer (MODIS) (MORTON et al., 2014) argued that seasonal changes are 

driven by artifacts of the sun-sensor geometry.  
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A growing body of literature suggests uncertainties in remote sensing of atmospheric 

aerosol loadings (SAMANTA et al.,  2011; 2012a) and deficiencies in cloud detection 

(HILKER et al., 2012b) to be partially responsible for these contradicting results. While 

progress has been made addressing some of these challenges by using alternative 

datasets (HILKER et al., 2014) or higher spatial resolution imagery (ZELAZOWSKI et 

al., 2011), observations based on remotely sensed vegetation indices are limited in their 

ability to detect changes in vegetation cover. This occurs especially due to a well-

documented saturation effect in areas with high biomass and leaf area (CARLSON; 

RIPLEY, 1997).  

As an alternative to observations from only one view angle, the combination of multiple 

view angles may provide new opportunities to mitigate these saturation effects, and 

allow better insights into seasonal and inter-annual changes of tropical forests. 

Biophysical changes in the canopy structure affect the directional scattering of light and 

these effects are observable from multi-angular data (CHEN et al., 2005). With the 

advance of multi-angular sensors such as the Multi-angle Imaging SpectroRadiometer 

(MISR) (DINER et al., 1998), progress has been made in describing the dependence of 

reflectance on observation angles (BARNSLEY et al., 2004a; DINER et al., 1998). For 

instance, the angular component of surface reflectance (anisotropy) has been linked to 

optical properties and geometric structure of the target (WIDLOWSKI et al., 2004, 

2005a) such as canopy roughness (STRAHLER, 2009b), leaf angle distribution 

(ROUJEAN, 2002), leaf area index (LAI) (WALTHALL, 1997) and foliage clumping 

(CHEN et al., 2005). 

The theoretical basis for the influence of canopy structure on multi-angle reflectance has 

been developed (BICHERON, 1999; CHEN et al., 2003; GAO, 2003b; LEBLANC et 

al., 2005; MYNENI et al., 2002). However, multi-angle reflectance is not easily 

obtained from traditional surface reflectance algorithms, even when data is acquired 

from multiple view angles. Pixel based algorithms often assume a Lambertian 

reflectance model, which reduces the anisotropy of the derived surface reflectance 

(LYAPUSTIN; MULDASHEV, 1999; WANG et al., 2010), thus decreasing the ability 

to detect directional scattering (HILKER et al., 2009). 
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New methods for processing remote sensing data, such as the Multi-Angle 

Implementation of Atmospheric Correction (MAIAC), can help overcome this 

limitation by using a radiative transfer model that does not make a Lambertian 

assumption (LYAPUSTIN; KNYAZIKHIN, 2001). MAIAC is a cloud screening and 

atmospheric correction algorithm that uses an adaptive time series analysis and 

processing of groups of pixels to derive atmospheric aerosol concentration and surface 

reflectance. A detailed description of the algorithm can be found in Lyapustin et al., 

2011, 2012a. In this Chapter, we take advantage of MAIAC to study changes in 

anisotropy across the Amazon basin using thirteen years of multi-angle MODIS 

observations. We define anisotropy as difference in reflectance between the 

backscattering (relative azimuth angle (RAA) = 180°) and the forward scattering (RAA 

= 0°) directions for a fixed view and sun zenith angle. Estimates of such defined 

anisotropy were then related to field and LiDAR-based estimates of LAI in order to 

validate its relation to vegetation structure. Our objectives were to demonstrate spatial 

and temporal changes in anisotropy, particularly during the onset of the dry season as a 

measure of changes in vegetation. We re-visited the two last major droughts in the 

Amazon basin (2005 and 2010) to evaluate anomalies in anisotropy and investigate 

vegetation response to these drought events on a monthly basis. 

 

5.2. Material and Methods 

5.2.1. LiDAR and field based estimates of Leaf Area 

Estimates of anisotropy were validated against existing and independent field 

observations of LAI (n = 16) obtained from the literature (ANDREAE, 2002; 

DOMINGUES et al., 2005; DOUGHTY; GOULDEN, 2008; FIGUERA et al., 2011; 

GALVAO et al., 2011; MALHI et al., 2009; NEGRÓN JUÁREZ et al., 2009; 

RESTREPO-COUPE et al., 2013; SCURLOCK et al., 2001; ZANCHI et al., 2009), and 

Airborne Laser Scanning (ALS) as an example of a measure of canopy structure. 

LiDAR data were acquired by the Sustainable Landscapes Brazil project supported by 

the Brazilian Agricultural Research Corporation (EMBRAPA), the US Forest Service, 
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USAID, and the US Department of State. A detailed description of the LiDAR data can 

be found at http://mapas.cnpm.embrapa.br/paisagenssustentaveis. In order to allow a 

comparison between LiDAR based LAI and anisotropy, the area of airborne LiDAR 

acquisition was first subdivided into 1x1 km tiles matching the MODIS pixels. The 

probability of canopy gap within each tile was then determined as the sum of the total 

number of hits down to a height z, relative to the total number of independent LiDAR 

shots (N) (LOVELL et al., 2003; READING et al., 2006): 
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where #z is the number of hits down to a height z above the ground (or the range to 

which the gap probability is taken). Finally, the leaf area profile L(z) was modeled as a 

logarithmic function of Pgap (LOVELL et al., 2003) assuming an exponential extinction 

of light within the canopy: 

                                               𝑳(𝒛) = − 𝐥𝐨𝐠 (𝑷𝒈𝒂𝒑(𝒛))                           (5.2) 

 

A detailed description of the method applied can be found in (COOPS et al., 2007).  

 

5.2.2. Estimates onset and duration of Amazon dry seasons 

The most common period used in the literature for describing dry seasons across 

Amazonia is June through September (SALESKA et al., 2007a; SAMANTA et al., 

2010; XU et al., 2011). It is, however, widely acknowledged that the actual onset and 

duration of the dry season varies greatly across the Amazon basin (SILVA et al., 

2013b). In order to investigate the effects of regional variability in precipitation, onset 

and length of dry season were calculated for each year using monthly estimates of water 

deficit from precipitation obtained from Tropical Rainfall Measuring Mission (TRMM) 

(3B43 v7 and 7A, at 0.25º spatial resolution). TRMM data has been extensively used to 

characterize the seasonal and inter-annual variability in rainfall across the Amazon 

region (ARAGAO et al., 2007). Dry season months were determined by using the 

http://mapas.cnpm.embrapa.br/paisagenssustentaveis/
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assumption that moist tropical forests transpire about 100 mm.month
-1

 (ANDERSON, 

2012; ARAGAO et al., 2007): When rainfall drops below 100 mm.month
-1

, 

evapotranspiration exceeds precipitation, and soil water availability declines 

(BORCHERT, 1998; STRAHLER; JUPP, 1990; WILLIAMS et al., 1998).  

 

5.3. Results 

Figure 5.1 illustrates the spatio-temporal variation in anisotropy by means of its first 

principal component (PC1) for the period between 2000 and 2012. The droughts years 

2005 and 2010 were excluded from this analysis to only represent normal year 

variations. PC1 explained about 89% of the total variance in anisotropy; consequently, 

we focus on this first component to illustrate regional variability in the dataset. Red and 

yellow represent areas with relatively higher anisotropy, while green to white show 

areas with relatively lower anisotropy. Notable differences were found not only between 

the Amazonian rainforest and non-forested savannah regions, but also within the 

forested area itself (compare traditional vegetation indices for instance in Hilker et al., 

2014). High anisotropy was found predominantly in the more densely forested areas in 

northern and eastern Amazonia whereas the open forest types in the southern regions 

yielded, on average, lower values of anisotropy. The point symbols in Figure 5.1 

illustrate the plot locations for field-based observations of LAI and LiDAR-derived 

measurements. While the total number of independent LAI estimates is limited across 

remote forested areas such as the Amazon basin, the field locations presented in Figure 

5.1 represented a reasonable range of forest types within the Amazon rainforest. 
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Figure 5.1. The first principal component of anisotropy between 2000 and 2012. The 

droughts years 2005 and 2010 were excluded.  The locations of the field and 

LiDAR estimates of LAI are shown. LiDAR estimates were obtained from 

Sustainable Landscape Project in three locations: Adolpho Ducke Forest Reserve, 

Amazonas state, Brazil ( ); Rio Branco municipality, Acre State, Brazil ( ) and 

Tapajós National Forest, Pará State, Brazil ( ). The other field estimates of LAI 

were collected from the literature: MALHI ET AL. (2009) (•), DOMINGUES ET 

AL. (2005) (○), DOUGHTY AND GOULDEN, (2008C) (*), JUÁREZ ET AL. 

(2009) (X), ANDREAE ET AL., (2002) (□), ZANCHI ET AL., (2009) (◊), 

RESTREPO-COUPE ET AL., (2013) (∆), FIGUERA ET AL., (2011) (˂), 

SCURLOCK ET AL., (2001) (>), GALVAO ET AL., (2011) (+). 

 

 

Measures of anisotropy were strongly related to independent field observations of LAI 

(n = 16) obtained from the literature (Figure 5.2a, r2=0.70 p<0.05) and LAI estimates 
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derived from airborne LiDAR (Figure 5.2b, r2=0.88 p<0.05). Importantly, both 

relationships were found to be linear, at least within the observed range of LAI ≤ 7 m
2
 

m
-2

 and yielded an improved description of structure in densely vegetated areas 

compared to estimates obtainable from nadir EVI images alone (Figure 5.2c). The 

relationship between both field measured and LiDAR LAI estimates with anisotropy 

followed almost the identical linear functional form, which allowed us to describe leaf 

area across a range of vegetation types within the Amazonian rainforest from both data 

sources. 
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Figure 5.2. Relationship between anisotropy and LAI; a) from field values collected in the 

literature (see Figure 2), and b) from LiDAR estimates. c) Relationship between 

directionally normalized (nadir) EVI and LAI. The correlations were performed 

using the dates described in the field data with the closest MODIS acquisitions 

available. The location of the plots are provided in Figure 5.1. RMSE for Figures 

5.2a and 5.2b were 0.08 and 0.02 (units of anisotropy), respectively. 

 

 

In addition to a large heterogeneity in vegetation structure (Figure 5.1), our analysis 

confirmed also a large variability in precipitation across the basin (VILLAR et al., 

2009). Figure 5.3 represents estimates of monthly water deficit. Areas with low water 

deficit are shown in blue, whereas red indicates high water deficits. Areas with no water 
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deficit are presented without color. High levels of water deficit were found in the 

northern Amazon region mainly between January and March, corresponding to the dry 

season in the northern hemisphere, whereas May to August marked the dry season 

months across large parts of the southern hemisphere. Overall, the largest water deficit 

was found during June and July (focusing on the south-eastern border of the Amazon), 

whereas the lowest levels of water deficit were observed during March, with 

precipitation exceeding 100 mm month-1 almost across the entire basin. The beginning 

and length of dry season (Figures 5.4a and 5.4b, respectively) varied accordingly and 

followed a south-west north-east gradient with up to 5 months of water deficit in the 

south-west. By contrast, large areas of Amazonas state, central Amazon, showed, on 

average, no water deficit during the observed years (gray area in the map, compare also 

Steege; Pitman, 2003). 

 

 

Figure 5.3. Monthly estimates of water deficit (in mm month
-1

), based on TRMM 

observations from 1998 to 2012. Areas with low water deficit are shown in blue, 

whereas the red color indicates high water deficits; areas with no water deficit are 

presented without color. 
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Figure 5.4. Beginning (a) and length (b) of dry season across the Amazon calculated on per 

pixel basis using monthly water deficits. This approach was performed for each 

year separately in order to consider inter-annual variability.  The figure shows 

mean onset and length of dry season for all years. 

 

Anisotropy changes in response to these seasonal variations in precipitation are shown 

in Figure 5.5. Figures 5.5a and 5.5b show total differences in anisotropy between 

beginning and end of the dry season (positive changes are labelled “greening”, negative 

changes are labeled “browning”; all changes are normalized with respect to their 

standard deviations). Absolute changes (non-normalized) in anisotropy at beginning and 

end of dry season are presented in Figure 5.6. Only those changes that exceeded the 

RMSE of the field validation (Figure 5.2a and 5.2b) are presented. Non-forested areas 

were excluded from all analysis using the MODIS land cover product (collection 5, 

Friedl et al., 2010).  

Figure 5.5a uses a fixed dry season assumption from June through September to derive 

conventional measures of greening/browning. Figure 5.5b shows changes of 

greening/browning based on onset and length of dry season derived from water deficit. 

In both cases, the drought years of 2005 and 2010 were excluded from the analyses to 

reflect “normal year” situations. In case of the fixed dry season assumption (Figure 

5.5a), negative net changes in anisotropy were found largely in the west and north-

western region of the Amazon basin, while small greening effects were observed in the 

Amapá state region and south-central Amazonia. When considering the specific length 

of dry season (Figure 5.5b), it becomes apparent that most of the area showing net 
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browning effects did actually not experience a seasonal water deficit (Figure 5.5a), at 

least on average within the time period observed.  

Net greening effects shown in Figure 5.5b were similar to those presented in Figure 

5.5a. However, regionally, considerable differences were found, particularly in the 

south western part of the study area. Compared to the normalized results, non-

normalized differences in anisotropy between the beginning and end of dry season were 

prominent across most of the Amazon basin (Figures 5.6a and 5.6b), which can be 

explained by the relatively small RMSE obtained from the validation dataset (Figure 

5.2a and 5.2b).  

Figures 5.5c and 5.5d show net greening and browning effects in percentage of total 

area per month of dry season. Greening and browning effects were defined as 

percentage of pixels with significant increase / decrease in anisotropy (≥ 2σ) compared 

to the annual mean. Figures 5.5c uses a fixed dry season assumption (June through 

September), while Figure 5.5d shows changes based on onset of dry season derived 

from water deficit. In case of Figure 5.5d, we also show the last month before a water 

deficit was observed, in order to illustrate changes in photosynthetic activity with the 

reduction of rainfall towards the end of the rainy season. Both estimates showed 

increased anisotropy during the beginning of the dry season with about 2% of area 

experiencing “greening” when using a fixed dry season assumption and over 5% of total 

area greening when explicitly considering dry season onset for each pixel.  

In both analyses, greening effects turned into net browning effects after an extended 

length of dry season, reaching about 7% of the area after 3 or more months when 

accounting for actual dry season onset. Monthly changes in LAI (as deviations from 

annual means) were calculated using the linear relationships to field and LiDAR 

measurements presented in Figure 5.2. The dashed line in Figures 5.5c and  5.5d 

represent estimates based on the relationship with field observations (Figure 5.2a), 

while the solid line represents estimates based on the relationship with LiDAR 

observations (Figure 5.2b). Consistent with the net changes in area of greening and 

browning, our results suggested that total leaf area increases during the beginning of the 
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dry season by on average 0.2 m
2
 m

-2
 across the basin, while LAI dropped below the 

annual mean after about 2 months of dry season (0.1 m2 m-2). However, these results 

should be interpreted carefully as changes in LAI varied greatly across space and may 

also be the result of changes in other structural parameters (see discussion). 

 

 

Figure 5.5. (a) Spatial distribution of changes in anisotropy normalized by the standard 

deviation using a dry season period from June to September (for all years 

between 2000 and 2012, except 2005 and 2010). The gray regions represents no 

dry season or non-forested areas. (b) Spatial distribution of changes in anisotropy 

normalized by the standard deviation using specific begin and end of dry season 

based on the water deficit maps. Figures c and d show the corresponding changes 

in greening (blue bars) and browning (red bars) by months of dry season (p = 

0.05). The dashed lines in Figures c and d represent the net changes in LAI 
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(averaged across the basin) modelled by the linear relationship between 

anisotropy and LAI (Figure 5.2a). The solid line shows the corresponding 

estimates based on the model derived from LiDAR (Figure 5.2b). 

 
Figure 5.6. (a) Spatial distribution of changes in non-normalized anisotropy normalized 

using a dry season period from June to October (for all years, except 2005 and 

2010). The gray regions represents no dry season or non-forested areas. (b) 

Spatial distribution of changes in non-normalized anisotropy using specific begin 

and end of dry season based on the water deficit maps. 

 

 

The two drought years resulted in strong browning effects; spatial and temporal patterns 

of anomalies in anisotropy for the 2005 and 2010 droughts are presented in Figure 5.7. 

For both years, only the specific beginning and end of the dry season (based on the 

water deficit) are shown. Figure 5.7 shows anomalies i.e. deviations from the normal 

year patterns presented in Figure 5.5; all anomalies were normalized to the standard 

deviation (≥ 2σ) of the years 2000-2012, excluding 2005 and 2010. While positive and 

negative anomalies were approximately balanced at the beginning of the dry season 

(Figures 5.7c and 5.7d), negative anomalies in anisotropy outweighed positive effects 

after about three months, especially during 2010, with negative anomalies being three 

times larger than positive ones. Estimates of derived LAI showed small positive 

anomalies during the beginning of the 2005 drought period, but confirmed large 

negative effects with extended dry season length. In 2010, change was similar to normal 

years (anomalies were small) during the first few months of the dry season. However, 
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areas with 6 months of dry season showed negative deviation from normal year decline 

in structure (Figure 5.7d) of an additional -0.2 m
2
 m

-2
 across the basin (Figure 5.7d). 

 

Figure 5.7. Spatial distribution of the standardized anomalies in anisotropy for 2005 (a) and 

2010 (b), considering specifically begin and end of dry season (based on the 

water deficit maps). The gray regions represents no dry season or non-forested 

areas. Figures c and d show the corresponding anomalies in greening (blue bars) 

and browning (red bars) by months into dry season (p = 0.05). Circles represents 

an approximation of the epicenters of the droughts described by Lewis et al. 

(2011). The dashed lines in Figures c and d represent the anomalies in LAI 

(averaged across the basin) modelled by the linear relationship between 

anisotropy and LAI (Figure 5.2a). The solid line shows the corresponding 

estimates based on the model derived from LiDAR (Figure 5.2b). 
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5.4. Discussion 

 

This study used multi-angle observations from the MODIS instrument to investigate 

spatial and temporal variability in vegetation structure across the Amazon basin. The 

ability of multi-angle observation to derive vegetation structural attributes is well 

supported by previous studies of temperate ecosystems(CHEN et al., 2003; GAO, 

2003b). Multi-angle data decrease the dispersion and saturation in geometrically 

complex canopies(ZHANG et al., 2002) and are therefore better suited to describe the 

three dimensional structure of forests compared to mono-angle acquisitions (CHEN; 

LEBLANC, 1997; STRAHLER; JUPP, 1990).  

Our strong linear relationship found between anisotropy and LAI estimates (Figure 5.2a 

and 5.2b, r
2
=0.70, r

2
=0.88 p<0.05, respectively) confirms these findings. The RMSE for 

the relationships between anisotropy and field observations has allowed us to link 

seasonal changes in anisotropy with changes in vegetation structure. However, we do 

acknowledge that other structural variables can influence seasonal patterns of anisotropy 

in different ways. For instance, anisotropy is also affected by canopy roughness 

(STRAHLER, 2009a), leaf angle distribution (ROUJEAN, 2002) and foliage clumping 

(CHEN et al., 2005). Furthermore, the selected approach of modeling LAI from LiDAR 

depends, to some extent, on footprint size and point density. While the technique 

utilized here has been validated elsewhere (COOPS et al., 2007; LOVELL et al., 2003), 

differences in ecosystem types and LiDAR configuration may affect LAI estimates. As 

a result, the findings presented with respect to changes in leaf area should be interpreted 

with care and should be understood more as an example of how anisotropy may be 

linked to structural variables. Nonetheless, the linear functional form suggests that 

multi-angle observations may provide an opportunity to address current limitations 

caused by saturation of conventional (nadir) vegetation indices (HUETE et al., 2006b; 

KNYAZIKHIN et al., 1998) at least within the range of observed LAI (≤ 7 m
2
 m

-2
). Our 

results suggest that structural information of vegetation may be obtained frequently over 

large areas from MODIS. Further research, however, will be needed to investigate 

potentials for other ecosystems and regions.  



64 

 

 

While mono-angle observations have been shown to indicate levels of vegetation 

greenness, they are less well suited to describe the three-dimensional structure of forest 

canopies (CHEN; LEBLANC, 1997; STRAHLER; JUPP, 1990). The selected approach 

using anisotropy may provide new insights into structural variability of Amazon forests 

as it increases the sensitivity of optical observations to changes across dense vegetation 

types. This should considerably improve our understanding of Amazon forest 

seasonality and drought tolerance. The findings presented in Figures 5.3 and 5.4 suggest 

that rainfall patterns in Amazonian forests varied greatly, causing differences in 

seasonality across the region.  

Estimates of water deficit (Figure 5.4a and 5.4b), followed a south-west north-east 

gradient with up to 5 months of water deficit in the south-west whereas large areas of 

Amazonas state showed, on average, no water deficit during the observed years 

(compare Steege; Pitman, 2003). Previous research has suggested that vegetation 

seasonality may follow this gradient closely, as higher precipitation support higher leaf 

areas in the wetter regions, while vegetation in drier areas is limited by available soil 

water (MYNENI et al., 2007). Water availability may further contribute to changes in 

the spatial distribution of leaves (GUAN et al., 2015; MALHADO; COSTA, 2009; 

SCHURR et al., 2012; TER STEEGE et al., 2006; WAGNER et al., 2013). Also, the 

length of dry season has been shown to correlate with aboveground live biomass 

(Saatchi et al., 2007) and tree species composition (TER STEEGE et al., 2006; 

WAGNER et al., 2014). 

Estimating vegetation seasonality from water deficit provided a simple but effective 

approach to capture this regional variability in precipitation. Other approaches, for 

example, based on available photosynthetically active radiation (PAR) are possible and 

may result in different definition of dry and wet season. While our findings are in good 

agreement with previous reports (STEEGE; PITMAN, 2003), it should be noted that in 

the northern part of the Amazon, cloud cover is considerably higher than in the south, 

which may increase measurement noise in the TRMM data and contribute to larger 

spatial variation in onset and length of dry season observed.  
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The findings provided in Figures 5.1, 5.5 and 5.6 suggest large spatial and seasonal 

variability of Amazonian forests. This result relates well to previous studies on 

vegetation structure and seasonality of the Amazon (TER STEEGE et al., 2006; 

VILLAR et al., 2009) as well as estimates of aboveground carbon (SAATCHI et al., 

2011). Consideration of this variability will be critical for interpreting the biophysical 

responses of vegetation to changes in climate. 

 The results presented in Figures 5.5, 5.6 and 5.7 confirm seasonal swings in the 

Amazon (MYNENI et al., 2007). While the total area with significant change (Figure 

5.5) is relatively small compared to that observed in the Myneni et al. (2007), these 

variations can be explained by the difference in methods applied. First, Myneni et al., 

(2007) used the RMSE of the relationship to field observations to determine whether a 

change is significant or not, but did not normalize by the standard deviation. Our results 

in Figure 5.6 showed much increase seasonality when using the RMSE of field and 

LiDAR data (Figure 5.2a and 5.2b) to determine significance. Also, Myneni et al., 

(2007) calculated seasonality as the difference between the maximum 4-month average 

LAI in the dry season minus the minimum 4-month average LAI in the wet season for 

those regions with dry seasons longer than 3 months. For all other regions, they 

calculated seasonality as the difference between the dry-season average LAI and the 

minimum 4-month average LAI in the wet season.  

The seasonality in anisotropy (Figure 5.1, Figure 5.5) cannot be explained by directional 

effects, as all observations have been normalized to a fixed forward and backscatter 

geometry (LYAPUSTIN et al., 2012a). Opposite findings based on conventional 

MODIS data (MORTON et al., 2014) will require further analysis to be addressed 

separately. One possible explanation might be noise in the dataset  (HILKER et al., 

2012b) rendering residual changes below a statistical significance level. Changes in 

anisotropy (greening/browning) during the dry season (Figures 5.5, 5.6 and 5.7) 

coincided well with previous reports on Amazon seasonality. The results support the 

view that photosynthetic activity initially increases during the dry season in response to 

an increase in incident PAR (BRANDO et al., 2010; GRAHAM et al., 2003; HUETE et 

al., 2006b; HUTYRA et al., 2007; MALHI et al., 2009; MYNENI et al., 2007; 
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SAMANTA et al., 2012a; WAGNER et al., 2013) while water supply is maintained 

through deep root systems of tropical forests (NEPSTAD et al., 1994). Consistent to 

these findings, Figures 5.7c and 5.7d showed an initial increase and then a decline in 

anisotropy after extended drought periods. 

While the fixed dry season assumption resulted in less clear trends, particularly with 

respect to area greening, the spatially explicit estimates of dry season onset and dry 

season length showed clear greening during the dry season onset. On the other hand, 

after an extended length of the dry season, this effect turned into net browning across 

areas that experienced 3 or more months of dry season in a given year. The spatial and 

temporal patterns of anomalies in anisotropy for the 2005 and 2010 droughts (Figure 

5.7) allow the conclusions that although productivity of tropical vegetation may 

increase initially during the dry season (BRANDO et al., 2010; GRAHAM et al., 2003; 

HUETE et al., 2006b), sustained drought reduces photosynthesis, canopy leaf area and 

ultimately causes tree mortality (BRANDO et al., 2008; DOUGHTY et al., 2015; 

PHILLIPS et al., 2009; SALESKA et al., 2007a). This is an important result as it helps 

reconcile findings from field and modeling studies with remote sensing observations - a 

key requirement for improving our understanding of drought behavior and quantifying 

carbon dynamics across vegetation and moisture gradients in Amazonia (BAKER et al., 

2008).  

During both drought events (Figures 5.7c and 5.7d), positive and negative anomalies 

were roughly balanced at the beginning of the dry season, indicating an expected natural 

variability in one year compared to the mean of all other years. However, browning 

effects became increasingly prominent, especially during 2010, where the size of areas 

with negative anomalies was almost three times larger than areas with greening. These 

strong anomalies may be explained by more intense water deficits causing faster 

depletion of available water supply and an extended duration of the dry season resulting 

in prolonged stress events. The spatial patterns presented for the two extensive droughts 

in the Amazon region were roughly in agreement with the regions of high drought 

intensity described in Lewis et al., 2011, with a concentration in the southwest for 2005, 

and more widespread effects in 2010 throughout the southeast. Our findings relate well 
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also to plot and LiDAR-based studies, which showed that forest structure and density 

can be strongly affected by extreme droughts with significant reduction of forest 

productivity and aboveground biomass over time (PHILLIPS et al., 2009; SAATCHI et 

al., 2013). 

5.5. Conclusions 

The findings presented in this study contribute to the recent debate on Amazon 

seasonality and drought tolerance in three major ways. First, we have demonstrated, 

using reflectance anisotropy obtained from multi-angle MODIS observations that 

Amazonian forests expose a large heterogeneity both spatially and seasonally and this 

heterogeneity is related to differences in vegetation structure. The demonstrated 

approach using anisotropy may allow us to better detect and quantify these changes 

even in densely vegetated areas typical for tropical ecosystems. Second, our analysis has 

shown that quantification of seasonal changes in vegetation depends on the definition of 

onset and duration of the dry season. This conclusion underlines the need for explicit 

consideration of temporal differences, as the assumption of a fixed period of dry season 

may lead to erroneous conclusions about phenological cycles in Amazonian forests. 

Finally, our analysis reconciles remote sensing studies with field based observations and 

model results as it provides a sounder basis for the argument that tropical vegetation 

undergoes strong seasonal effects, leading to increased growth during the beginning of 

the dry season, but to vegetation decline after extended drought periods, particularly 

during the 2005 and 2010 extreme events. 
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6 SUMMARY AND FINAL REMARKS 

 

Comprehensive assessments of forest structure are key elements to improving our 

understanding of vegetation seasonality, and the effects of drought and climate change 

on tropical ecosystems. This thesis has demonstrated the potential of multi-angle 

MODIS data for mapping structural characteristics of vegetation and its changes over 

time. Reflectance anisotropy, here defined as difference between backscattering and 

forward scatter remote sensing observations, was successfully related to vegetation leaf 

area and surface roughness, something that has previously been difficult to accomplish 

from mono-angle observations. While the concept of anisotropy is not new, this is the 

first time it has been applied across large areas using the MODIS satellite. A key 

improvement that allowed us to apply this technique was the Multi-Angle 

implementation of Atmospheric Correction Algorithm (MAIAC). MAIAC maintains 

anisotropic characteristics of MODIS reflectance, while providing improved quality and 

observations frequency. Validation of MODIS derived estimates was based on field, 

LiDAR and Radar observations. While limited in their spatial extent, LAI estimates 

from airborne and spaceborne platforms showed promising relationships especially 

when compared to conventional vegetation indices. Complementary measures of 

vegetation structure from optical satellites are desirable to extrapolate spatially or 

temporally sparse estimates of canopy structure across the landscape. Previous studies 

have shown controversial results when using satellite data and field-based estimates, 

regarding the response of tropical forests to extreme drought events, as well as, forest 

seasonality. Our findings support the hypothesis of increased productivity at the 

beginning of the dry season, but a decrease in the productivity of the Amazonian forests 

during extended droughts. As a result of the structural relationships presented, the 

multi-angle approach presented in this thesis may help resolve some of these 

controversies and provide a valuable scaling tool for upcoming missions on vegetation 

structure. In combination with LiDAR estimates of forest structure, multi-angle data 

may contribute to discriminate structural variation in different types of forests across the 

Amazon, as well as to quantify the impact of land use and land cover changes on the 

terrestrial carbon cycle. 



70 

 

 

  



71 

 

 

REFERENCES 

ANDERSON, L. O. Multitemporal analysis of evergreen forest dynamics in 

Amazonia. (Doctoral dissertation, Oxford University),  2010. 

ANDERSON, L. O. Biome-Scale Forest Properties in Amazonia Based on Field and 

Satellite Observations. Remote Sensing, v. 4, n. 12, p. 1245–1271, 4 maio 2012.  

ANDREAE, M. O. Biogeochemical cycling of carbon, water, energy, trace gases, and 

aerosols in Amazonia: The LBA-EUSTACH experiments. Journal of Geophysical 

Research, v. 107, n. D20, p. 8066, 2002.  

ARAGÃO, L. E. O. C. et al. Above- and below-ground net primary productivity across 

ten Amazonian forests on contrasting soils. Biogeosciences, v. 6, n. 12, p. 2759–2778, 1 

dez. 2009.  

ARAGAO, L. E. O. C.; LIANA O., S. M. Y. C. R. M. R. S. S. A.; EDEMIR, Y. Spatial 

patterns and fire response of recent Amazonian droughts. Geophysical Research 

Letters, v. 34, p. 1–5, 2007.  

ASNER, G. P. et al. Ecological research needs from multiangle remote sensing data. 

Remote Sensing of Environment, v. 63, n. 2, p. 155–165, fev. 1998.  

ASNER, G. P. et al. Drought stress and carbon uptake in an Amazon forest 

measured with spaceborne imaging spectroscopy. Proceedings of the National 

Academy of Sciences of the United States of America, v. 101, n. 16, p. 6039-6044, 

2004. 

ASNER, G. P.; ALENCAR, A. Drought impacts on the Amazon forest: the remote 

sensing perspective. The New phytologist, v. 187, n. 3, p. 569–78, ago. 2010.  

ATKINSON, P. M.; DASH, J.; JEGANATHAN, C. Amazon vegetation greenness as 

measured by satellite sensors over the last decade. Geophysical Research Letters, v. 

38, n. 19, p. n/a–n/a, 12 out. 2011.  

BAKER, I. T. et al. Seasonal drought stress in the Amazon: reconciling models and 

observations. Journal of Geophysical Research, v. 113, p. G00B01, jul. 2008.  

BARNSLEY, M. J. et al. The PROBA/CHRIS mission: a low-cost smallsat for 

hyperspectral multiangle observations of the Earth surface and atmosphere. IEEE 

Transactions on Geoscience and Remote Sensing, v. 42, n. 7, p. 1512–1520, jul. 

2004a.  

BARNSLEY, M. J. et al. The PROBA/CHRIS mission: a low-cost smallsat for 

hyperspectral multiangle observations of the Earth surface and atmosphere. IEEE 



72 

 

 

Transactions on Geoscience and Remote Sensing, v. 42, n. 7, p. 1512–1520, 1 jul. 

2004b.  

BASTIAANSSEN, W. G. M. et al. A remote sensing surface energy balance algorithm 

for land (SEBAL). 1. Formulation. Journal of Hydrology, v. 212-213, p. 198–212, dez. 

1998.  

BHANDARI, S.; PHINN, S.; GILL, T. Assessing viewing and illumination geometry 

effects on the MODIS vegetation index (MOD13Q1) time series: implications for 

monitoring phenology and disturbances in forest communities in Queensland, Australia. 

International Journal of Remote Sensing, v. 32, n. 22, p. 7513–7538, 20 nov. 2011.  

BI, J. et al. Sunlight mediated seasonality in canopy structure and photosynthetic 

activity of Amazonian rainforests. Environmental Research Letters, v. 10, n. 6, p. 

064014, 1 jun. 2015.  

BICHERON, P. A Method of Biophysical Parameter Retrieval at Global Scale by 

Inversion of a Vegetation Reflectance Model. Remote Sensing of Environment, v. 67, 

n. 3, p. 251–266, mar. 1999.  

BORCHERT, R. Responses of tropical trees to rainfall seasonality and its long-term 

changes. In: Potential Impacts of Climate Change on Tropical Forest Ecosystems. 

Springer Netherlands, 1998. p. 241-253.  

BOUDREAU, J. et al. Regional aboveground forest biomass using airborne and 

spaceborne LiDAR in Québec. Remote Sensing of Environment, v. 112, n. 10, p. 

3876–3890, 15 out. 2008.  

BRANDO, P. M. et al. Drought effects on litterfall, wood production and belowground 

carbon cycling in an Amazon forest: results of a throughfall reduction experiment. 

Philosophical transactions of the Royal Society of London. Series B, Biological 

sciences, v. 363, n. 1498, p. 1839–48, maio 2008.  

BRANDO, P. M. et al. Seasonal and interannual variability of climate and vegetation 

indices across the Amazon. Proceedings of the National Academy of Sciences of the 

United States of America, v. 107, n. 33, p. 14685–90, 17 ago. 2010.  

BREUNIG, F. M. et al. Spectral anisotropy of subtropical deciduous forest using MISR 

and MODIS data acquired under large seasonal variation in solar zenith angle. 

International Journal of Applied Earth Observation and Geoinformation, v. 35, p. 

294–304, mar. 2015.  

CARLSON, T. N.; RIPLEY, D. A. On the relation between NDVI, fractional vegetation 

cover, and leaf area index. Remote Sensing of Environment, v. 62, n. 3, p. 241–252, 

dez. 1997.  



73 

 

 

CHAPIN, F. I.; MATSON, P.; VITOUSEK, P. Principles of terrestrial ecosystem 

ecology. Springer Science & Business Media, 2011.  

CHEN, J. M. et al. Multi-angular optical remote sensing for assessing vegetation 

structure and carbon absorption. Remote Sensing of Environment, v. 84, n. 4, p. 516–

525, abr. 2003.  

CHEN, J. M.; LEBLANC, S. G. A four-scale bidirectional reflectance model based on 

canopy architecture. IEEE Transactions on Geoscience and Remote Sensing, v. 35, 

n. 5, p. 1316–1337, 1997.  

CHEN, J. M.; MENGES, C. H.; LEBLANC, S. G. Global mapping of foliage clumping 

index using multi-angular satellite data. Remote Sensing of Environment, v. 97, n. 4, 

p. 447–457, set. 2005.  

CHEN, J. M., LIUB, J., LEBLANC, S. G., LACAZEC, R., ROUJEAN, J. L. Multi-

angular optical remote sensing for assessing vegetation structure and carbon 

absorption. v. 84, n. 4, p. 516-525, 2003.  

CHOPPING, M. et al. Forest structure and aboveground biomass in the southwestern 

United States from MODIS and MISR. Remote Sensing of Environment, v. 115, n. 

11, p. 2943–2953, nov. 2011.  

COOPS, N. C. et al. Estimating canopy structure of Douglas-fir forest stands from 

discrete-return LiDAR. Trees, v. 21, n. 3, p. 295–310, jan. 2007.  

DINER, D. J. et al. Multi-angle Imaging SpectroRadiometer (MISR) instrument 

description and experiment overview. IEEE Transactions on Geoscience and Remote 

Sensing, v. 36, n. 4, p. 1072–1087, 1 jul. 1998.  

DISNEY, M.; LEWIS, P.; SAICH, P. 3D modelling of forest canopy structure for 

remote sensing simulations in the optical and microwave domains. Remote Sensing of 

Environment, v. 100, n. 1, p. 114–132, jan. 2006.  

DOMINGUES, T. F. et al. Parameterization of Canopy Structure and Leaf-Level Gas 

Exchange for an Eastern Amazonian Tropical Rain Forest (Tapajós National Forest, 

Pará, Brazil). Earth Interactions, v. 9, n. 17, p. 1–23, out. 2005.  

DOUGHTY, C. E. et al. Drought impact on forest carbon dynamics and fluxes in 

Amazonia. Nature, v. 519, n. 7541, p. 78–82, 4 mar. 2015.  

DOUGHTY, C. E.; GOULDEN, M. L. Seasonal patterns of tropical forest leaf area 

index and CO 2 exchange. Journal of Geophysical Research, v. 113, p. G00B06, 14 

out. 2008.  



74 

 

 

DUBAYAH, R. et al. The global ecosystem dynamics investigation. American 

Geophysical Union, 2014.  

FIGUERA, A. M. S. et al. LBA-ECO CD-04 Leaf Area Index, km 83 Tower Site, 

Tapajos National Forest, Brazil. Data set. Available on-line [http://daac.ornl.gov] 

from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, 

Tennessee, U.S.A., 2011.  

FRANCH, B. et al. Analysis of directional effects on atmospheric correction. Remote 

Sensing of Environment, v. 128, p. 276–288, jan. 2013.  

FRIEDL, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements 

and characterization of new datasets. Remote Sensing of Environment, v. 114, n. 1, p. 

168–182, jan. 2010.  

FROLKING, S. et al. Evaluation of the Sea Winds scatterometer for regional 

monitoring of vegetation phenology. Journal of Geophysical Research: 

Atmospheres, v. 111, n. 17, p. 1–14, 2006.  

FROLKING, S. et al. Tropical forest backscatter anomaly evident in SeaWinds 

scatterometer morning overpass data during 2005 drought in Amazonia. Remote 

Sensing of Environment, v. 115, n. 3, p. 897–907, mar. 2011.  

FU, R. et al. Increased dry-season length over southern Amazonia in recent decades and 

its implication for future climate projection. Proceedings of the National Academy of 

Sciences of the United States of America, v. 110, n. 45, 2013.  

GALVAO, L. S. et al. On intra-annual EVI variability in the dry season of tropical 

forest: A case study with MODIS and hyperspectral data. Remote Sensing of 

Environment, v. 115, n. 9, p. 2350–2359, set. 2011.  

GALVAO, L. S. et al. View-illumination effects on hyperspectral vegetation indices in 

the Amazonian tropical forest. International Journal of Applied Earth Observation 

and Geoinformation, v. 21, n. 1, p. 291–300, abr. 2012.  

GALVÃO, L. S. et al. View-illumination effects on hyperspectral vegetation indices in 

the Amazonian tropical forest. International Journal of Applied Earth Observation 

and Geoinformation, v. 21, p. 291–300, abr. 2013.  

GAO, B.-C. Water vapor retrievals using Moderate Resolution Imaging 

Spectroradiometer (MODIS) near-infrared channels. Journal of Geophysical 

Research, v. 108, n. D13, p. 4389, 2003a.  

GAO, F. Detecting vegetation structure using a kernel-based BRDF model. Remote 

Sensing of Environment, v. 86, n. 2, p. 198–205, 30 jul. 2003b.  



75 

 

 

GATTI, L. V et al. Drought sensitivity of Amazonian carbon balance revealed by 

atmospheric measurements. Nature, v. 506, n. 7486, p. 76–80, 6 fev. 2014.  

GLENN, E. P. et al. Relationship Between Remotely-sensed Vegetation Indices, 

Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and 

Cannot Tell Us About the Landscape. Sensors, v. 8, n. 4, p. 2136–2160, mar. 2008.  

GOEL, N. S. Models of vegetation canopy reflectance and their use in estimation of 

biophysical parameters from reflectance data. Remote Sensing Reviews, v. 4, n. 1, p. 

1–212, 19 jan. 1988.  

GONÇALVES, F. G. Vertical structure and aboveground biomass of tropical 

forests from lidar remote sensing, 23 jan. 2016. Disponível em: 

<http://ir.library.oregonstate.edu.rajatorrent.com/xmlui/handle/1957/54938>. Acesso 

em: 29 set. 2015 

GRAHAM, E. A et al. Cloud cover limits net CO2 uptake and growth of a rainforest 

tree during tropical rainy seasons. Proceedings of the National Academy of Sciences 

of the United States of America, v. 100, n. 2, p. 572–6, jan. 2003.  

GUAN, K. et al. Photosynthetic seasonality of global tropical forests constrained by 

hydroclimate. Nature Geoscience, v. advance on, 9 mar. 2015.  

HAPKE, B.; NELSON, R.; SMYTHE, W. The Opposition Effect of the Moon: 

Coherent BackscatterandShadow Hiding. Icarus, v. 133, n. 1, p. 89–97, maio 1998.  

HARDING, D. J. ICESat waveform measurements of within-footprint topographic 

relief and vegetation vertical structure. Geophysical Research Letters, v. 32, n. 21, p. 

L21S10, 2005.  

HEALEY, S. P. et al. A sample design for globally consistent biomass estimation using 

lidar data from the Geoscience Laser Altimeter System (GLAS). Carbon balance and 

management, v. 7, n. 1, p. 10, 2012a.  

HEALEY, S. P. et al. A sample design for globally consistent biomass estimation using 

lidar data from the Geoscience Laser Altimeter System (GLAS). Carbon balance and 

management, v. 7, n. 1, p. 10, 2012b.  

HILKER, T. et al. A new data fusion model for high spatial- and temporal-resolution 

mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of 

Environment, v. 113, n. 8, p. 1613–1627, ago. 2009.  

HILKER, T. et al. Comparing canopy metrics derived from terrestrial and airborne laser 

scanning in a Douglas-fir dominated forest stand. Trees, v. 24, n. 5, p. 819–832, jun. 

2010.  



76 

 

 

HILKER, T. et al. Comparison of Terrestrial and Airborne LiDAR in Describing Stand 

Structure of a. Journal of Forestry, n. March, p. 97–104, 2012a.  

HILKER, T. et al. Remote sensing of tropical ecosystems: Atmospheric correction and 

cloud masking matter. Remote Sensing of Environment, v. 127, p. 370–384, dez. 

2012b.  

HILKER, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. 

Proceedings of the National Academy of Sciences, v. 111, n. 45, p. 16041–16046, out. 

2014.  

HILKER, T. et al. On the measurability of change in Amazon vegetation from MODIS. 

Remote Sensing of Environment, v. 166, p. 233–242, jun. 2015a.  

HILKER, T. et al. On the measurability of change in Amazon vegetation from MODIS. 

Remote Sensing of Environment, v. 166, p. 233–242, jun. 2015b.  

HSU, N. C. et al. Aerosol Properties Over Bright-Reflecting Source Regions. IEEE 

Transactions on Geoscience and Remote Sensing, v. 42, n. 3, p. 557–569, mar. 2004.  

HU, J. et al. Performance of the MISR LAI and FPAR algorithm: a case study in Africa. 

Remote Sensing of Environment, v. 88, n. 3, p. 324–340, dez. 2003.  

HUETE, A. et al. Overview of the radiometric and biophysical performance of the 

MODIS vegetation indices. Remote Sensing of Environment, v. 83, n. 1-2, p. 195–

213, 2002.  

HUETE, A.; JUSTICE, C.; LIU, H. Development of vegetation and soil indices for 

MODIS-EOS. Remote Sensing of Environment, v. 49, n. 3, p. 224–234, set. 1994.  

HUETE, A. R. et al. Amazon rainforests green-up with sunlight in dry season. 

Geophysical Research Letters, v. 33, n. 6, p. L06405, 2006a.  

HUETE, A. R. et al. Amazon rainforests green-up with sunlight in dry season. 

Geophysical Research Letters, v. 33, n. 6, p. L06405, 2006b.  

HUTYRA, L. R. et al. Seasonal controls on the exchange of carbon and water in an 

Amazonian rain forest. Journal of Geophysical Research, v. 112, n. G3, p. G03008, 

ago. 2007.  

BRAZIL, IBGE. Manual Técnico da Vegetação Brasileira. Manuais Técnicos em 

Geociências, n. 1, 1992.  

JACQUEMOUD, S.; BARET, F.; HANOCQ, J. F. Modeling spectral and bidirectional 

soil reflectance. Remote Sensing of Environment, v. 41, n. 2-3, p. 123–132, ago. 1992.  



77 

 

 

JUSTICE, C. O. et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): 

land remote sensing for global change research. IEEE Transactions on Geoscience 

and Remote Sensing, v. 36, n. 4, p. 1228–1249, jul. 1998a.  

JUSTICE, C. O. et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): 

land remote sensing for global change research. IEEE Transactions on Geoscience 

and Remote Sensing, v. 36, n. 4, p. 1228–1249, jul. 1998b.  

KAUFMAN, Y. J. et al. The MODIS 2.1-&amp;amp;mu;m channel-correlation with 

visible reflectance for use in remote sensing of aerosol. IEEE Transactions on 

Geoscience and Remote Sensing, v. 35, n. 5, p. 1286–1298, 1997.  

KAUFMANN, R. K. et al. Effect of orbital drift and sensor changes on the time series 

of AVHRR vegetation index data. IEEE Transactions on Geoscience and Remote 

Sensing, v. 38, n. 6, p. 2584–2597, 2000.  

KEMPENEERS, P. et al. Model inversion for chlorophyll estimation in open canopies 

from hyperspectral imagery. International Journal of Remote Sensing, v. 29, n. 17-

18, p. 5093–5111, set. 2008.  

KING, M. D.; GREENSTONE, R. 1999 EOS reference handbook: a guide to NASA’s 

Earth Science Enterprise and the Earth Observing System. 1999 EOS reference 

handbook: a guide to NASA’s Earth Science Enterprise and the Earth Observing 

System, by King, Michael D.; Greenstone, Reynold. Greenbelt, Md.: NASA/Goddard 

Space Flight Center,[1999], v. 1, 1999.  

KNORR, W. et al. Combining remote sensing techniques with productivity models: 

a case study for monitoring carbon stocks in northern European forests. [s.l.] 

OECD Publications, 2004.  

KNYAZIKHIN, Y. et al. Estimation of vegetation canopy leaf area index and fraction 

of absorbed photosynthetically active radiation from atmosphere-corrected MISR data. 

Journal of Geophysical Research, v. 103, n. D24, p. 32239, dez. 1998.  

LAGOUARDE, J.-P. et al. Spatialization of sensible heat flux over a heterogeneous 

landscape. Agronomie, v. 22, n. 6, p. 627–633, set. 2002.  

LEBLANC, S. G. et al. Canada-wide foliage clumping index mapping from 

multiangular POLDER measurements. Canadian Journal of Remote Sensing, v. 31, n. 

5, p. 364–376, out. 2005.  

LEFSKY, M. A. et al. Lidar Remote Sensing for Ecosystem Studies. BioScience, v. 52, 

n. 1, p. 19, 2002.  

LEFSKY, M. A. et al. Estimates of forest canopy height and aboveground biomass 

using ICESat. Geophysical Research Letters, v. 32, n. 22, p. L22S02, 2005.  



78 

 

 

LEVY, R. C. et al. Second-generation operational algorithm: Retrieval of aerosol 

properties over land from inversion of Moderate Resolution Imaging Spectroradiometer 

spectral reflectance. Journal of Geophysical Research: Atmospheres, v. 112, n. D13, 

p. n/a–n/a, 16 jul. 2007.  

LEWIS, S. L. et al. The 2010 Amazon drought. Science (New York, N.Y.), v. 331, n. 

6017, p. 554, 2011.  

LI, X., STRAHLER, A. H. Geometric-Optical Bidirectional Reflectance Modeling of a 

Conifer Forest Canopy. IEEE Transactions on Geoscience and Remote Sensing,v. 

24,  n. 6, p. 906–919, 1986.  

LIM, K. et al. LiDAR remote sensing of forest structure. Progress in Physical 

Geography, v. 27, n. 1, p. 88–106, mar. 2003a.  

LIM, K. et al. LiDAR remote sensing of forest structure. Progress in Physical 

Geography, v. 27, n. 1, p. 88–106, 1 mar. 2003b.  

LOS, S. O. et al. A method to convert AVHRR Normalized Difference Vegetation 

Index time series to a standard viewing and illumination geometry. Remote Sensing of 

Environment, v. 99, p. 400–411, 2005.  

LOVELL, J. L. et al. Using airborne and ground-based ranging lidar to measure canopy 

structure in Australian forests. Canadian Journal of Remote Sensing, v. 29, n. 5, p. 

607–622, out. 2003.  

LYAPUSTIN, A. et al. Science impact of MODIS C5 calibration degradation and C6+ 

improvements. Atmospheric Measurement Techniques Discussions, v. 7, n. 7, p. 

7281–7319, 2014.  

LYAPUSTIN, A. et al. Multiangle implementation of atmospheric correction 

(MAIAC): 1. Radiative transfer basis and look-up tables. Journal of Geophysical 

Research, v. 116, n. D3, p. D03210, fev. 2011.  

LYAPUSTIN, A. et al. Multi-Angle Implementation of Atmospheric Correction for 

MODIS (MAIAC). Part 3: Atmospheric Correction. Remote Sensing of Environment, 

v. 127, p. 385–393, 2012a.  

LYAPUSTIN, A. I. Atmospheric and geometrical effects on land surface albedo. 

Journal of Geophysical Research, v. 104, n. D4, p. 4127, fev. 1999.  

LYAPUSTIN, A. I. et al. Remote sensing of tropical ecosystems: Atmospheric 

correction and cloud masking matter. Remote Sensing of Environment, v. 127, p. 

385–393, dez. 2012b.  



79 

 

 

LYAPUSTIN, A. I. et al. Multi-angle implementation of atmospheric correction for 

MODIS (MAIAC): 3. Atmospheric correction. Remote Sensing of Environment, v. 

127, p. 385–393, dez. 2012c.  

LYAPUSTIN, A. I.; MULDASHEV, T. Z. METHOD OF SPHERICAL HARMONICS 

IN THE RADIATIVE TRANSFER PROBLEM WITH NON-LAMBERTIAN 

SURFACE. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 61, n. 

4, p. 545–555, mar. 1999.  

LYAPUSTIN, A.; KNYAZIKHIN, Y. Green’s function method for the radiative 

transfer. Aplied Optics, v. 40, n. 21, p. 3495–3501, 2001.  

LYAPUSTIN, A.; WANG, Y.; FREY, R. An automatic cloud mask algorithm based on 

time series of MODIS measurements. Journal of Geophysical Research, v. 113, n. 

D16, p. D16207, ago. 2008.  

LYAPUSTIN, A.I.; MARTONCHIK, J.; WANG, Y.; LASZLO, I.; KORKIN, S. 

Multiangle implementation of atmospheric correction (MAIAC): 1. radiative transfer 

basis and look‐up tables. Journal of Geophysical Research: Atmospheres, v. 116, n. 

D3, 2011. 

MAGNUSSEN, S.; BOUDEWYN, P. Derivations of stand heights from airborne laser 

scanner data with canopy-based quantile estimators. Canadian Journal of Forest 

Research, v. 28, n. 7, p. 1016-1031, 1998. 

MAGNUSSON, M.; FRANSSON, J. E. S.; HOLMGREN, J. Effects on estimation 

accuracy of forest variables using different pulse density of laser data. Forest science. 

v. 53, n. 6, 619-626, 2007.  

MALHADO, A.; COSTA, M. Seasonal leaf dynamics in an Amazonian tropical forest. 

Forest Ecology and Management, v. 258, n.7, p.1161-1165, 2009.  

MALHI, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science, v. 

319, n. 5860, p. 169-172, 2008.  

MALHI, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced 

dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences 

of the United States of America, v. 106, n. 49, p. 20610–5, 8 dez. 2009.  

MARENGO, J. A. et al. The drought of Amazonia in 2005. Journal of Climate, v. 21, 

n. 3, p. 495–516, fev. 2008.  

MARENGO, J. A. et al. The drought of 2010 in the context of historical droughts in the 

Amazon region. Geophysical Research Letters, v. 38, n. 12, 2011.  



80 

 

 

MEIR, P. et al. The fate of assimilated carbon during drought: impacts on respiration in 

Amazon rainforests. Philosophical transactions of the Royal Society of London. 

Series B, Biological sciences, v. 363, n. 1498, p. 1849–55, 2008.  

MORTON, D. C. et al. Amazon forests maintain consistent canopy structure and 

greenness during the dry season. Nature, v. doi:10.103, n. 7487, p. 221–4, fev. 2014.  

MOURA, Y. M. et al. Use of MISR/Terra data to study intra- and inter-annual EVI 

variations in the dry season of tropical forest. Remote Sensing of Environment, v. 127, 

p. 260–270, dez. 2012.  

MYNENI, R. . et al. Global products of vegetation leaf area and fraction absorbed PAR 

from year one of MODIS data. Remote Sensing of Environment, v. 83, n. 1-2, p. 214–

231, nov. 2002.  

MYNENI, R. B. et al. Large seasonal swings in leaf area of Amazon rainforests. 

Proceedings of the National Academy of Sciences of the United States of America, 

v. 104, n. 12, p. 4820–3, 20 mar. 2007.  

NÆSSET, E. Estimating timber volume of forest stands using airborne laser scanner 

data. Remote Sensing of Environment, v. 61, n. 2, p. 246–253, ago. 1997a.  

NÆSSET, E. Estimating timber volume of forest stands using airborne laser scanner 

data. Remote Sensing of Environment, v. 61, n. 2, p. 246–253, ago. 1997b.  

NÆSSET, E. Predicting forest stand characteristics with airborne scanning laser using a 

practical two-stage procedure and field data. Remote Sensing of Environment, v. 80, 

n. 1, p. 88–99, abr. 2002a.  

NÆSSET, E. Predicting forest stand characteristics with airborne scanning laser using a 

practical two-stage procedure and field data. Remote Sensing of Environment, v. 80, 

n. 1, p. 88–99, abr. 2002b.  

NEGRÓN JUÁREZ, R. I. et al. An improved estimate of leaf area index based on the 

histogram analysis of hemispherical photographs. Agricultural and Forest 

Meteorology, v. 149, n. 6-7, p. 920–928, jun. 2009.  

NEPSTAD, D. C. et al. The role of deep roots in the hydrological and carbon cycles of 

Amazonian forests and pastures. Nature, v. 372, n. 6507, p. 666–669, dez. 1994.  

PALACE, M. W. et al. Estimating forest structure in a tropical forest using field 

measurements, a synthetic model and discrete return lidar data. Remote Sensing of 

Environment, v. 161, p. 1–11, maio 2015.  



81 

 

 

PANG, Y. et al. Temperate forest height estimation performance using ICESat GLAS 

data from different observation periods. Remote Sensing and Spatial Information 

Sciences. v. 37, 1 jan. 2008.  

PERSSON, A.; HOLMGREN, J.; SÖDERMAN, U. Detecting and measuring individual 

trees using an airborne laser scanner. Photogrammetric engineering and remote 

sensing, v. 68, n. 9, p. 925–932, 2002.  

PHILLIPS, O. L. et al. Drought sensitivity of the Amazon Rainforest. Disponível em: 

<http://www.sciencemag.org/content/323/5919/1344.full.pdf>. Acesso em: 5 ago. 2014.  

POPESCU, S. C. et al. Satellite lidar vs. small footprint airborne lidar: Comparing the 

accuracy of aboveground biomass estimates and forest structure metrics at footprint 

level. Remote Sensing of Environment, v. 115, n. 11, p. 2786–2797, nov. 2011.  

RANSON, K. J. et al. Sun-view angle effects on reflectance factors of corn canopies. 

Remote Sensing of Environment, v. 18, n. 2, p. 147–161, out. 1985.  

RAUTIAINEN, M. Retrieval of leaf area index for a coniferous forest by inverting a 

forest reflectance model. Remote Sensing of Environment, v. 99, n. 3, p. 295–303, 30 

nov. 2005.  

READING, R. P.; BEDUNAH, D. J.; AMGALANBAATAR, S. Rangelands of 

Central asia: proceedings of the conference on transformations, issues, and future 

challenges. Fort Collins, CO: Department of Agriculture, Forest Service, Rocky 

Mountain Research Station, 2006 

REMER, L. A. et al. The MODIS Aerosol Algorithm, Products, and Validation. 

Journal of the Atmospheric Sciences, v. 62, n. 4, p. 947–973, 24 abr. 2005.  

RESTREPO-COUPE, N. et al. What drives the seasonality of photosynthesis across the 

Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil 

flux network. Agricultural and Forest Meteorology, v. 182-183, p. 128–144, dez. 

2013.  

ROSS, I. The radiation regime and architecture of plant stands. Springer Science & 

Business Media, 2012. 

ROUJEAN, J.-L. Global mapping of vegetation parameters from POLDER 

multiangular measurements for studies of surface-atmosphere interactions: A pragmatic 

method and its validation. Journal of Geophysical Research, v. 107, n. D12, p. 4150, 

2002.  

ROUJEAN, JEAN-LOUIS, LEROY, MARC, DESCHAMPS, P.-Y. A bidirectional 

reflectance model of the earth’s surface for the correction of remote sensing data. 

Journal of Geophysical Research, v. 97, n. 92, 1992.  



82 

 

 

SAATCHI, S. et al. Persistent effects of a severe drought on Amazonian forest canopy. 

Proceedings of the National Academy of Sciences of the United States of America, 

v. 110, n. 2, p. 565–70, 2013.  

SAATCHI, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across 

three continents. Proceedings of the National Academy of Sciences of the United 

States of America, v. 108, n. 24, p. 9899–904, 2011.  

SALESKA, S. R. et al. Amazon forests green-up during 2005 drought. Science (New 

York, N.Y.), v. 318, n. 5850, p. 612, 2007a.  

SALESKA, S. R. et al. Amazon forests green-up during 2005 drought. Science (New 

York, N.Y.), v. 318, n. 5850, p. 612, 2007b.  

SAMANTA, A. et al. Amazon forests did not green-up during the 2005 drought. 

Geophysical Research Letters, v. 37, n. 5, 2010.  

SAMANTA, A. et al. Seasonal changes in leaf area of Amazon forests from leaf 

flushing and abscission. Journal of Geophysical Research, v. 117, 2012a.  

SAMANTA, A. et al. Why Is Remote Sensing of Amazon Forest Greenness So 

Challenging? Earth Interactions, v. 16, n. 7, 2012b.  

SAMANTA, A.; GANGULY, S.; MYNENI, R. B. MODIS Enhanced Vegetation Index 

data do not show greening of Amazon forests during the 2005 drought. The New 

phytologist, v. 189, n. 1, 2011.  

SCHAAF, C. B. et al. First operational BRDF, albedo nadir reflectance products from 

MODIS. Remote Sensing of Environment, v. 83, n. 1-2, p. 135–148, 2002.  

SCHURR, F. M. et al. How to understand species’ niches and range dynamics: a 

demographic research agenda for biogeography. Journal of Biogeography, v. 39, n. 12, 

p. 2146–2162, 2012.  

SCHUTZ, B. E. et al. Overview of the ICESat Mission. Geophysical Research 

Letters, v. 32, n. 21, 2005.  

SCURLOCK, J. M. O.; ASNER, G. P.; GOWER, S. T. Global leaf area index from field 

measurements, 1932-2000. Data set. Available on-line [http://www.daac.ornl.gov] 

from Oak Ridge National Laboratory Distributed Active Archive Center, Oak 

Ridge, Tennessee, U.S.A., 2001.  

SHAW, R. H.; PEREIRA, A. . Aerodynamic roughness of a plant canopy: A numerical 

experiment. Agricultural Meteorology, v. 26, n. 1, p. 51–65, 1982.  



83 

 

 

SHUKLA, J.; NOBRE, C.; SELLERS, P. Amazon deforestation and climate change. 

Science, v. 247, n. 4948, p. 1322–1325, 1990.  

SILVA, F. B. et al. Large-scale heterogeneity of Amazonian phenology revealed from 

26-year long AVHRR/NDVI time-series. Environmental Research Letters, v. 8, n. 2, 

2013a.  

SILVA, F. B. et al. Large-scale heterogeneity of Amazonian phenology revealed from 

26-year long AVHRR/NDVI time-series. Environmental Research Letters, v. 8, n. 2, 

2013b.  

SIMS, D. A. et al. Seasonal and inter-annual variation in view angle effects on MODIS 

vegetation indices at three forest sites. Remote Sensing of Environment, v. 115, n. 12, 

2011.  

STARK, S. C. et al. Amazon forest carbon dynamics predicted by profiles of canopy 

leaf area and light environment. Ecology letters, v. 15, n. 12, p. 1406–14, 2012.  

STEEGE, H. TER; PITMAN, N. A spatial model of tree α-diversity and tree density for 

the Amazon. Biodiversity &  Conservation, v.12, p. 2255 - 2277, 2003.   

STRAHLER, A. H.; MULLER, J. P. MODIS BRDF Albedo product : algorithm 

theoretical basis document. MODIS Product ID: MOD43, v. Version 5., n. April, p. 1–

53, 1999.  

STRAHLER, A. H. Vegetation canopy reflectance modeling—recent developments and 

remote sensing perspectives∗. Remote Sensing Reviews, v. 15, n. 1-4, p. 179–194, out. 

2009a.  

STRAHLER, A. H. Vegetation canopy reflectance modeling—recent developments and 

remote sensing perspectives∗. Remote Sensing Reviews, v. 15, n. 1-4, p. 179–194, 19 

out. 2009b.  

STRAHLER, A.; JUPP, D. Modeling bidirectional reflectance of forests and woodlands 

using Boolean models and geometric optics. Remote Sensing of Environment, 1990.  

STYSLEY, P. R. et al. Long term performance of the High Output Maximum 

Efficiency Resonator (HOMER) laser for NASA׳s Global Ecosystem Dynamics 

Investigation (GEDI) lidar. Optics & Laser Technology, v. 68, p. 67–72, 2015.  

SUN, G. et al. Forest vertical structure from GLAS: An evaluation using LVIS and 

SRTM data. Remote Sensing of Environment, v. 112, n. 1, p. 107–117, 2008.  

TER STEEGE, H. et al. Continental-scale patterns of canopy tree composition and 

function across Amazonia. Nature, v. 443, n. 7110, p. 444–447, 2006.  



84 

 

 

TOWNSEND, A. R.; ASNER, G. P.; CLEVELAND, C. C. The biogeochemical 

heterogeneity of tropical forests. Trends in ecology & evolution, v. 23, n. 8, p. 424–31, 

2008.  

TUCKER, C. J. Red and photographic infrared linear combinations for monitoring 

vegetation. Remote Sensing of Environment, v. 8, n. 2, p. 127–150, 1979.  

VERSTRAETE, M. M.; PINTY, B.; MYNENI, R. B. Potential and limitations of 

information extraction on the terrestrial biosphere from satellite remote sensing. 

Remote Sensing of Environment, v. 58, n. 2, p. 201–214, 1996.  

VIEIRA, S. et al. Forest structure and carbon dynamics in Amazonian tropical rain 

forests. Oecologia, v. 140, n. 3, p. 468–79, 2004.  

VILLAR, E. C. J. et al. Spatio-temporal rainfall variability in the Amazon basin 

countries ( Brazil , Peru , Bolivia , Colombia , and Ecuador ). International Journal of 

Climatology, v. 1594, n. December 2008, p. 1574–1594, 2009.  

VOURLITIS, G. L. et al. Variations in evapotranspiration and climate for an 

Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles. 

International journal of biometeorology, v. 59, n. 2, p. 217–30, 2015.  

WAGNER, F. et al. Asynchronism in leaf and wood production in tropical forests: a 

study combining satellite and ground-based measurements. Biogeosciences, v. 10, n. 

11, p. 7307–7321, 2013.  

WAGNER, F. et al. Pan-tropical analysis of climate effects on seasonal tree growth. 

PloS one, v. 9, n. 3, p. e92337, 2014.  

WALTHALL, C. L. A Study of Reflectance Anisotropy and Canopy Structure Using a 

Simple Empirical Model. Remote Sensing of Environment, v. 128, n. May 1995, p. 

118–128, 1997.  

WANG, Y. et al. Assessment of biases in MODIS surface reflectance due to Lambertian 

approximation. Remote Sensing of Environment, v. 114, n. 11, p. 2791–2801, 2010.  

WANNER, W.; LI, X.; STRAHLER, A. H. On the derivation of kernels for kernel-

driven models of bidirectional reflectance. Journal of Geophysical Research, v. 100, 

n. D10, p. 21077, 1995.  

WIDLOWSKI, J.-L. et al. Canopy Structure Parameters Derived from Multi-Angular 

Remote Sensing Data for Terrestrial Carbon Studies. Climatic Change, v. 67, n. 2-3, p. 

403–415, 2004.  



85 

 

 

WIDLOWSKI, J.-L. et al. Using 1-D models to interpret the reflectance anisotropy of 3-

D canopy targets: issues and caveats. IEEE Transactions on Geoscience and Remote 

Sensing, v. 43, n. 9, p. 2008–2017, 2005a.  

WIDLOWSKI, J.-L. et al. Using 1-D models to interpret the reflectance anisotropy of 3-

D canopy targets: issues and caveats. IEEE Transactions on Geoscience and Remote 

Sensing, v. 43, n. 9, p. 2008–2017, 2005b.  

WILLIAMS, M. et al. Seasonal variation in net carbon exchange and evapotranspiration 

in a Brazilian rain forest: a modelling analysis. Plant, Cell and Environment, v. 21, n. 

10, p. 953–968, 1998.  

WOLFE, R. E. et al. Achieving sub-pixel geolocation accuracy in support of MODIS 

land science. Remote Sensing of Environment, v. 83, n. 1-2, p. 31–49, 2002a.  

WOLFE, R. E. et al. Achieving sub-pixel geolocation accuracy in support of MODIS 

land science. Remote Sensing of Environment, v. 83, n. 1-2, p. 31–49, 2002b.  

WULDER, M. A. et al. Lidar sampling for large-area forest characterization: A review. 

Remote Sensing of Environment, v. 121, p. 196–209, 2012.  

XU, L. et al. Widespread decline in greenness of Amazonian vegetation due to the 2010 

drought. Geophysical Research Letters, v. 38, n. 7, 2011.  

YU, Y.; YANG, X.; FAN, W. Estimates of forest structure parameters from GLAS data 

and multi-angle imaging spectrometer data. International Journal of Applied Earth 

Observation and Geoinformation, v. 38, p. 65–71, 2015.  

ZANCHI, F. B. et al. Estimativa do Índice de Área Foliar (IAF) e Biomassa em 

pastagem no estado de Rondônia, Brasil. Acta Amazonica, v. 39, n. 2, p. 335–347, 

2009.  

ZELAZOWSKI, P. et al. Reconciling satellite-derived atmospheric properties with fine-

resolution land imagery: Insights for atmospheric correction. Journal of Geophysical 

Research, v. 116, n. D18, p. D18308, 2011.  

ZHANG, Y. et al. Assessing the information content of multiangle satellite data for 

mapping biomes. Remote Sensing of Environment, v. 80, n. 3, p. 418–434, 2002.  

ZWALLY, H. J. et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and 

land. Journal of Geodynamics, v. 34, n. 3-4, p. 405–445, 2002.  

 

 


	CAPA
	VERSO
	FOLHA DE ROSTO
	FICHA CATALOGRÁFICA
	FOLHA DE APROVAÇÃO
	EPÍGRAFE
	ACKNOWLEGDMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CONTENTS
	1 INTRODUCTION
	2 THEORETICAL BACKGROUND
	2.1. Directional scattering in vegetated surfaces
	2.2. Moderate Resolution Imaging Spectroradiometer (MODIS)
	2.3. Multi-Angle Implementation of Atmospheric Correction (MAIAC)
	2.4. Light Detection and Ranging (LiDAR)

	3 A NEW APPROACH TO CHARACTERIZE ANISOTROPY SURFACE REFLECTANCE FROM MULTI-ANGLE MODIS/MAIAC DATA
	3.1. BRDF retrievals from MODIS/MAIAC

	4 VALIDATION OF VEGETATION STRUCTURE DERIVED FROM ANISOTROPY USING DIFFERENT DATASETS
	4.1. Introduction
	4.2. Material and Methods
	4.2.1. Study area
	4.2.2. Field inventory data
	4.2.3. Airborne Laser Scanning (ALS) data
	4.2.4. GLAS/ICESat data and structural metrics from vertical profiles
	4.2.5. SeaWinds/QuikSCAT data
	4.2.6. Determination of surface anisotropy from multi-angle MODIS data

	4.3. Results
	4.4. Discussion
	4.5. Conclusions

	5 USE OF MULTI-ANGLE MODIS ANISOTROPY TO STUDY SEASONAL AND DROUGHT EFFECTS IN THE AMAZONIAN FORESTS
	5.1. Introduction
	5.2. Material and Methods
	5.2.1. LiDAR and field based estimates of Leaf Area
	5.2.2. Estimates onset and duration of Amazon dry seasons

	5.3. Results
	5.4. Discussion
	5.5. Conclusions

	6 SUMMARY AND FINAL REMARKS
	REFERENCES

