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ABSTRACT 

The eutrophication of aquatic systems is a worldwide environmental problem. A 
major aftermath is health-inflicting toxic algal bloom, which can affect humans. 
Therefore, aquatic systems, mostly near urban environments require 
environmental monitoring. The use of remote sensing for monitoring algal 
blooms via bio-optical modelling is based on the spectral behaviour of the 
optically active components (OACs) in the water to estimate their 
concentrations. The detection of cyanobacteria, one of the main phyla of 
harmful algae, takes place via the identification of a unique pigment in inland 
waters cyanobacteria, the phycocyanin (PC). Remote sensing techniques, such 
as semi-empirical algorithms - a sort of bio-optical model - have been used to 
estimate PC concentration in aquatic systems using in situ hyperspectral data 
and satellite multispectral data. However, there is a lack in scientific works 
tackling PC prediction in tropical inland waters bearing PC in low concentration 
such as in city-supplying Guarapiranga reservoir at the southwestern region of 
São Paulo city. This is mostly true because scientific studies attempt to 
generate models based on bloom events. However, much uncertainty is 
associated with models results at the low concentration ranges. Therefore the 
goal of this research was to evaluate the re-parameterization of a semi-
empirical algorithm for a tropical oligo-mesotrophic inland water. Radiometric, 
fluorometric, limnological, and multi-parameter sonde data were collected in 
Guarapiranga Reservoir, located. This thesis presents the findings which led to 
the algorithm re-parameterisation. Results showed that the calibration dataset 
(n=15) improved PC prediction R2 by 15.3% after the re-parameterisation; and 
for the validation dataset (n=19), PC prediction R2 was improved by 4.79%. 
NRMSE for the calibration dataset was bettered by 1.76%; and it was almost 
equalised for the validation dataset (differed by 0.19%). The new re-
parameterisation correlation coefficient developed in this study presented a 
better R2 (68%) than that of the original algorithm (46%). These correlations 
linked the band ratios used as enhancing coefficients to known PC spectral 
features. The bio-optical, radiometric, and water quality characterisation of 
Guarapiranga reservoir, and the evaluation of signal processing techniques of 
radiometric data yielded results that supported the generation of the new re-
parameterisation coefficient. Such results were related to features in the blue-
to-green spectral region capable of improving PC prediction. Uncertainties in 
the estimations are mainly due to the lack of in situ data. The re-
parameterization was also considered for a synthetic dataset of the Ocean & 
Land Colour Imager (OLCI) sensor/Sentinel 3. The simulation of OLCI data was 
conducted using its spectral response function, and it was important because of 
its potential use in environmental monitoring. Overall results were encouraging, 
however, further studies are suggested to further validate this new algorithm. 
Nevertheless, the development of a semi-empirical algorithm for low-
concentration PC prediction in tropical inland waters is an important step for the 
development of an ever-improving robust tool for water quality monitoring.  
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REPARAMETRIZAÇÃO DE UM ALGORITMO SEMI-EMPÍRICO DE TRÊS 

BANDAS PARA A ESTIMAÇÃO DO PIGMENTO C-FICOCIANINA DE UM 

RESERVATÓRIO TROPICAL OPTICAMENTE COMPLEXO 

RESUMO 

A eutrofização de sistemas aquáticos é um problema ambiental global. Uma 

consequência de alta importância disso é a floração de algas tóxicas a qual 

pode afetar os seres humanos. Portanto, sistemas aquáticos, principalmente 

aqueles próximos a centros urbanos requerem monitoramento ambiental. A 

utilização de sensoriamento remoto para o monitoramento de florações de 

algas através da modelagem bio-óptica é baseada no comportamento espectral 

dos componentes opticamente ativos (OACs) da água, de modo a estimar suas 

concentrações. A detecção de cianobactérias, um dos filos mais importantes 

dentre as algas tóxicas, ocorre através da identificação de um pigmento nestes 

micro-organismos de águas interiores denominado, ficocianina (PC). Técnicas 

de sensoriamento remoto, tais como algoritmos semiempíricos – um tipo de 

modelo bio-óptico – tem sido utilizado para estimar concentrações de PC em 

sistemas aquáticos utilizando dados hiperespectrais in situ e dados de satélite 

multiespectrais. Entretanto, há uma deficiência em trabalhos científicos 

abordando predição de PC em águas interiores tropicais com baixas 

concentrações de PC tais como o reservatório de Guarapiranga, no sudoeste 

da capital de São Paulo. Isto é uma realidade, pois estudos científicos tendem 

a gerar modelos baseados em eventos de florações em que há maiores 

concentrações de PC. Porém, muita incerteza está associada a resultados de 

modelos em baixas concentrações de PC. Portanto, o objetivo deste trabalho 

foi avaliar a reparametrização de um algoritmo semiempírico para uma água 

interior oligo-mesotrófica tropical. Dados radiométricos, fluorométricos, 

limnológicos, e de uma sonda multiparâmetro foram coletados no reservatório 

de Guarapiranga. Esta dissertação apresenta os resultados que levaram à 

reparametrização do algoritmo. Os resultados mostraram que o R2 do conjunto 

de dados de calibração (n=15) melhorou a predição de PC em 15.3% após a 

reparametrização; e o R2 do conjunto de dados de validação (n=19), melhorou 

a predição em 4.79%. O NRMSE para o conjunto de dados de calibração foi 

melhorado em 1.76%; e os NRMSEs da validação praticamente estabilizaram 

(diferenciando-se em 0.19%). O coeficiente de correlação desenvolvido para a 

nova reparametrização neste estudo apresentou um R2 (68%) melhor do que o 

coeficiente do algoritmo original (R2 = 46%) com o qual foi comparado. Estas 

correlações associam razões de bandas, utilizadas como coeficientes de 
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melhoramento, a características espectrais de PC já conhecidas. A 

caracterização bio-óptica, radiométrica, e de qualidade da água do reservatório, 

bem como a avaliação de técnicas de processamento de sinais dos dados 

radiométricos geraram resultados que apoiaram a geração do coeficiente de 

reparametrização. Tais resultados estiveram relacionados a características nas 

regiões espectrais do azul-verde como sendo capazes de melhorar a predição 

de PC. Incertezas nas estimações são essencialmente devidas à falta de dados 

in situ. A reparametrização também foi considerada para um conjunto de dados 

sintético do sensor Ocean & Land Colour Imager (OLCI)/Sentinel3. A simulação 

dos dados do OLCI foi realizada utilizando a sua função de respota espectral, e 

foi importante por causa do seu uso potencial em monitoramento ambiental. De 

maneira geral os resultados foram encorajadores, entretanto, estudos futuros 

são sugeridos para uma validação mais robusta deste novo algoritmo. Contudo, 

o desenvolvimento de um algoritmo semiempírico para a predição de PC em 

baixas concentrações em águas interiores tropicais é um passo importante 

para o desenvolvimento de um monitoramento de qualidade da água passível 

de ser melhorado continuamente. 

 

 

  



xv 
 

LIST OF FIGURES 

Page 

Figure 2.1 – Light as a function of depth in different trophic states temperate 

lakes. ........................................................................................................... 9 

Figure 2.2 – Schematic of light entering water, where it can be reflected back, 

scatter off of a particle, or be absorbed in the water column .................... 10 

Figure 2.3 – Typical spectral regions investigated in bio-optical models: 

miahighpig+ bbspm, as minimum absorption by pigments; acya , as absorption 

by phycocyanin-containing cyanobacteria; fluchl
*, as fluorescence by 

chlorophyll; red.achl , as red chlorophyll absorption trough; refh.chl+cell , as 

reflectance from high chlorophyll concentration and phytoplankton cell 

structure; absw  as high absorption by water at longer wavelengths; refspm , 

as reflectance by other particulate matter. ................................................ 14 

Figure 2.4 – Flowchart of bio-optical models classification ................................ 16 

Figure 3.1 – Study Area Location. Sampling stations are depicted as red dots. 

Local bathymetry is in shaded blue. Surrounding altitude is expressed in 

green-brown shades. Bathymetry shown in this figure was acquired in this 

study. Altitude data is from Shuttle Radar Topography Mission (SRTM). . 29 

Figure 3.2 – Local measurements buoys utilised by SABESP for in situ 

limnological data collection. ....................................................................... 32 

Figure 4.1– Sonde YSI 6600 in operation. ......................................................... 35 

Figure 4.2– Two different ways to collect PC data via fluorometric approach. 

The continuous flow requires the use of a pump and hoses. And the 

discrete analysis simply uses individual vials for each sample measuring 

the raw signal value displayed by the equipment after the appropriate 

calibration. ................................................................................................. 38 

Figure 4.3 – AC-S components‘ illustrative scheme. ......................................... 40 

Figure 4.4 – AC-S instrument in operation. ....................................................... 40 

Figura 4.5 – Map showing sampling stations with local depth measured in situ; 

showing the depth points estimated from both the drainage basin and from 

linear estimation for the areas between the basin lines and the reservoir 

border; and showing the basin lines themselves. ...................................... 44 

Figure 4.6 – Main pigments percent absorption spectra. Highlighting the 

absorption range associated with phycocyanin. ........................................ 46 



xvi 
 

Figure 4.7 – Fluorometer adjustment curve bettwen fluorometer PC standard 

raw values and known concentration for that reading for the estimation of 

values collected during field campaign. ..................................................... 47 

Figure 4.8 – Generalised water quality parameters plot for Coos Bay Estuary, 

Oregon. CTD measurement, April, 2008. Measurements depth range from 

50 to 2800 m. ............................................................................................ 48 

Figure 4.9 – Laboratory-measured chl-a regression as a function of Sonde chl-a 

fluorometric sensor raw values for the first 30-cm subsurface depth. ....... 49 

Figure 4.10 – Radiometric data collection sensor set-up: (a) The boat was kept 

aligned with solar direct beam direction as to keep above-water sensors 

orthogonal to these beams. (b) Downwelling Irradiance (Ed), Upwelling 

Radiance (Lu), Upwelling Irradiance (Eu). (c) Total Water Radiance (Lt), 

Diffuse Sky Radiance (Lsky), Global Solar Irradiance (Es). (d) Example of 

underwater measurement. ........................................................................ 51 

Figure 4.11 – Multi resolution analysis subspacing characteristics: (a) Scaling 

function: the subspaces spanned by the scaling function at low scales are 

nested within those spanned at higher scales. (b) Wavelet function: fill up 

the gap of any two adjacent scaling subspaces. (c) How an infinite set of 

wavelets is replaced by one low-pass spectrum approximation scaling 

function cork in order to avoid covering the spectrum all the way to zero 

with detailed wavelet spectra (MALLAT, 1989). ........................................ 54 

Figure 4.12 – Remote Sensing Reflectance (Rrs) for 15 sampling stations. 

Stations 1 and 6 were excluded from this calculation due to faulty 

equipment at the measurement site. ......................................................... 64 

Figure 4.13 – Rrs spectra from Funil reservoir collected in May, 2012 

(AUGUSTO-SILVA et al., 2014). ............................................................... 68 

Figure 4.14 – Spectral response functions for OLCI sensor. Twenty one bands 

over the visible-NIR spectral range (ESA, 2016). ...................................... 69 

Figure 4.15 – Methodological flowchart for this study. Square boxes indicate 

datasets collected or generated for this work. Circular or ellipsoidal shapes 

represent the objectives-related steps within the methodology. Rhombus 

represents the main statistics applied to the dataset. Flags represent 

specific aims and main goal. ..................................................................... 71 

Figure 5.1 – Topological bathymetric plot for this study‘s individual sampling 

stations. Grey bars represent the euphotic zone depth where the radiation 

reaching the water surface extinguishes at the 1% level. The white bars 



xvii 
 

represent the difference between the Zeu1 and the actual local reservoir 

depth. ........................................................................................................ 73 

Figure 5.2 – Guarapiranga north-south bathymetry cross-section. Leftmost part 

of figure represents the southernmost area, and the rightmost part, the 

northernmost. Different shades of purple represent the various regions 

along the cross section where the reservoir has more than one depth 

variation for that latitude. ........................................................................... 76 

Figure 5.3 – Guarapiranga west-east bathymetry cross-section. Leftmost pat of 

figure represents the westernmost area, and the rightmost part, the 

easternmost. Different shades of purple represent the various regions 

along the cross section where the reservoir has more than one depth 

variation for that longitude. ........................................................................ 77 

Figure 5.4 – (a) Regression analysis between secchi depth and one-per-cent 

euphotic zone depth Zeu1. (b) Secchi depth and Zeu1 ratio for all points with 

standard error bars. Trend line indicates the average ratio value of 

48.47%. ..................................................................................................... 78 

Figure 5.5 – Irradiance extinction depth per unit wavelength and integrated over 

the PAR region per sampling point. White line represents the reciprocal of 

averaged Kd per unit wavelength for all irradiance-measured depths. Red 

line represents the irradiance per unit wavelength extinguished by one per 

cent of above-water (0+) irradiance values. Yellow line represents the 

integrated Zeu1 values. ............................................................................... 80 

Figure 5.6 – Normalised remote sensing reflectance (nRrs) spectra at 550 nm 

for fifteen samples. .................................................................................... 82 

Figure 5.7 – Limnological water quality parameters boxplots for all samples. ... 84 

Figure 5.8 – Kendall (a), Spearman (b), and Pearson (c) correlation coefficients 

for limnological water quality parameters. NH4
+ was removed from this 

figure due to difference in sample numbers. ............................................. 88 

Figure 5.8 – Kendall (a), Spearman (b), and Pearson (c) correlation coefficients 

for limnological water quality parameters. NH4
+ was removed from this 

figure due to difference in sample numbers. – Continuation ..................... 89 

Figure 5.9 – Kendall, Spearman, and Pearson correlation coefficients for NH4
+ 

against all other parameters. NH4
+ had three inappropriate samples; 

therefore, the whole dataset was adjusted to the NH4
+ sample range 

(fourteen rather than seventeen samples). ............................................... 89 

Figure 5.10 – Laboratory-calculated CDOM (a), total (b), phytoplankton (c), and 

non-algal particles (tripton) (d) absorption coefficients. ............................. 92 



xviii 
 

Figure 5.11 – Ternary plot representing the relative absorption coefficients for 

phytoplankton (aphy), tripton (anap), and CDOM (aCDOM). Wavelengths (nm) 

represent the ones most used in bio-optical algorithms, imaging satellite 

sensors bands, and OAC-related minimum/maximum absorption bands. 93 

Figure 5.12 – ACS-measured total absorption coefficient per unit depth for 

fifteen sampling stations. Individual figures for each station are 

standardised by the point with maximum depth (y-axis) and absorption 

magnitude (x-axis). Stations with fewer measurements represent points 

with shorter maximum depth. Data colours are linked to their respective 

spectrum wavelength colour, black being the NIR range. Two sampling 

stations failed to appropriately collect data and were discarded. .............. 99 

Figure 5.13 – ACS-measured total attenuation coefficient per unit depth for 

fifteen sampling stations. Individual figures for each station are 

standardised by point with maximum depth (y-axis). P9, P15, and P16 

absorption magnitudes have their own plot ranges, and all other points‘ 

absorption magnitudes are standardised by P14‘s magnitude range. 

Stations with fewer measurements represent points with shorter maximum 

depth. Data colours are linked to their respective spectrum wavelength 

colour, black being the NIR range. Two sampling stations failed to 

appropriately collect data and were discarded. ....................................... 100 

Figure 5.14 – ACS-measured total absorption coefficient per unit wavelength for 

fifteen sampling stations. Individual figures for each station are 

standardised by the wavelength (x-axis) range (400-750 nm), and by 10 m-

1 absorption magnitude. Data colours are linked to the different correction 

methods applied to the dataset. Two sampling stations (P1 and P12) failed 

to appropriately collect data and were discarded. ................................... 101 

Figure 5.15 – Dissolved Oxygen (DO) versus chlorophyll-a plot over depth for 

fourteen sampling stations. Red lines represent DO data, and green lines 

represent chlorophyll data. Black straight line across depth axis represents 

the one-per-cent euphotic zone depth for that point. Missing sampling 

points were excluded from data plotting due to faulty in situ 

measurements. ........................................................................................ 107 

Figure 5.16 – Temperature versus conductivity plot over depth for fifteen 

sampling stations. Maroon lines represent temperature data, and blue 

lines represent conductivity data. Black straight line across depth axis 

represents the one-per-cent euphotic zone depth for that point. Missing 

sampling points were excluded from data plotting due to faulty in situ 

measurements. ........................................................................................ 108 



xix 
 

Figure 5.17 – Regression analysis plots for aCDOM(440) as a function of 

dissolved organic matter (DOC) concentrations. ..................................... 111 

Figure 5.18 – Regression analysis plots for (a)bbp(555) and (b)aphy(620) as a 

function of phycocyanin (PC) concentrations. ......................................... 112 

Figure 5.19 – Regression analysis plots for (a)aphy(620) as a function of 

chlorophyll-a (chl-a) plus phycocyanin (PC) concentrations, and 

(b)bbp(555) as a function of only chl-a. .................................................... 113 

Figure 5.20 – Regression analysis plots for (a)aCDOM(440) and (b)aphy(440) as a 

function of chlorophyll-a (chl-a) concentrations. ...................................... 114 

Figure 5.21 – Regression analysis plots for (a)aphy(675) as a function of 

chlorophyll-a concentrations, and (b)anap(440) as a function of total 

suspended inorganics (TSI) concentrations. ........................................... 115 

Figure 5.22 – Regression analysis plots for (a)bbp(555) and (b)aCDOM(440) as a 

function of total suspended matter (TSM) concentrations. ...................... 116 

Figure 5.23 – Haar wavelet clustering analysis dendrogram for fifteen sampling 

points. ...................................................................................................... 122 

Figure 5.24 – Discrete Meyer wavelet clustering analysis dendrogram for fifteen 

sampling points. ...................................................................................... 123 

Figure 5.25 – Reference spectra generated from WASI software used for 

spectral angle mapping (SAM) classification and spectral angle errors for 

fifteen sampling stations correlated with each reference class. The redder 

(smaller) the error value the more correlated the station spectrum is to the 

reference class. Reddest values represent the reference class to which 

the station spectrum was allocated during the SAM classification. ......... 127 

Figure 5.26 – Chlorophyll-a (chl-a), phycocyanin (PC), and chl-a to total 

suspended matter (TSM) ratio bio-optical algorithms evaluation. Statistics 

for the correlations are given by Pearson-coefficient (R) for predicted 

against measured values. ....................................................................... 130 

Figure 5.27 – PC to chl-a ratio (PC:chl-a) monotonically increasing for all 

sampling stations from this study‘s dataset and from Ogashawara et al. 

(2013). Horizontal line at the ratio value of one indicates how many 

samples have higher concentrations of PC (above line) or chl-a (beneath 

line). ......................................................................................................... 134 

Figure 5.28 – Scatterplot between a reflectance band ratio [Rrs(620):Rrs(709)] 

and measured PC concentration. ............................................................ 135 



xx 
 

Figure 5.29 – Remote sensing reflectance (Rrs) spectrum for sampling station 

three, slope one (S1), and phycocyanin line height (PLH). The coefficient 

of proportionality represents the correlation between S1 and PLH for all 

sampling points. The slope between     and    (Figure 30a) represents 

the re-parameterisation coefficient. ......................................................... 135 

Figure 5.30 – (a) Regression analysis between phycocyanin (PC) line height 

(PLH) and slope one (S1). (b) Sensitivity plot between PLH, S1 and PC 

concentration. .......................................................................................... 136 

Figure 5.31 – Calibration (this study‘s dataset) and validation (dataset from 

Augusto-Silva, 2014) of the adjusted MI14 algorithm, and comparison with 

the original MI14 algorithm. Brackets indicate 95% confidence level. .... 139 

Figure 5.32 – Remote sensing reflectance (Rrs) (red line) for each sampling 

station calculated from in situ-collected radiance and irradiance data via 

Ramses TRioS; and resampled Rrs data to the first sixteen OLCI sensor 

bands (400- 779 nm) (blue line). ............................................................. 142 

Figure A.1– List of some bio-optical models found in literature covering from 

empirical to QAA algorithms .................................................................... 168 

Figure B.1– Haar and Discrete Meyer wavelets scaling and wavelet functions

 ................................................................................................................ 170 

Figure C.1– Water Quality Parameters Cross Correlation Scatterplots and 

histogram ................................................................................................. 172 

Figure E.1 – TLS scatterplots for laboratory-calculated, ACS-measured, and 

QAA-estimated absorption coefficients ................................................... 178 

Figure E.2 – TLS scatterplots for laboratory-calculated, ACS-measured, and 

QAA-estimated absorption coefficients ................................................... 179 

Figure E.3 – TLS scatterplots for laboratory-calculated, ACS-measured, and 

QAA-estimated absorption coefficients ................................................... 180 

Figure E.4 – TLS scatterplots for laboratory-calculated, ACS-measured, and 

QAA-estimated absorption coefficients ................................................... 181 

Figure E.5 – TLS scatterplots for laboratory-calculated, ACS-measured, and 

QAA-estimated absorption coefficients ................................................... 182 

Figure F.1 – DWTCA-Clustered Rrs Spectra for signal decomposition level (Haar 

wavelet). .................................................................................................. 184 

Figure F.2 – DWTCA-Clustered Rrs Spectra for decomposition level one (Haar 

wavelet). .................................................................................................. 185 



xxi 
 

Figure F.3 – DWTCA-Clustered Rrs Spectra for decomposition level two (Haar 

wavelet). .................................................................................................. 186 

Figure F.4 – DWTCA-Clustered Rrs Spectra for decomposition level three (Haar 

wavelet). .................................................................................................. 187 

Figure F.5 – DWTCA-Clustered Rrs Spectra for decomposition level four (Haar 

wavelet). .................................................................................................. 188 

Figure F.6 – DWTCA-Clustered Rrs Spectra for decomposition level five (Haar 

wavelet). .................................................................................................. 189 

Figure F.7 – DWTCA-Clustered Rrs Spectra for decomposition level six (Haar 

wavelet). .................................................................................................. 190 

Figure F.8 – DWTCA-Clustered Rrs Spectra for decomposition level seven 

(Haar wavelet). ........................................................................................ 191 

Figure F.9 – DWTCA-Clustered Rrs Spectra for decomposition level eight (Haar 

wavelet). .................................................................................................. 192 

  





xxiii 
 

LIST OF TABLES 

Page 

Table 2.1 - IOPs, AOPs and Radiometric Quantities commonly used in optical 

hydrology ................................................................................................... 11 

Table 2.2 – Specifications of the OLCI on the Sentinel-3 satellite system; 

shaded areas are the ones that were included from MERIS specifications

 .................................................................................................................. 28 

Table 3.2 – Location of sampling stations within Guarapiranga reservoir ......... 31 

Table 4.1 – Available wavelets within Matlab®. Highlighted are the only wavelets 

suitable for this study‘s discrete analysis. ................................................. 53 

Table 4.2 – OACs concentration magnitude within each spectral class 

generated by WASI. .................................................................................. 57 

Table 4.3 – Summary of Rrs-based bio-optical algorithms used in this study. ... 65 

Table 4.4 –Summary of error estimator, correlation coefficients, and estimation 

curve robustness used in this study. ......................................................... 66 

Table 5.1 – Principal-component (PCt) fitting total least squares regression sum 

of squared errors and root mean squared error (RMSE) for PCts one, two, 

and three for each wavelength and absorption correction method. PCts 

explanatory variances for each wavelength and correction method are also 

presented. ............................................................................................... 104 

Table 5.2 – Groups allocated by the discrete wavelet transform clustering 

analysis for each sampling station for each decomposition level for both 

Haar and Discrete Meyer wavelets. ........................................................ 118 

Table 5.3 – Haar wavelet cophenetic and inconsistency coefficients. ............. 122 

Table 5.4 – Discrete Meyer cophenetic and inconsistency coefficients. .......... 123 

Table 5.5 – Spectral angle error from spectral angle mapping (SAM) analysis for 

each sampling point (column-title) against reference classes (row-title) 

generated in WASI. Bold numbers represent to which class each sampling 

point has been allocated. ........................................................................ 126 

Table D.1 - Kendall correlation coefficients for the limnological dataset ......... 174 

Table D.2 - Kendall p-value for the limnological dataset ................................. 174 

Table D.2 - Kendall p-value for the limnological dataset - Continuation .......... 175 

Table D.3 – Spearman correlation coefficient for the limnological dataset ...... 175 



xxiv 
 

Table D.4 - Spearman p-value for the limnological dataset ............................. 176 

Table D.5 – Pearson correlation coefficient for the limnological dataset ......... 176 

Table D.5 - Pearson correlation coefficient for the limnological dataset – 

Continuation ............................................................................................ 177 

Table D.6 - Pearson p-value for the limnological dataset ................................ 177 

 

 

 

 

 

 

 

 

 

  



xxv 
 

LIST OF ACRONYMS AND ABBREVIATIONS 

a Absorption coefficient 

ADEOS Advanced Earth Observing Satellite 

AISA Eagle Airborne Imaging Spectrometer for Applications Eagle 

AOPs Apparent Optical Properties 

ARIES Australian Resource Information and Environmental Satellite 

ASI Italian Space Agency 

b Scattering coefficient 

BUS Bottom-Up Strategy 

c Attenuation coefficient 

ca Coefficient of Approximation 

cd Coefficient of Detail 

CASI-2 Compact Airborne Spectrographic Imager-2 

CDM Coloured Detrital Matter 

CDOM Coloured Dissolved Organic Matter 

CETESB Companhia de Tecnologia de Saneamento Ambiental 

CHABs Cyanobacterial Harmful Algal Blooms 

Chl-a Chlorophyll-a 

CHRIS Compact High Resolution Imaging Spectrometer 

CI Cyanobacteria Index 

COD Chemical Oxygen Demand 

CZCS Coastal Zone Color Scanner 

DIC Dissolved Inorganic Carbon 

DO Dissolved Oxygen 

DOC Dissolved Organic Carbon 

DWTCA Discrete Wavelet Transform Clustering Analysis 

EMR Electromagnetic Radiation 

EnMAP Environmental Mapping and Analysis Program 

ENVISAT Earth Observing Satellite 

ERTS-1 Earth Resources Technology Satellite 

ESA European Space Agency 

ETM+ Enhanced Thematic Mapper Plus 



xxvi 
 

FOV Field Of View 

GA-PLS Genetic Algorithm and Partial Least Squares 

HABs Harmful Algal Blooms 

HICO Hyperspectral Imager for the Coastal Ocean 

HyspIRI Hyperspectral Infra-red Imager  

INPE National Institute for Space Research  

IOPs Inherent Optical Properties 

LED Light-Emitting Diode 

LMI Linear Matrix Inversion 

MERIS Medium Resolution Imaging Spectrometer 

MODIS Moderate Resolution Imaging Spectroradiometer 

NaClO Sodium Hypochlorite 

NAP Non-Algal Particles 

NASA National Aeronautics and Space Administration 

NDPCI Normalized Difference Phycocyanin Index 

NH4
+ Ammonium cation 

NIR Near Infrared 

NRMSE Normalized Root Mean Square Error 

OACs Optically Active Components 

OCW Optically Complex Waters 

OBM Optimal Band ratio Modelling 

OCM Ocean Colour Monitor 

OLCI Ocean & Land Color Imager 

PAR Photosynthetic Active Radiation 

PCA Principal Component Analysis 

PIXEL Picture Element 

PC C-Phycocyanin pigment 

PCt Principal Component 

PM Particulate Matter 

PML Plymouth Marine Laboratory 

PPMCC Pearson Product Moment Correlation Coefficient 

PRISMA PRecursore IperSpettrale della Missione Applicativa 



xxvii 
 

QAA Quasi-Analytical Algorithm 

R Irradiance Reflectance Ratio 

RMSE Root Mean Square Error 

Rrs Remote Sensing Reflectance from above surface 

rrs Remote Sensing Reflectance from subsurface 

SABESP Companhia de Saneamento Básico do Estado de São Paulo 

SABIA-MAR Argentinean-Brazilian Satellite of Environmental Information of 
the Sea 

SAM Spectral Angle Mapper 

SeaWIFS Sea-viewing Wide Field-of-view Sensor 

SNR Signal-to-Noise Ratio 

SS Spectral Shape 

SSE Sum of Squared Errors 

SOA Spectral Optimisation Algorithm 

SRTM Shuttle Radar Topography Mission 

SWIR Short Wave Infrared 

TDS Top-Down Strategy 

TIR Thermal Infrared  

TLS Total Least Squares 

TM Thematic Mapper  

TN Total Nitrogen  

TSI Total Suspended Inorganics 

TSIx Trophic State Index 

TSM Total Suspended Matter 

TSO Total Suspended Organics 

ULF Underwater Light Field 

UV Ultra-Violet 

UV-A Ultra-Violet A 

VNIR Visible and Near Infrared 

VSWIR Visible and Shortwave Infrared 

WT Wavelet Transform 

WD Wavelet Domain 

WQP Water Quality Parameter 



xxviii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



xxix 
 

TABLE OF CONTENTS 

Page 

1 INTRODUCTION ......................................................................................... 1 

1.1. Hypothesis .......................................................................................................... 6 

1.2.  Objectives ........................................................................................................... 6 

2 THEORETICAL BACKGROUND ................................................................ 7 

2.1. Remote Sensing of Aquatic Environments .......................................................... 7 

2.2. Optical Properties of Water and Underwater Light Field ..................................... 8 

2.3. Bio-optical modelling ......................................................................................... 12 

2.3.1. Types of bio-optical algorithms ....................................................................... 13 

2.3.2. PC-predictive bio-optical models .................................................................... 17 

2.4. Signal processing .............................................................................................. 21 

2.5. Sensor applicability ........................................................................................... 24 

3 STUDY AREA ........................................................................................... 29 

4 MATERIALS AND METHODS .................................................................. 35 

4.1.  Equipment ......................................................................................................... 35 

4.1.1.  YSI Sonde ....................................................................................................... 35 

4.1.2.  Fluorometer Turner 10-AU .............................................................................. 37 

4.1.3.  RAMSES hyperspectral radiometers .............................................................. 38 

4.1.4 Spectrophotometer ......................................................................................... 39 

4.1.5 AC-S In-Situ Spectrophotometer .................................................................... 39 

4.2. Bathymetry ........................................................................................................ 43 

4.3. Limnological Analysis ........................................................................................ 44 

4.3.1. Chlorophyll-a Analysis .................................................................................... 45 

4.3.2. Total Suspended Matter (TSM) Analysis ........................................................ 45 

4.3.3. PC Analysis .................................................................................................... 46 

4.3.4. Ion chromatography and Total Carbon Analyser ............................................ 48 

4.3.5. Sonde Analysis ............................................................................................... 48 

4.4. Radiometric Analysis ......................................................................................... 50 

4.4.1. Rrs ................................................................................................................... 50 

4.4.2. Underwater Light Field .................................................................................... 52 



xxx 
 

4.4.3. Discrete Wavelet Transform Clustering Analysis (DWTCA) ........................... 53 

4.4.4. Spectral Angle Mapper (SAM) ........................................................................ 55 

4.4.5. Laboratory-calculated, In-Situ-measured, and QAA-estimated IOPs ............. 57 

4.4.5.1   Ternary Plot, IOPs-WQPs Least Squares Regression, and at Total Least 

Squares Regressions ................................................................................................... 61 

4.4.6. Semi-empirical bio-optical models and re-parameterisation ........................... 63 

4.5. OLCI/Sentinel 3 simulation ................................................................................ 68 

4.6. Methodology Flowchart ..................................................................................... 70 

5  RESULTS AND DISCUSSION ................................................................. 73 

5.1. Bathymetry ........................................................................................................ 73 

5.1.1. Underwater Light Field .................................................................................... 78 

5.2. AOP dataset ...................................................................................................... 82 

5.3 Limnological and Fluorometric Dataset ............................................................. 83 

5.3.1 Correlation Matrices ........................................................................................ 86 

5.4 Laboratory spectrophotometric dataset ............................................................. 92 

5.4.1 Ternary Plot .................................................................................................... 93 

5.5 AC-S plots ......................................................................................................... 96 

5.5.1. Total Least Squares Regression ..................................................................... 102 

5.6. Sonde measurements ................................................................................... 1025 

5.7. Least Squares Regression .............................................................................. 109 

5.8. Signal processing techniques ......................................................................... 117 

5.8.1. DWTCA ......................................................................................................... 117 

5.8.2. Spectral Angle Mapping (SAM) .................................................................... 124 

5.9. Semi-empirical algorithms ............................................................................... 128 

5.10. Semi-empirical three-band PC-retrieval algorithm re-parameterisation .......... 131 

5.11. OLCI/Sentinel 3 simulation .............................................................................. 140 

6 FINAL CONSIDERATIONS AND CONCLUDING REMARKS ................ 145 

BIBLIOGRAPHIC REFERENCES ................................................................... 149 

APPENDIX A ................................................................................................... 168 

APPENDIX B ................................................................................................... 170 

APPENDIX C ................................................................................................... 172 

APPENDIX D ................................................................................................... 174 



xxxi 
 

APPENDIX E ................................................................................................... 178 

APPENDIX F .................................................................................................... 184 

ANNEX A. UTM Coordinate Table Location of All Water Quality Sampling 

Stations Monitored by SABESP and CETESB at Guarapiranga Reservoir

 ................................................................................................................ 194 

ANNEX B. Input Feeding Streams by Socio-Economic-Environmental Areas 

and Water Quality Sampling Stations by SABESP and CETESB ........... 196 

ANNEX C. Sentinel-3 OLCI instrument technical characteristics .................... 198 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxxii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1 INTRODUCTION 

The eutrophication process in aquatic systems is becoming a significant water 

quality problem, affecting inland water bodies all over the world (UNEP, 2000). 

It has been a concern for environmental and public health managers since one 

of its main consequences is the onset of Harmful Algal Blooms (HABs) 

(SIVONEN; JONES, 1999). One of the most common phylum of HABs is the 

cyanophyta, which has some species of cyanobacteria (also known as blue-

green algae) capable of producing toxins. These species have been occurring 

in aquatic systems worldwide over the past twenty years (FALCONER; 

HUMPAGE, 2006). Thus, there is an increasing need for water governance 

systems, mainly in places with lack of potable water and environmental 

management. Seven key challenges to practice a good management were 

described by the National Research Council (NRC) in their document "The 

Drama of the Commons" (NRC, 2002). The first one is the monitoring of 

resources, and the second, a low cost enforcement of rules. To face these 

challenges, Dietz et al. (2003) believes the use of current research in 

collaboration with management strategies could solve particular challenges. 

The monitoring of Cyanobacterial Harmful Algal Bloom (CHAB) is an important 

task for aquatic systems, mainly in water bodies used for water supply. Its 

importance is justified because cyanobacteria have been considered the largest 

and most diverse group of prokaryotes with very fast growth rates, especially in 

warm summer, when temperature, light and nutrients from agriculture fertilizers 

and other sources increase (MISHRA et al., 2009). They usually dominate the 

phytoplankton in inland and coastal areas because of their capacity of buoyancy 

regulation, elementary nitrogen fixing capability, and efficient use of yellowish-

orange light for photosynthesis (REYNOLDS, 2006). All these capabilities make 

cyanobacteria one of the main phyla present in inland eutrophic waters. 

Furthermore, aquatic environments with CHABs develop thick surface scums, 

and they also have a distinct taste and odour (WORLD HEALTH 

ORGANIZATION, 1999; RANDOLPH et al., 2008; MISHRA et al., 2009). 
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However, the main problem of CHABs is their capacity to produce toxins also 

known as "cyanotoxins", which are a major concern for human health. Some 

species of cyanobacteria produce toxins which cause hepatotoxic, neurotoxic 

and dermatotoxic effects and general inhibition of protein synthesis in animals 

and humans (WORLD HEALTH ORGANIZATION, 1999). 

Traditional CHAB‘s monitoring methods consist of collection of field samples, 

laboratory analysis, and manual cell counts. These methods are time 

consuming, labour-intensive, and costly (LE et al., 2011a). Additionally, spatial 

and temporal heterogeneity of water bodies often result in inadequate 

monitoring and characterization of CHABs, since they must rely on sampling 

methods, interpolation and extrapolation between sample points (KHORRAM et 

al., 1991). Another problem of the traditional methods of monitoring CHABs is 

related to their regulation of buoyancy which allows them to move upwards and 

downwards in the water column. This characteristic affects the collection of 

water since a floating ship could disturb the natural spatial distribution of a 

bloom (KUTSER, 2004). Besides, planning field trips to monitor CHABs is 

extremely difficult, because algal blooms may be ephemeral and vary according 

to weather conditions, capable of changing the dynamics of the water column in 

few days through mixing and stratification processes (TUNDISI et al., 2004; 

OGASHAWARA et al., 2014). 

Efficient alternative methods should be developed to improve the monitoring of 

CHABs, combining spatial and temporal approaches with low cost analysis. 

These characteristics enhance remote sensing as a valuable tool for a 

potentially effective solution to monitoring inland water quality. This idea is 

supported by Kutser (2004), who emphasized that the use of remote sensing to 

provide information about the extent of CHABs is more reliable if compared to 

traditional monitoring methods, because it does not break (or interfere with) the 

CHABs to collect data. Metsamaa et al. (2006) also highlighted the use of 

remote sensing by describing it as the only efficient technique to map the spatial 

distribution of CHABs over time. The authors also stressed that remote sensing 
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is an alternative to estimate the amount of cyanobacteria just below the surface, 

however it could not be used to estimate it down the water column. In order to 

explore the water column characteristics, the underwater light field should be 

studied. Harrison and Platt (1986), Falkowski and Laroche (1991) studied how 

changes in light intensity and its spectral distribution in the water column govern 

the physiological acclimation of phytoplankton cells. A further study from Stoń-

Egiert et al. (2012) determined the statistical relationships between the 

concentrations of the major groups of pigments and the various optical 

characteristics of the light fields in the waters of the southern Baltic Sea. 

The nomenclature Case 1 and Case 2 waters have been used as a way to 

classify aquatic environments (MOREL; PRIEUR, 1977). The ratio of 

chlorophyll-a (chl-a) concentration (in mg m-3) to the scattering coefficient at 550 

nm (in m-1) was the main factor to develop such a nomenclature. Case 1 waters 

should have a ratio larger than one, whereas in Case 2 waters, this ratio should 

be less than one. However, newer definitions for these water environment 

classifications were proposed by Gordon and Morel (1983). For the authors, 

phytoplankton is the constituent which controlled Case 1 waters optical 

properties those, and Case 2 waters are those whose optical properties are 

controlled by other constituents (e.g., mineral particles and CDOM), and these 

constituents concentrations do not covary with phytoplankton concentration. 

Mobley et al. 2004 assess that there are issues arising from such a simplistic 

classification, such as the misinterpretation over whether or not inland waters 

belong to Case 2. Such assumption is true because it is possible for a 

continental aquatic system to be dominated only by the phytoplankton (Case 1). 

Nevertheless, this classification is still used because it provides a synoptic view 

of study sites. 

Remote sensing of water quality monitoring has not shown as much efficacy in 

Case 2 (hence forth, optically complex waters - OCW) waters studies if 

compared to Case 1 waters. Such evidence can be attributed to the major 

optically active components (OACs) in an OCW: phytoplankton, non-algal 
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particles (NAP), CDOM and pure water. Anthropogenic activity has increased 

the interaction among the constituents adding to the heterogeneity of the water 

systems. Uncertainties can arise from such heterogeneous environments. One 

example is bottom effect. Giardino et al., (2007) considered during data analysis 

how the semi-analytic relation between Rrs and IOPs are affected by bottom 

effect. Another example is the spatial and temporal resolutions of remote 

sensors. These resolutions are crucial for efficient water monitoring. 

Hyperspectral orbital sensors have the potential to map CHABs (Kutser (2004), 

however, environmental processes linked to water quality monitoring would 

require better temporal resolution (preferably daily monitoring) than those 

provided by such sensors. Although there are not many orbital optical sensors 

focused on aquatic studies, remote sensing techniques are potentially 

applicable tools for monitoring water quality.  

Chl-a concentration was the initial variables used by remote sensing of aquatic 

systems for the identification of CHABs. The main reason for such attempt was 

the fact that chl-a is the primary photosynthetic pigment in cyanobacteria 

(REINART; KUTSER, 2006). Nevertheless, due to the fact chl-a is the most 

dominant photosynthetic pigment among all phytoplankton groups (HUNTER et 

al., 2009), recent studies considered using the spectral features of c-

phycocyanin (PC) for the identification of cyanobacterial biomass (REYNOLDS, 

2006; LI et al., 2015) in inland waters. 

In hyperspectral remote sensing, spectra are increasingly analysed using 

methods developed for laboratory studies, such as derivative analysis, and 

spectral angle mapping techniques (ZHANG; LI, 2014). These techniques 

require smooth reflectance spectra. Therefore, there is a need for smoothing 

algorithms that fulfil the requirement of preserving local spectral features 

(SCHMIDT; SKIDMORE, 2004). Following up on this premise, PC (as well as 

other OACs) spectral characteristics can be appraised via signal processing 

techniques. Local spectral features are identifiable and evaluable in different 

levels of signal decomposition, and such achievement is capable via wavelet 
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transform clustering techniques (AMPE et al., 2014; 2015) and via spectral 

angle mapping algorithms (ZHANG; LI, 2014). 

PC has been used as a cyanobacteria proxy because of its two distinct spectral 

characteristics: the absorption feature around 620 nm and the fluorescence 

around 650 nm (DEKKER; HESTIR, 1993; SIMIS et al., 2005; RUIZ-VERDÚ et 

al., 2008; ZHOU et al., 2014), the latter being variable for different species 

(MACINTYRE et al., 2010). Thus, the development of remote-sensing-based bio-

optical algorithms that include PC absorption feature spectral bands have been 

used to estimate PC concentrations (VINCENT et al., 2004) or PC's Inherent 

Optical Properties (IOPs) (MISHRA et al., 2013). 

The red part of the spectrum at around 665 nm is closely associated with 

absorption of chl-a. Due to the fact this spectral region is highly correlated with 

chl-a concentration, studies such as Mishra and Mishra (2014) used this 

spectral region to appropriately correct PC prediction for chl-a influence. 

However, there is a lack of studies which consider shorter wavelengths for the 

correction of such confusion. Also, bio-optical studies on PC over inland waters 

tend to focus their efforts on collecting data where PC is found in higher 

concentrations. Therefore, the scientific literature lacks on studies covering the 

shorter wavelength spectral region as well as waters bearing PC in low 

concentrations.  
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1.1.  Hypothesis 

Taking into account the aforementioned, this thesis is based on the following 

hypothesis: 

 A parameterisation coefficient using the blue-to-green spectral region 

applied to a semi-empirical bio-optical algorithm for PC-chl-a confusion 

improvement increases the low-concentration PC-pigment estimation 

efficacy in a tropical reservoir. 

1.2.  Objectives 

To test that hypothesis, a main goal was elaborated. The main goal was to 

enhance the performance of a phycocyanin-predictive semi-empirical bio-optical 

algorithm for a city-supplier water reservoir. In order to achieve such goal the 

following specific aims were elaborated: 

1. Bio-optical, radiometric and water quality characterization of this work‘s 

study site, Guarapiranga reservoir; 

2. Evaluation of feasibility for comparison and contrast of two signal 

processing techniques (i.e., discrete wavelet transform and spectral 

angle mapper) over the radiometric dataset clustering; 

3. Calibration and validation of a novel semi-empirical bio-optical algorithm. 
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2 THEORETICAL BACKGROUND 

2.1. Remote Sensing of Aquatic Environments 

In the early seventies, Earth Observations from space started after Earth 

Resources Technology Satellite (ERTS-1) was sent to space by the National 

Aeronautics and Space Administration (NASA) (JENSEN, 2000). Some 

environmental variables such as chl-a concentration and temperature were 

noticed by oceanographers as parameters capable of being measured remotely 

(BUKATA, 2013). Limnologists, though, only started over the past two decades 

measuring water quality parameters remotely (SIMIS et al., 2005; PALMER et 

al., 2015; MOUW et al., 2015). 

Optical properties of an aquatic system can be monitored by remote sensing 

techniques. This way, spatiotemporal assessment of such properties can be 

quantified. Attenuation properties are acquired from both orbital or proximal 

measurements datasets regarding the visible part of solar electromagnetic 

spectrum. Therefore, environmental parameters such as primary production and 

natural events such as algal blooms can be estimated (PLATT et al., 2008)  

Oceanographic researchers advanced the theoretical and practical basis for 

marine optics. The interaction between the incoming radiation from sun and 

diffuse-sky with the water medium could be modelled by the marine optics 

accomplishments. Many authors among which one can include Cox and Munk 

(1954), Jerlov (1968), Petzold (1972), Preisendorfer (1976) created the basis for 

marine optics main theory by the time of ERTS-1 launch. 

Gordon et al., (1975a) developed the early practical oceanic bio-optical model. 

The radiative transfer equation related apparent optical properties (AOPs) to the 

IOPs via an stochastic simulation approach in OACs-bearing oceanic waters. 

Bukata et al., (1979) modelled the first bio-optical algorithm associating AOPs to 

IOPs. Other authors made use of earlier sensors to investigate the connections 
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between optical properties and OACs that allowed for these constituents‘ 

retrieval from remote sensing data (BUKATA et al., 1981a; 1981b). 

2.2. Optical Properties of Water and Underwater Light Field 

IOPs and AOPs primarily constitute the two groups regarding optical properties 

of an aquatic system. IOPs depend only upon the OACs concentration within 

the water body, whereas the AOPs depend not only on that but also on the 

underwater light field directionality. Examples of IOPs are the total absorption 

coefficient (a) and the total scattering coefficient (b), and examples of AOPs are 

the irradiance reflectance (R), the remote-sensing reflectance (Rrs), and various 

diffuse attenuation functions (MOBLEY, 2001). 

The coefficient of attenuation (c) influence over the incoming electromagnetic 

radiation (EMR) is depicted in of Figure 2.1, in which it is possible to perceive 

how the incident EMR magnitude is attenuated within the water body as a 

function of different constituent concentrations. Firstly, the EMR touches the 

water body surface layer. Then, part of it is absorbed and/or scattered back 

toward the radiation source direction and some is transmitted through the 

medium. The portion that is transmitted is again absorbed and/or scattered 

obeying Beer‘s Law (Equation 2.1) until all EMR is extinguished or reflected 

from the water column (figure 2.2) or surface bottom (BATIUK et al., 2015), and 

once more be under the influence of beer‘s law in the opposite direction. 

            (2.1) 

Where,   is the irradiance at a given depth moving down the water column,    

is the irradiance at the surface,   is the attenuation coefficient, and   is depth. 
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Figure 2.1 – Light as a function of depth in different trophic states temperate lakes.  

 

Source: Dodds and Whiles (2010). 

From the above discussion it can be stated that the attenuation (c) is the sum of 

total absorption (a) plus total scattering (b), as in equation 2.2. 

      (2.2) 

AOPs, in the form of R or Rrs, are the ratio of two radiometric quantities 

(irradiances ratio (for R calculations) or radiance over irradiance (for Rrs 

calculations)) which are the basic properties of light measured by optical 

sensors. This rationing removes effects of the magnitude of the incident sky 

radiance onto the aquatic surface. One example occurs when the sun goes 

behind a cloud, the downwelling and upwelling irradiances within water may 

change by an order of magnitude within a few seconds, but their ratio will be 

nearly constant. This is why AOPs cannot be measured in laboratory or in water 

sample; they must be measured in situ. A list of the main IOPs, AOPs and 

radiometric quantities are shown on Table 2.1. 
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Figure 2.2 – Schematic of light entering water, where it can be reflected back, scatter 
off of a particle, or be absorbed in the water column  

 
Source: Dodds and Whiles (2010). 
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Table 2.1 - IOPs, AOPs and Radiometric Quantities commonly used in optical 
hydrology 

Quantity Units (SI) Simbology 

Inherent optical properties 

Absorption coefficient m-1 a 
Volume scattering function m-1 sr-1 β 

Scattering coefficent m-1 b 

Backscatter coefficient 
m-1 

bb 

Beam attenuation coefficient m-1 c 

Apparent optical properties 

Irradiance reflectance (ratio) - R 

Remote sensing reflectance sr-1 Rrs 

Remote sensing reflectance (sub) sr-1 rrs 

Attenuation coefficients:     

of radiance L(z,θ,φ) m-1 K(θ,φ) 

of downwelling irradiance Ed(z) 
m-1 

Kd 

of PAR m-1 KPAR 

Radiometric Quantities 

Quantity of radiant energy J nm-1 Q 
Power W nm-1 Ф 

Intensity W sr-1 nm-1 I 

Radiance Wm-2 sr-1 nm-1 L 

Upwelling radiance Wm-2 sr-1 nm-1 Lu 

Sky radiance Wm-2 sr-1 nm-1 Ls 

Water leaving radiance Wm-2 sr-1 nm-1 Lw 

Downwelling plane irradiance Wm-2 nm-1 Ed 

Upwelling plane irradiance Wm-2 nm-1 Eu 

Net irradiance Wm-2 nm-1 E 

Scalar irradiance Wm-2 nm-1 E0 

Downwelling scalar irradiance Wm-2 nm-1 E0d 

Upwelling scalar irradiance Wm-2 nm-1 E0u 

Incident spectral irradiance Wm-2 nm-1 Es 

Photosynthetic available radiation Photons s-1m-2 PAR 

Source: adapted from Mobley (2001). 
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2.3. Bio-optical modelling 

The expression ‗bio-optical‘ was first used in a report of the Scripps Institute of 

Oceanography by Smith and Baker (1978) to describe a ‗state of ocean waters‘. 

The ‗state‘ that the authors referred to is, in their definition, the fact that in many 

oceanic waters, optical properties of water are essentially subordinated to the 

optical properties of biological materials, mainly phytoplankton and its 

derivatives (MOREL, 2001). However, currently, the term ‗bio-optical‘ has been 

followed by nouns like model or algorithms (OGASHAWARA, 2015). 

Bio-optical models can be classified in mainly two different groups. The first 

group is that one which attempts to establish an empirical relationship between 

biological activity and radiometric quantities. This affirmation directly links 

radiometric quantities as a function of biological activities (MOREL, 2001; 

OGASHAWARA, 2015). The second group uses the radiative transfer theory in 

order to estimate optical properties from biological constituents. After such 

derivation of these optical properties, the biological activity would be retrieved 

from further correlation between the optical properties and the specific optical 

properties (GONS, 1999). 
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2.3.1. Types of bio-optical algorithms 

Different terms have been used in the literature to classify bio-optical algorithms 

according to their characteristics, however, there is no clearly known definition 

of bio-optical modelling terms, and their use is still very subjective. An example 

of the subjectivity in bio-optical modelling terminology is to notice that Simis et 

al. (2005) classify their algorithm as ‗semi-empirical‘ while Hunter et al. (2010) 

classified Simis‘ algorithm as ‗semi-analytical‘. The most common terms for bio-

optical algorithms are empirical, semi-empirical, semi-analytical (i.e., bottom-up-

strategy (BUS), and top-down-strategy (TDS)), and analytical. Regarding BUS, 

it can be cited the spectral optimisation algorithm (SOA) (MARITORENA et al., 

2002), and the linear matrix inversion (LMI) (HOGE; LYON, 1996); as for TDS, it 

contemplates algorithms such as the quasi-analytical algorithm (QAA) (LEE et 

al., 2002) and the Plymouth Marine Laboratory (PML) (SMYTH et al., 2006). 

In the previous section, two classes of bio-optical algorithms were presented: 

the ones that derive the biological activity (statistical) and the ones that derive 

the optical properties (physical). Empirical and semi-empirical algorithms 

usually used statistical regressions between in situ measurements of water 

quality parameters and radiometric data from satellite or proximal remote 

sensing devices (e.g. spectroradiometer). The difference between empirical and 

semi-empirical algorithms relies on the physical background for their 

development (OGASHAWARA, 2015). 

In an empirical algorithm, the selection of spectral bands is based on a 

combination of different spectral bands which will provide the best correlation 

between radiometric data and biological activity. In this type of algorithm, 

statistical tools such as genetic algorithms, neural networks and stepwise 

regressions are used to compute the best combination of spectral bands. In 

empirical algorithms, the combination of spectral bands does not follow any 

physical background; therefore, there is not any relation among IOPs to explain 

their selection. 
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Semi-empirical algorithms, on contrary, usually use spectral bands selected 

according to physical assumptions based on the spectral behaviour of the target 

(MOREL; GORDON, 1980). An example of a physical assumption is the ‗Red-

Edge‘, commonly used in vegetation indices, which uses the concepts of 

absorption and scattering in the red and near-infrared (NIR) spectral bands, 

respectively. The results of semi-empirical models are then correlated to the 

biological activity through a statistical analysis. Typical spectral regions 

investigated in such models are depicted in Figure 2.3. 

Figure 2.3 – Typical spectral regions investigated in bio-optical models: miahighpig+ 
bbspm, as minimum absorption by pigments; acya , as absorption by 
phycocyanin-containing cyanobacteria; fluchl

*, as fluorescence by 
chlorophyll; red.achl , as red chlorophyll absorption trough; refh.chl+cell , as 
reflectance from high chlorophyll concentration and phytoplankton cell 
structure; absw  as high absorption by water at longer wavelengths; refspm , 
as reflectance by other particulate matter. 

 

Source: Adapted from Zhou et al. (2014).*Variable for different species (MACINTYRE et 

al., 2010). 

BUS and TDS algorithms are usually used to estimate optical properties in the 

water column, and both can be considered semi-analytic algorithms. They rely 

on the inversion of the radiative transfer theory to establish relationships among 

AOPs and IOPs which are computed through several analytical and empirical 
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steps. The derivation of IOPs commonly uses reflectance and this relationship 

is described by Equation (3.1) (GORDON et al., 1975a; GORDON et al., 1988). 

       
  

  
 

 

 

     

          
 (3.1) 

Where rrs( ) is the remote sensing reflectance just below the water surface,  

  (0-,  ) and   (0-,  ) are upwelling radiance and downwelling irradiance, 

respectively,   is the light field factor, and   is the light distribution factor (Li et 

al., 2015), a( ) is the total spectral absorption coefficient, bb( ) is the total 

spectral backscattering coefficient.  

The main difference between BUS and TDS algorithms is based on the process 

to estimate a( ) and bb( ). In BUS algorithms, the estimation of the a( ) is 

computed by the sum of absorption coefficients of phytoplankton, non-algal 

particles and Coloured Dissolved Organic Matter (CDOM). TDS algorithms do 

not depend on the estimation of constituent-specific IOPs (SIOPs), they 

estimate a( ) directly from Rrs and constituent-specific IOPs are computed from 

the spectral decomposition of the estimated a( ) (LEE et al., 2002). For bb( ) 

estimation, BUS algorithms are usually computed as the sum of the 

backscattering coefficients for each constituent in water except for CDOM (it is 

generally assumed that CDOM is nonscattering). 

The outputs from BUS and TDS algorithms are then used to compute the 

biological activity through an analytical approach using IOPs. An analytical 

algorithm is the one based only in physical properties, such as the one 

proposed by Gons (1999) which relates the concentration of chl-a to the ratio 

between the absorption coefficient of phytoplankton (aphy( )) - based on the 

irradiance reflectance at 675 nm over that at 705 nm - and the specific 
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absorption coefficient of phytoplankton (aphy
* - the absorption coefficient 

normalised by the constituent of interest concentration). 

To summarize the classification of bio-optical algorithms, Figure 2.4 presents a 

flowchart which shows the division of bio-optical algorithms into two major 

goals: (1) estimation of biological activity and (2) estimation of optical 

properties. The left part of the flowchart was designated for the empirical and 

semi-empirical algorithms, the central part was designated for the semi-

analytical algorithms and the right part was designated for analytical algorithms. 

This flowchart also tried to establish the procedures of bio-optical modelling 

used by each type of algorithm: statistical correlations (with or without physical 

background assumptions); the radiative transfer theory assumption; and IOP-

seizing analytical procedure. 

Figure 2.4 – Flowchart of bio-optical models classification 

 
Source: adapted from Ogashawara (2015).  
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2.3.2. PC-predictive bio-optical models 

Literature has shown different methods for modelling PC estimation. A 

regression procedure was used by Vincent et al. (2004) used Thematic Mapper 

(TM) and Enhanced Thematic Mapper Plus (ETM+) sensors from Landsat 5 and 

7, respectively, to collect radiometric data. The authors placed all TM and ETM+ 

spectral bands into the regression analysis and let the algorithm sort the best 

ones out. Thence, two approaches were further invested in that study, one 

combining single bands, and the other combining spectral band ratios 

(VINCENT et al., 2004).  

Genetic algorithms and Partial Least Squares method (GA-PLS) serve as yet 

other empirical methods for selecting spectral bands. Spectroscopic analysis 

from hyperspectral data were evaluated via the GA-PLS. GA selected spectral 

variables and PLS evaluated the relationship between spectral variables and 

biological activity. An optimal band ratio was used by Song et al., (2013b) to 

retrieve phycocyanin concentration. The use of optimal band ratio causes 

dependence between spectral bands and correlogram. Sun et al. (2013a) also 

used a correlogram analysis to estimate the best correlations among band 

ratios for PC detection. They classified waters in three different types and then 

related each water type to several band-ratios. 

Characteristics absorption and fluorescence features from PC at 620 and 650 

nm, respectively, have been used in several PC-retrieving empirical algorithms. 

The first semi-empirical bio-optical model was the developed by Dekker and 

Hestir (1993), and relates PC concentration to the distance from the centre 

point of a baseline to the reflectance at 624 nm which is related to the PC 

absorption feature. Another semi-empirical algorithm was proposed by Schalles 

and Yacobi (2000) known as the single reflectance ratio, which uses PC 

fluorescence peak reflectance at 650 nm as reference, and then targets PC 

absorption at 625 nm.  
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A greatly literature-cited algorithms is the empirical algorithm developed for 

spaceborne Medium Resolution Imaging Spectrometer (MERIS) sensor. This 

algorithm relates PC to its absorption feature at 620nm which is also the centre 

of the band 6 in MERIS. PC is retrieved via the ratio between the 620 nm band 

over a NIR band, centred at 709 nm, as reference. A second band ratio 

(709/665nm) is used to retrieve a correction factor for the absorption of chl-a at 

the 620 nm spectral band. A band (centred at 779 nm) is used to acquire the bb 

coefficient which is introduced in the two band ratios to retrieve the a 

coefficients by inverting a reflectance model (SIMIS et al., 2005).  

Wynne et al. (2008) developed a spectral shape (SS) algorithm using the water 

leaving radiance (Lw) from MERIS at 681, 709 and 665 nm. This algorithm 

allowed the authors to distinguish bloom and non-bloom conditions in Bear 

Lake, Michigan, USA. However, this algorithm does not retrieve PC 

concentration per se but, instead, a nominal positive- and negative-like 

classification. Wynne et al. (2010) proposed a cyanobacteria index (CI) using 

the SS algorithm in order to classify the occurrence or not of CHABs. A positive 

CI is indicative of elevated densities of cyanobacteria while the negative CI is 

indicative of no CHABs.  

Hunter et al. (2008) adapted the three-band model proposed by Gitelson et al. 

(2008) used for the retrieval of chl-a from MERIS data to propose a PC three 

band algorithm. They applied their algorithm to experimental cultures of 

cyanobacteria. Hunter et al. (2010) proposed an update on their previous three 

band algorithm changing the spectral bands to 600, 615 and 725 nm reflecting 

the fact that measurements in the foregoing study were made from laboratory 

cultures rather than from natural waters. 

The new single reflectance ratio proposed by Mishra et al. (2009) used the 

reflectance at 700 nm as reference and aimed to PC absorption at 600 nm as to 

minimize the chl-a interference. Le et al. (2011) based on a four-band algorithm 

for chl-a estimation (LE et al., 2009) developed a four-band algorithm for PC 



19 
 

concentration estimation. The spectral bands for this algorithm were chosen 

according to the same characteristics used in the chl-a four-band model. Thus 

the first band should be the most sensitive for PC, which the authors chose 630 

nm. The second spectral band should have less interference of PC absorption 

and should have a difference on the absorption coefficients of NAP and CDOM, 

so it was chosen the 645 nm band. Third and fourth bands were chosen to 

minimize the effect of backscattering from TSS, so 730 and 695 nm were 

chosen as the wavelengths for the third and fourth bands, respectively.  

Dash et al. (2011) used the Ocean Colour Monitor (OCM) sensor to develop a 

spectral reflectance slope algorithm in order to map cyanobacteria in a small 

freshwater lake. The slope algorithm proposed by the authors uses OCM bands 

4 (510.6 nm) and 5 (556.4 nm). This spectral range was used to identify PC 

even without the absorption feature at 620 nm. Thus, due to OCM spectral 

resolution (404-885 nm) the slope between bands 4 and 5 was used to identify 

the low PC absorption coefficient values. Gómez et al. (2011) proposed a 

Normalized Difference Phycocyanin Index (NDPCI) for MERIS and Compact 

High Resolution Imaging Spectrometer (CHRIS) spectral bands. The authors 

used indices bands around 705 nm, which are located proximal to the chl-a 

fluorescence (MERIS band 9 and CHRIS band 14) and the PC absorption 

feature, centred at 620 nm (MERIS band 6 and CHRIS band 9). Wheeler et al. 

(2012) also applied the concept of Red/NIR algorithms, from chl-a bio-optical 

models for OCW, to estimate PC using Quickbird and MERIS images from 

Missisquoi Bay, USA. 

Mishra and Mishra (2014) improved the three-band algorithm proposed by 

Gitelson et al. (2008) and modified by Hunter et al., (2010) by introducing a 

confusion-improver coefficient for the prediction of PC. This coefficient was 

based on the band ratio for the green-red spectral region. This ratio correlated 

well with chl-a laboratory data and therefore was tested to evaluate whether it 

could remove the confusion between PC and chl-a. However, the authors 

emphasize the algorithm low efficacy for inland water bearing low 
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concentrations of PC. LI et al. (2015) suggested that for their semi-analytical 

PC-predicting algorithm the blue range of the spectrum increases uncertainty 

within the algorithm. This uncertainty is due to higher variability in the coefficient 

of absorption values increasing uncertainty over the the subsequent steps 

estimation process. Therefore, it is noted here that further investigations are 

needed to evaluate whether these low-concentration PC-prediction studies can 

undergo improvement, and whether this improvement can be assessed for the 

higher-frequency wavelengths. A list of all models referenced so far is shown on 

Appendix A. 
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2.4. Signal processing 

Wavelet transform (WT) is an analysis tool well suited for the study of multi-

scale, non-stationary processes occurring over finite spatial and temporal 

domains (LAU; WENG, 1995). Natural events (e.g., atmospheric turbulence; 

and hydrological systems interaction with EMR characterised by a set of global 

and local parameters such as frequency, intensity, time position, and duration 

can be considered non-stationary processes (BOLZAN, 2004). WT can evaluate 

these processes due to its multi-scale capability to sieve through the many 

frequency levels that compose a signal (AMPE et al., 2014; 2015).  

Non-stationary processes have their statistical data such as mean and variance 

changing over any segment of a time series (BOLZAN, 2004). On contrary, 

stationary processes do not have this characteristic. They are well understood 

from the Fourier-transform perspective, since it aims to select the period of each 

oscillatory component present in a time series (BOLZAN, 2004). However, non-

stationary processes have more complex signal information, requiring a more 

flexible and robust tool. 

Fourier transforms or time filters (CHAPARRO, 2015) do not provide much 

flexibility in the representation of both local and global signals. Instead, WT is a 

tool that is suited for such a purpose. In this regard, WT can be considered a 

flexible mathematical framework whose potential to adapt to the signal data 

being analysed is comparable to that of a covariance matrix used in a spatial 

Kriging interpolation (DEUTSCH; JOURNEL, 1992). Therefore, in the same way 

that Kriging is a powerful and adaptative spatial interpolation method, WT is an 

efficient signal clustering technique for its flexible adaptation to the many 

decomposition levels of a signal. 

WT uses generalized local base functions (wavelets) that can be stretched and 

translated with a flexible resolution in both frequency and time. The flexible 

windows are adaptive to the entire time frequency domain, known as the 
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wavelet domain (WD), narrowing while focusing on high-frequency signals and 

widening while searching the low-frequency background (WENG; LAU, 1994). 

Mathematically, a WT decomposes a signal s(t) in terms of some elementary 

functions         derived from a "mother wavelet" or "analysing wavelet"      

by dilation and translation (Equation 3): 
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where b denotes the position (translation) and a (>0) the scale (dilation) of the 

wavelet;         are called "daughter wavelets" or, simply, "wavelets." An 

energy normalization factor √ 
 

 keeps the energy of daughter wavelets the 

same as the energy of the mother wavelet. The wavelet transform of a real 

signal     with respect to the analyzing wavelet      may be defined as a 

convolution integral (Equation 4): 
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where    is the complex conjugate of   defined on the open "time and scale" 

real (b, a) half plane. The function      can be formally reconstructed from the 

wavelet coefficients by the inversion formula (Equations 5 and 6): 
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and  ̂ is the Fourier transform of  . 
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An intuitive way to represent WT coefficients is similar to the way in which the 

musical tones are represented in a musical score. Pioneers in the WT field have 

borrowed the concept of "octave" which is logarithmic with the base of 2 for 

frequency or timescale, as a unit to divide the frequency domain. This unit 

allows us to include a broad range of scales, from very small to very large, in an 

efficient way in a coordinate system with linear interval in octave while 

logarithmic in frequency scale (WENG; LAU, 1994). Hence, unlike the FT which 

maps a 1D time series to a 1D spectrum, the WT maps a 1D time series to a 2D 

image that portrays the evolution of scales and frequencies with time or some 

other abscissa range (e.g., EMR wavelength). 

The scale range is chosen depending on the frequency content of the 

timescales. For low-frequency (or high frequency) variability a scale range 

containing only lower (or higher) octaves is needed, similar to a bass (treble) 

clef in music. In general, a continuous scale covering both ends of the spectrum 

is used. As a result, WT decomposes a signal into "localized" or "instantaneous" 

frequencies complete with the measure of intensity and duration for each 

frequency, analogous to the bass/treble clef, the crescendo/decrescendo, and 

the tempo in a piece of music (LAU; WENG, 1995). 

Wavelets can be mainly divided into two categories: continuous or orthogonal. 

When it comes to choosing which WT, orthogonal (which may not be a discrete 

one) or continuous, to be used in a specific application, one needs to have it 

clear what their differences are. Orthogonal wavelets are desirable for use in 

decomposition and in reconstruction of time series. Continuous wavelets yield 

enhanced information on the timescale localization. Therefore, orthogonal 

wavelets are ideal for clustering and synthesis, whereas continuous wavelets 

are more suitable for easier graphical interpretation due to its redundancy 

reinforcing certain traits within a signal. 

Freitas and Shimabukuro (2008) applied a discrete wavelet transform for 

filtering MODIS fraction images time-series. The filtered signal was 
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reconstructed excluding high frequencies for each pixel in the fraction images 

time series. This procedure allowed a viewing of original signal without clouds 

and other noises. This work is a real application of wavelet transform in remote 

sensing. It is clear how the signal of interest was able to be sorted and clean 

from unwanted frequencies. Regarding water studies, Ampe et al. (2014) 

attempted to isolate the most informative wavelet regions via thresholding, and 

then, relate all five regions to known inherent optical properties. And also, Ampe 

et al. (2015) proposed a wavelet-enhanced inversion method, specifically 

designed for complex waters in which it integrated wavelet-transformed high-

spectral resolution reflectance spectra in a multi-scale analysis tool. 

Signal clustering can be of great support for the analysis of radiometric data 

related to water quality studies. It can support the development of a constituent-

identification procedure for a water body management strategy. Therefore, it 

seems more appropriate to consider for this kind of study the application of an 

orthogonal wavelet, in this case, a discrete one. Moreover, comparison between 

different signal processing techniques in order to evaluate methodological 

efficacy is crucial for an ever-enhancing application of such techniques. 

Thereby, assessment of a discrete wavelet transform clustering against another 

widely used signal processing technique such as the spectral angle mapper 

(SAM) (ZHANG; LI, 2014; SANDER DE CARVALHO et al., 2015) seems 

appropriate to be performed. 

2.5. Sensor applicability 

Coastal Zone Colour Scanner (CZCS) aboard Nimbus-7 launched in 1978 was 

the first sensor dedicated to aquatic systems. Therefore, marine optics 

improved, enabling remote multispectral sensors to monitor water colour and, 

thence, water quality. Other satellite sensors for water monitoring were 

launched after the CZCS such as the Landsat family (2 to 8), Sea-viewing Wide 

Field-of-view Sensor (SeaWiFS), Advanced Earth Observing Satellite (ADEOS), 

Hyperion, Australian Resource Information and Environmental Satellite 
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(ARIES), Moderate Resolution Imaging Spectroradiometer (MODIS), and 

MERIS. 

Water quality monitoring still has limitations regarding Earth-observing satellite 

sensors. Examples of such limitations are the ones associated with the sensor 

capabilities and range of data acquisition. The four domains linked to remote 

sensors (spatial, temporal, spectral, and radiometric) impose several degrees of 

limitation. Depending on for what purpose the sensor was designed for, it could 

have better or worse resolution for each of the domains. And as such, the 

sensor ability to acquire certain types of data is compromised. For example, 

better temporal resolution contributes for the acquisition of more frequent data 

on cyanobacteria dynamics over an aquatic system. However, better spectral 

resolution highly contributes to acquisition of precise mineral absorption bands 

over geological features. Therefore, each Earth observation system must have 

its priorities in order to develop the adequate type of sensor system. 

Environmental limitations are those not caused by a sensor, but by 

environmental factors. Weather dependency is one of the most important 

factors, since the image acquisition may be compromised by adverse 

atmospheric conditions, which are dependent on season and geographical 

location. Other atmospheric compounds such as cloud, haze, fog, smoke or 

dust can also compromise the frequency of earth observations over a target 

area. It is important to enhance that the detection of water quality variables is 

restricted to variables that have a direct influence on water optical conditions. It 

is also important to enhance that the variables influencing bio-optical models 

outputs are located at water bodies‘ near-surface regions, since most of the 

optical remote sensing signal cannot be derived from deeper zones. In marine 

optics the sea state is also an important environmental factor for the success of 

bio-optical modelling.  

Not all remote sensors have the appropriate resolution for the identification of 

PC. This is true because the absorption band depth at 620 nm is shorter 
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compared to that of chl-a pigment. Chl-a is the major pigment of photosynthetic 

process whereas phycocyanin (the pigment associated with the absorption 

band depth at 620 nm) is an accessory pigment interacting less intensely with 

the incoming radiation. Sensors with higher spectral resolution such as CHRIS, 

Hyperion and Hyperspectral Imager for the Coastal Ocean (HICO) have the 

potential for mapping PC, however, worse temporal resolution, hinder the full 

potential of such sensors. Also, low signal-to-noise ratio (SNR) associated with 

hyperspectral sensors can be a great source of low-quality data. The use of 

multi-spectral orbital sensors is reduced due to the lack of spectral bands over 

the PC absorption feature. MERIS was the only multispectral sensor with a 

spectral band around 620 nm, however as ENVISAT stopped communicating 

with ground stations in middle 2012, the MERIS use for aquatic studies was 

compromised. 

New hyperspectral sensors such as Environmental Mapping and Analysis 

Program (EnMAP), Hyperspectral Infra-red Imager (HyspIRI) and PRecursore 

IperSpettrale della Missione Applicativa (PRISMA) have been developed to 

improve hyperspectral measures from the space. EnMAP is a German 

hyperspectral satellite mission providing high quality hyperspectral image data 

on a timely and frequent basis. It will provide over 240 continuous spectral 

bands in the range between 420 and 2450 nm with a spatial resolution of 30 m. 

The sensor will work in a push broom configuration, and will provide global 

coverage in quasi-nadir mode (±5°) from a sun-synchronous orbit (STUFFLER 

et al., 2009).  

HyspIRI is a global mapping mission that was recommended by the National 

Research Council's Earth Sciences Decadal Survey (NRC, 2007). Two sensors 

will be available: a visible-near−infrared (VNIR) and shortwave infrared 

(VSWIR) imaging spectrometer; and a multispectral thermal infrared (TIR) 

instrument. The VSWIR instrument will have 213 spectral channels between 

380 and 2500 nm centred every 10 nm. Both instruments will have a 60-m 

spatial resolution at nadir (ROBERTS et al., 2012). PRISMA is a remote 
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sensing space mission under development by the Italian Space Agency (ASI). It 

will cover the Earth with a spatial resolution of 30 m, and 250 spectral bands 

with a spectral resolution better than 10 nm. The sensor spectral range covered 

is visible and near infrared (VNIR) and short wave infrared (SWIR) bands. It will 

also have a panchromatic band with 5 m of spatial resolution which will be co-

registered to the hyperspectral bands in order to allow fusion techniques on 

PRISMA's images (LABATE et al., 2009). Despite these improvements, these 

sensors‘ equatorial revisit frequency will occur on demand, 19 days and 25 days 

for EnMAP, HyspIRI and PRISMA respectively (DEKKER; HESTIR, 2012).  

Sentinel constellation is meant to be an ENVISAT heritage. The Ocean and 

Land Colour Instrument (OLCI) is on-board Sentinel-3 satellite. It is a MERIS-

like sensor (DONLON et al., 2012; MALENOVSKÝ et al., 2012). OLCI will have 

21 spectral bands, and the extra bands are for better atmospheric correction. 

Table 2.2 shows all OLCI bands and shaded areas are the new bands. The 

sensor will have a swath width of 1270 km (FOV of 68°, but slightly tilted) and a 

300-m spatial resolution. It is tilted 12.6° westwards to avoid sun-glint over 

water, which may have some effects over land too (CLEVERS; GITELSON, 

2013). Due to the satellites constellation strategy, two Sentinel-3 satellites have 

been scheduled.  

OLCI‘s equatorial revisit time using one satellite is 3.8 days, however, if using 

the two-satellite strategy, revisit time will reduce to 1.9 days (ESA, 2012). For 

more details on OLCI sensor, a table with key characteristics is shown on 

Annex C. Another multispectral mission that will be developed is the SABIA-

MAR mission which will have two sensors imaging earth in a global and regional 

scale. The mission was conceived to provide information and products to 

studies of ocean ecosystems, carbon cycling, marine habitats mapping, coastal 

hazards, and coastal land cover/land use (CHAMON, 2013).  
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Table 2.2 – Specifications of the OLCI on the Sentinel-3 satellite system; shaded areas 
are the ones that were included from MERIS specifications 

Spectral band Centre wavelength (nm) Bandwidth (nm) 

O1 400 15 

O2 412.5 10 

O3 443 10 

O4 490 10 

O5 510 10 

O6 560 10 

O7 620 10 

O8 665 10 

O9 673.75 7.5 

O10 681 7.5 

O11 709 10 

O12 754 7.5 

O13 761 2.5 

O14 764.375 3.75 

O15 767.5 2.5 

O16 779 15 

O17 865 20 

O18 885 10 

O19 900 10 

O20 940 20 

O21 1020 40 

Source: Ogashawara (2014) 

Considering the above-mentioned OLCI characteristics, one notes how this 

sensor is a potential payload for CHABs monitoring because of the spectral 

bands located in areas of PC interaction with incoming radiation. Dekker and 

Hestir (2012) attributed MERIS as the most suitable satellite sensor system with 

sufficient temporal frequency for inland and near‐coastal water quality. As a 

MERIS-heritage programme sensor, OLCI has been considered a potential tool 

for remote sensing of water quality studies (DEKKER; HESTIR, 2012; SONG et 

al., 2013c). 
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3 STUDY AREA 

The Guarapiranga reservoir (Figure 3.1) is located at 23°43‘ S e 46°32‘ W, and 

has a flood area of approximately 33 km², maximum depth of 13 meters and 

retention period of 185 days; providing 11 thousand litters of water per second 

for over 4 million people (GEMELGO et al., 2008). Its morphology is dendritic, 

narrow and elongated, increasing the land use influence in its watershed 

(CPLEA; COBRAPE, 2006). 

Figure 3.1 – Study Area Location. Sampling stations are depicted as red dots. Local 
bathymetry is in shaded blue. Surrounding altitude is expressed in green-
brown shades. Bathymetry shown in this figure was acquired in this study. 
Altitude data is from Shuttle Radar Topography Mission (SRTM). 

 

The reservoir was built between 1906 and 1908, for the purpose of electric 

energy generation and Tietê river flow regulation; it is located in the 

southwestern portion of Tietê river watershed (GEMELGO et. al., 2008). 

Currently, the reservoir has multiple uses, and they include leisure, bathing, and 

water sports. In both, Billings and Guarapiranga reservoirs, within the 
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metropolitan region of São Paulo, different studies on phytoplankton 

communities were developed. They beared an ecological- and health-related 

focus since the importance of these reservoirs for the region dwellers supply is 

highly important and requires constant monitoring. Therefore, due to its 

importance, Guarapiranga reservoir was chosen as this thesis‘ study site. 

Limnological characteristics showed the environment is a site where 

cyanobacteria are likely to be encountered (LORENZI, 2004), and this fact has 

also been considered for the study site choice. 

Seventeen sampling stations were chosen for the field campaign (Figure 3.1) 

from April 14th till April 17th, 2015. The sampling stations visited were part of the 

stations set by Tecnological Company of Environmental Sanitation (CETESB) 

and Basic Sanitation Company of São Paulo State (SABESP) as water samples 

collection stations (Annex A; Annex B; Table 3.2). Each station has a strategic 

meaning for both SABESP and CETESB and this meaning was seized for the 

stations choice in this study. Each point allows the assessment of local input 

streams and therefore the evaluation of how these streams influence the 

reservoir and whether they have a positive or negative contribution toward the 

overall reservoir water quality. 
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Table 3.2 – Location of sampling stations within Guarapiranga reservoir 

Station Station Name Latitude Longitude 

ID for this study (SABESP/CETESB) (UTM-23S) (UTM-23S) 

P1 GU-103 7378127 322039 

P2 GU-102 7378791 323625 

P3 GUAR00900 7380664 323770 

P4 GUAR00602 7377672 324823 

P5 GU-104 7376799 324390 

P6 GU-210 7376174 324831 

P7 GUAR00452 7375780 324621 

P8 GUAR00202 7374841 324321 

P9 GUAR00100 7371820 323999 

P10 GU-107 7372559 323967 

P11 GU-108 7374134 323864 

P12 Main Body* 7375387 323387 

P13 GU-105 7376197 322059 

P14 GU-106 7373567 320082 

P15 X1* 7371717 319654 

P16 X2* 7370628 319254 

P17 GU-106_107* 7373001 322140 
*These stations were chosen as extra stations. They had particular characteristics related to the 
OACs concentration and were considered relevant for this study. 

The Figure 3.2 shows an example of a water quality parameter automatic 

collection station from SABESP. This location was also used by this study in 

order to acquired field data. These stations are strategically placed within the 

reservoir according to the nearest river inflow point junction. These junction 

points allow for water quality parameter (WQP) data collection. Local rivers are 

the sub-basins main feed into the reservoir.  
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Figure 3.2 – Local measurements buoys utilised by SABESP for in situ limnological 
data collection. 

 

  

Adapted from Flores et al. (2001). Multi-parameter buoys installed in Guarapiranga 
reservoir. 

CPLEA and COBRAPE (2006) grouped these local tributaries into five main 

groups. The groups allow for the main pollution sources identification that flow 

into the reservoir. Therefore, this study based itself in this grouping for the 

collected data assessment. The groups are described below and their 

numbering location is depicted in Annex B. All figures mentioned in the grouping 

list below represent average values from the 1995 until 2005 (CPLEA; 

COBRAPE, 2006). 

Groups: 

1. Bonito/Pedras (GU-210), São José (GU-211), Tanquinho (GU-212), Itupu 

(GU-219) e Guavirutuba/Talamanca (GU-220) are highly polluted 
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streams, located in highly dense urban areas, predominantly low-income 

areas which receive high levels of domestic sewage drain-off; 

Guavirutuba stream has the highest observed concentrations; despite 

the fact that all these sub-basins have sewage systems set-up around all 

public roadways, it is exactly inside them that local slums are located (ca. 

50,909 inhabitants, 64% of the total basin area, according to (CENSO, 

2000)(census status), and inside the sub-basins, Itupu e Guavirutuba 

streams have lower indices of homes connected to a sewage system; 

2. Ribeirões Itaim (GU-214), Parelheiros (GU-213 and GU-213A), Crispim 

(GU-223) e rio Embu Mirim (GU-218) represent mix-use sub-basins, 

encompassing low-income highly-dense urban expansion areas, farming, 

and remaining natural vegetation; Embu Mirim sub-basin, also receives, 

industrial and domestic income loadings originated from Itapecerica da 

Serra, Embu and part of São Paulo; Embu Mirim sub-basin possess, 

however, extensive floodplains which contribute to significant organic 

loadings; higher concentrations are detected in Bairro Crispim stream 

waters; 

3. Rio Embu Guaçu (GU-216) e ribeirão Santa Rita (GU-215) have 141 and 

101 km2 respectively, encompassing predominantly areas of non-urban 

use; they receive industrial and domestic contributions from Embu Guaçu 

and Cipó district; total phosphorous mean concentrations are on average 

lower than the previous group; chemical oxygen demand (COD), 

however, are within the same order of magnitude, clarifying that the 

groups water quality main difference is due to incorrect domestic 

wastewater disposal, which is higher in group 2; 

4. Córrego 2 (GU-209) is a smaller sub-basin (1.14 km2), located at the 

reservoir right-hand side margin, in a settled higher-income area, 

supplied with an efficient wastewater treatment network, reaching the 

98% figure of dwelling homes under the network range; total phosphorus 
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mean concentrations and COD are respectively 0,13 mg/L and 19 mg/L; 

these figures should be encountered in all previous groups, and they 

would represent a good proxy of a higher-quality tributary; total 

phosphorus concentration is 25 times lower than those observed within 

the first group streams; 

5. Golf Club stream (GU-222) is a 12 km2, located at the reservoir right-

hand side margin, encompassing strictly rural areas with farming, leisure 

farms, predominantly little-altered most-natural areas; total phosphorus 

mean concentration is 0.03 mg/L and COD, 12 mg/L.
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4 MATERIALS AND METHODS 

4.1. Equipment 

Fluorometric, radiometric and spectrophotometric equipments were used to 

collect data on the water column and above the surface of Guarapiranga 

reservoir. In this section the main equipments are described. 

4.1.1.  YSI Sonde 

The multi-parameter sonde (YSI, 2011) used in the field measurements (Figure 

4.1) was the YSI/6600. This equipment measured the following parameters: 

Dissolved Oxygen (DO) (mg/L), temperature (ºC), conductivity (µS/cm), chl-a 

(raw units). 

Figure 4.1– Sonde YSI 6600 in operation. 

 

The sonde utilises a thermistor of sintered metallic oxide that changes 

predictably in resistance with temperature variation. The algorithm for 

conversion of resistance to temperature is built into the sonde‘s software, and 

accurate temperature readings in degrees Celsius are provided automatically. 

No calibration or maintenance of the temperature sensor is required (YSI, 

2011).  

For conductivity measurements, the sonde utilizes a cell with four pure nickel 

electrodes for measurement of solution conductance. Two of the electrodes are 
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current driven, and two are used to measure the voltage drop. The measured 

voltage drop is then converted into a conductance value in milli-Siemens (milli-

ohms). To convert this value to a conductivity value in micro-Siemens per cm 

(µS/cm), the conductance is multiplied by the cell constant that has units of 

reciprocal cm (1/cm) (YSI, 2011). 

The DO sensor employs the patented YSI Rapid Pulse system for the 

measurement of dissolved oxygen. The Rapid Pulse system utilizes a Clark-

type sensor that is similar to other membrane-covered steady-state dissolved 

oxygen probes. This sensor measurement range varies from 0 to 50 mg/L of 

DO on a precision range from ±2% to ±6% depending on the collected 

measurement; and it has a resolution of 0.01 mg/L (YSI, 2011). 

On chlorophyll measurements, a key characteristic of chlorophyll is that it 

fluoresces, that is, when irradiated with light of a particular wavelength, it emits 

light of a longer wavelength (lower energy). The ability of chlorophyll to 

fluoresce is the basis for all commercial fluorometers capable of measuring the 

analyte in vivo. Fluorometers of this type have been in use for some time. 

These instruments induce chlorophyll to fluoresce by shining a beam of light of 

the proper wavelength into the sample, and then measuring the longer 

wavelength light which is emitted as a result of the fluorescence process.  

Most chlorophyll systems use a light emitting diode (LED) as the source of the 

irradiating light that has a peak wavelength of approximately 470 nm. LEDs with 

this specification produce radiation in the visible region of the spectrum with the 

light appearing blue to the eye. On irradiation with this blue light, chlorophyll 

resident in whole cells emits light in the 650-700 nm region of the spectrum. To 

quantify the fluorescence the system detector is usually a photodiode of high 

sensitivity that is screened by an optical filter that restricts the detected light. 

The filter prevents the 470 nm exciting light from being detected when it is 

backscattered off of particles in the water. Without the filter, turbid (cloudy) 
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water would appear to contain fluorescent phytoplankton, even though none 

were present (YSI, 2011). 

Fluorescence chlorophyll measurements might be aimed to different purposes. 

Murchie and Lwason (2013) suggested that differences between dark-adapted 

measurements or daylight measurements should be considered depending on 

what is the primary objective of the study. Dark-adapted measurements are of 

great importance to plant stress assessment. Also, studies have considered 

making restricted measurements during periods of the day when PAR is known 

to be saturating for photosynthesis and electron transport (MURCHIE et al, 

2002). This thesis acquired chlorophyll fluorescence data during daylight from 

10am to 15pm since it is the period of day where PAR is most strong. This 

allowed for a better estimation of chlorophyll activity yield since the water body 

was not loaded with high concentration of such photosynthetic pigment. 

4.1.2.  Fluorometer Turner 10-AU 

The 10-AU-005-CE Field Fluorometer (Turner Designs, Sunnyvale, CA, USA) is 

field-portable instrument that can be used for both continuous-flow or discrete 

sample analysis. The instrument has a watertight case, internal data logging, 

automatic range changing, and water-tight quick-change filter paddles 

(TURNER DESIGNS, 2008; 2009). The 10-AU fluorometer (Figure 4.2) was 

equipped with a PC Optical Kit (P/N: 10-305) including a cool-white mercury 

vapour lamp, a 580-620-nm excitation filter, a 640-nm emission filter, and a 

reference filter at >665 nm. This optical kit permits the measurement of in vivo 

PC. This study used the discrete analysis procedure.  
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Figure 4.2– Two different ways to collect PC data via fluorometric approach. The 
continuous flow requires the use of a pump and hoses. And the discrete 
analysis simply uses individual vials for each sample measuring the raw 
signal value displayed by the equipment after the appropriate calibration.  

 

4.1.3.  RAMSES hyperspectral radiometers 

Radiance and irradiance measurements were performed using the RAMSES 

hyperspectral radiometers (TriOS GmbH, Oldenburg, Germany). The 

radiometers measure in the VNIR range of the spectrum (320–950 nm) with 3.3 

nm spectral resolution (0.3-nm accuracy). RAMSES radiometers can be 

classified in ACC-UV, ACC-VIS, ASC-VIS and ARC (TRIOS, 2009). The 

RAMSES-ACC-UV is an integrated Ultra-Violet (UV) hyperspectral radiometer; 

and the RAMSES-ACC-VIS is a Ultra-Violet A (UV-A) and visible spectral region 

hyperspectral radiometer, both equipped with a cosine collector.  

RAMSES-ASC-VIS is equipped with a spherical collector shielded to measure 

radiation from one hemisphere. It can measure scalar irradiance through the 

use of two of these sensors pointed in opposite directions. RAMSES-ARC is a 

highly integrated hyperspectral radiometer for the UV and visible spectral range. 

All these radiometers are calibrated for underwater and air measurements using 
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two different calibrations. They collect the signal through a portable terminal 

(e.g., laptop) via the MSDA_XE software which is used to record irradiance and 

radiances signal and export the data from the database for further processing. 

Ohde and Siegel (2003) furthered the use of such sensors applying the sensors 

to calculate the immersion factors of sampled radiance and irradiance. 

4.1.4 Spectrophotometer 

A Shimadzu UV/Vis spectrophotometer (SHIMADZU CORPORATION, Kyoto, 

Japan) with an integrating sphere was used to measure absorbance of the 

samples with 10 cm quartz cells and a spectral range from 190 - 1100 nm for 

particulate matter (PM) analyses. Whereas for CDOM analysis, the integrating 

sphere was not used, using only a 100 mm cuvette. 

4.1.5 AC-S In-Situ Spectrophotometer 

The OACs total absorption and attenuation were acquired by WETLabs AC-S 

sensor (Figures 4.3 and 4.4). The equipment operation range goes from visible 

to NIR (400 a 750 nm), and generated water column optical properties spectral 

profiles. 

AC-S employs two 25 cm optical paths in order to operate in natural waters: an 

absorption tube, and an attenuation tube. The light source uses a collimated 

light beam from a tungsten lamp on a variable linear filter. The absorption tube 

has an internal reflective surface element and a large detecting area, whereas 

the attenuation tube has an opaque internal surface. The instrument has an 

output with a 4 nm resolution (WETLABS, 2013). 
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Figure 4.3 – AC-S components‘ illustrative scheme.  

 

Source: WETLABS (2013). 

Figure 4.4 – AC-S instrument in operation.  
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AC-S‘ output data format is binary. This is converted to a more applicable 

format via post-processing. The primary transfer equation for the acquisition of 

the attenuation coefficient (c) or the absorption coefficient (a) for any given 

wavelength is Equation 4.1. 

 

   xceT    (4.1) 

where: T is transmittance; c is the attenuation coefficient; and x is the water 

volume optical path (WETLABS, 2013). 

Transmittance can also be calculated via the ratio between the measured signal 

and the reference value (Equation 4.2). 
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where T is transmittance, 
sigC  is the measured signal; 

refC  is the reference 

value; and N is an instrument-specific calibration constant, acquired in 

laboratory, using clean water (WETLABS, 2013). 

Equalising Equations 4.1 and 4.2, one gets: 
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One can, therefore, acquire the attenuation coefficient (and similarly acquire the 

absorption coefficient) from Equation 4.4. 
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Determining ln(N) is essential for the precise measurement of c and a. This 

value is determined for each channel and it is supplied by the instrument 

calibration data sheet. 

AC-S can operate in different ways: via profiling, via hauling, and moored. In the 

present study only the vertical profiling was used. The profiling system allows 

for AC-S to be mounted in conjunction with a pump (Sea Bird Eletronics, model 

SBE 5T), a pressure sensor (Sea Bird Eletronics, model SBE 50), a battery, and 

a data integrator (DH4, from WETLabs). These elements were mounted into an 

aluminium structure (see Figure 4.4). 

Pump is responsible for the water passage through the equipment pipes, and 

data collected by the pressure sensor can be converted to depth data. The 

battery supplies energy for the system and the DH4 controls data acquisition 

and storage. In the profiling mode, it is necessary to inform the waiting time, 

which accounts for the time necessary to place the equipment into the water; 

accounts for the system warm up; accounts for sampling frequency; and for 

total sampling per point. 

In this study the following setup times were established: 2-minute waiting time; 

5-minute warm-up; 4-Hz sampling frequency; variable sampling time depending 

on depth of each sampling station. The profiling in each station took place as 

follows: the instrument was lowered to the safest deepest point (this depth was 

chosen to be one or two meters shorter than maximum depth); at that depth the 

instrument was left to warm up; then, sampling occurred bringing it upwards, 

then, downwards, then finally, upwards again. 
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4.2. Bathymetry 

The bathymetric map was developed using: the sampling stations depth values 

collected during the fieldwork; the reservoir drainage basin; and depth points 

generated from both the combination of the previous two variables and zero-

value depths (orange triangles in Figure 4.5) along the reservoir border (Figure 

4.5). This method for the generation of a bathymetric map was developed after 

the need encountered by this study to yield the bathymetry for Guarapiranga 

reservoir in order to evaluate the reservoir‘s overall hydraulic flux. This method 

was the only option available, as the second fieldwork could not occur due to 

unforeseen field-related shortcomings. And, therefore, as the second fieldwork 

had been planned to also include the echobathymeter, this data could not be 

collected.  

Ordinary kriging (OK) interpolation was applied to the reservoir measured 

depths and the drainage-basin-based depth point. The interpolation model was 

the stable model, automatically adjusted within ArcGIS® geostatistics package. 

This model adjusted all interpolation parameters in order to minimise the error 

statistics. Ordinary kriging interpolation  is a spatial estimator geostatistical 

technique that requires the data being analysed to be normally distributed 

(FISCHER; GETIS, 2010). This permits the results to fall within a statistically 

significant framework which makes the technique relevant (CURTARELLI et al., 

2015). As much as data to be interpolated for this work were not normally 

distributed, if log-normal transformations were applied to highly skewed 

datasets, such as that of this work, ordinary kriging interpolation would generate 

favourable results (SAITO; GOOVAERTS, 2000; WU et al., 2006). Even beyond 

the above-mentioned premises, the geomorphological and hydrographical 

features from Guarapiranga reservoir used to construct the dataset to be 

interpolated - explained in section 4.2 - favoured the interpolation significance. 

Mostly because accounting for the geomorphological and hydrographical local 

characteristics minimised the statistical pitfalls from the constructed dataset by 

allowing data interpolation within a fairly understood set of sample values. 
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Figura 4.5 – Map showing sampling stations with local depth measured in situ; showing 
the depth points estimated from both the drainage basin and from linear 
estimation for the areas between the basin lines and the reservoir border; 
and showing the basin lines themselves. 

 
4.3. Water Quality Parameters 

All limnological parameters value distribution range analysed in this study were 

concatenated in a boxplot. This plot was distributed in three parts (low, medium, 

high values). This separation allowed the assessment of which parameters had 

higher concentrations in the studied water body. Moreover, the trophic state 

index (TSIx) was calculated according to Lamparelli (2004). Furthermore, 

correlation among all WQP was carried out via three correlation coefficients 

(Table 4.4). These coefficients were the Pearson Correlation Coefficient (R), 

Spearman Rank Correlation ( ), Kendall Rank Correlation ( ).  

There are numerous guidelines on when to use each of these correlation 

coefficients. One guideline is based on the type of the data being analysed. This 

guideline indicates that the Pearson product moment correlation coefficient is 
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appropriate only for interval data, while Spearman‘s and Kendall‘s correlation 

coefficients could be used for either ordinal or interval data. Some guidelines 

also exist suggesting which correlation might be more appropriate for data that 

involves several types of variables (SPRENT; SMEETON, 2000). According to 

Khamis (2008), for data that have at least one ordinal variable, Kendall‘s tau is 

more appropriate. Other investigators suggested Spearman‘s correlation 

coefficients for the same scenarios (SIEGEL, 1957; BLOCH, 2007). However, 

all of these correlation coefficients could be computed for interval data (e.g. 

continuous) (LIEBETRAU, 1983). All three coefficients were applied to this 

work‘s dataset as to evaluate their response to the dataset. A detailed account 

for each WQP and their correlations was carried out in the sections 5.3 and 

5.3.1. 

4.3.1. Chlorophyll-a Analysis 

Chl-a analysis were carried out after collecting water samples from the 

subsurface, at approximately 10-30 cm below the water surface. Samples were 

kept at cool temperatures until filtering procedure took place. This procedure 

consisted of filtering the collected samples using GF/F filters (Whatman, 0.7 μm 

pore size) and then extracting the samples from the filters using 90% acetone 

and measuring the absorbance in a Varian Cary 50 Conc UV-VIS 

spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) (NUSH, 

1980). Concentration of chl-a from the spectrophotometric absorbance data was 

calculated using the equation from LORENZEN (1967). 

4.3.2. Total Suspended Matter (TSM) Analysis 

TSM concentrations (including, inorganic (TSI) and organic (TSO) components) 

were determined based on Wetzel and Likens (2000) from water samples 

filtered through pre-washed Whatman GF/F glass-fibre filters, dried at 105°C, 

and weighed to determine the TSM. Filters were dried and weighed and TSO 

calculated by the difference in weight between the pre- and post-filtered filters 

(TSI).  
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4.3.3. PC Analysis 

PC concentration was estimated through the use of an in situ fluorometer 

(Turner Designs,model 10-AU-005) with an in vivo PC optical kit which uses the 

excitation and emission wavelengths at 580-620 nm and 640 nm, respectively. 

Water samples were collected and brought back to base camp, and fluorometric 

measurements took place as soon as the in-water data collection finished. 

Water samples were poured into clean transparent vials and placed inside the 

equipment. Once inside the measurement holder, the water sample was left still 

until the equipment reader settled in and displayed a stable raw value, which 

was then recorded for further processing.  

The fluorometer emits a cool white light (TURNER DESIGNS, 2008; 2009). This 

light goes through the excitation filter which only allows a certain wavelength 

range to pass through onto the sample. The excitation range of interest for the 

phycocyanin study is from 580 to 620 nm, which is the EMR spectral range 

phycocyanin pigment interacts most with the radiation via absorption processes. 

Afterwards, this wavelength range reaches the sample and if there is sufficient 

material to interact with the radiation, emission in the 640 nm takes place 

activating the light detector. This wavelength range for phycocyanin detection is 

highly specific (Figure 4.6) and therefore, no further work in laboratory was 

considered as to extract only this pigment. 

Figure 4.6 – Main pigments percent absorption spectra. Highlighting the absorption 
range associated with phycocyanin. 

 
Source: http://www.citruscollege.edu/lc/archive/biology/Pages/Chapter06-Rabitoy.aspx 
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After the field data were recorded, a calibration curve (Figure 4.7) was adjusted 

between the raw values acquired by the equipment and the concentration (µg/L) 

of that respective value. This concentration was determined using a standard 

product (Sigma-Aldrich #P52468 - 1MG) of known concentration diluted in 

deionised water. This master´s thesis has not used the phosphate buffer for the 

standard dissolution as used by Kasinak et al (2015) and suggested by the 

literature. The main reason for that was that the standards used by Kasinak et 

al (2015) and this study were different. This study used a pure solution of c-

phycocyanin pigment which only required it to be dissolved in dionised water 

whereas Kasinak et al (2015) used a lyophilized powder standard. The authors 

needed to extract the pigment from the organisms cells within the standard by 

means of phosphate dissolution. 

Figure 4.7 – Fluorometer adjustment curve bettwen fluorometer PC standard raw 
values and known concentration for that reading for the estimation of 
values collected during field campaign. 
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4.3.4. Ion chromatography and Total Carbon Analyser 

All anions and cations presented in this work were measured by the ion 

chromatography according to the procedures manual (FORTI et al., 2012). Also, 

total nitrogen (TN), dissolved organic carbon (DOC), dissolved inorganic carbon 

(DIC) data presented in this work were measured by the total carbon analyser 

(TOC-Vcpn) according to the procedures manual (ALCAIDE; FORTI, 2012). 

4.3.5. Sonde Analysis 

Sonde WQP measurements in this study were calibrated according to the 

appropriate equipment manual procedure (YSI, 2011). Each sampling station 

had a different depth range due to depth variations within the water body. 

Figure 4.8 depicted a generalised YSI-measurable parameter plot over depth 

for Coos Bay Estuary. 

Figure 4.8 – Generalised water quality parameters plot for Coos Bay Estuary, Oregon. 
CTD measurement, April, 2008. Measurements depth range from 50 to 
2800 m. 

 
Source: https://teacheratsea.wordpress.com/tag/noaa-ship-mcarthur-ii/ 
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In this study all parameters shown in Figure 4.8 (except pH, due to sensor fault) 

were measured. Chl-a was the only parameters that need further calibration 

after measurement as it did not yield values in the appropriate units after 

measurements. Therefore, a regression analysis (Figure 4.9) was applied 

between the water-sample laboratory-measured chl-a and sonde-measured chl-

a for the first 30 cm subsurface (0-) depth. However, few points were excluded 

from the analysis due to incongruent extreme values from sonde 

measurements. These values were considered outliers because they were 

related to a failure within the sonde data acquisition during fieldwork, and they 

were removed from the adjustment curve. 

Figure 4.9 – Laboratory-measured chl-a regression as a function of Sonde chl-a 
fluorometric sensor raw values for the first 30-cm subsurface depth. 

 
Note: far right points at around 500 sonde raw units values were the points excluded from the 
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4.4. Radiometric Analysis 

4.4.1. Rrs  

Six RAMSES sensors were used, two ACC and four ARC sensors, were 

acquiring data simultaneously (Figure 4.10b, and c). Two irradiance sensors 

centred at nominal (excluding effects of wave motion) viewing zenith angle (θv) 

of 90° were fix-pointed upward (Ed) and downward (Eu) directions. A radiance 

sensor was also pointed downward to measure the upwelling radiance (Lu). 

These three measures collected above- and below-surface water 

measurements. An optical-fiber cosine-diffuser radiometer (yielding a 

hemispherical field of view, FOV), pointed upward to acquire the Es. The other 

two radiometers with a 7° FOV were centred at nominal θv of 40° from the 

water-surface horizontal plane: one upwards for the diffuse sky radiance Lsky 

and one downwards for the total water radiance Lt. 

Rrs was calculated according equation 4.5 (MOBLEY, 1999) 

          
             

         
      (4.5) 

Where, rF is the Fresnel reflectance of surface (0.03); n is the refractive index of 

water (1.33); and Fi(λ) is the spectral immersion factor (OHDE; SIEGEL, 2003) 

which is already accounted for in the Ramses TriOS calibration files; and the 

terms   (water) and   (air) were included in the quantities arguments in order to 

remind the reader that those quantities represent the underwater ( ) and 

above-surface ( ) measurements, respectively. The spectral immersion 

coefficient for each sensor was derived from Equation 4.6: 

      
               

 

         
 

 (4.6) 
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where, nw is the wavelength-dependent refractive index of freshwater and can 

be estimated using Equation 4.7 (AUSTIN; HALIKAS, 1976). ng is the 

corresponding index of the glass window of the radiance sensor. 

               
      

            
 (4.7) 

The below surface remote sensing reflectance, rrs, was calculated according to 

Equation 4.8 (MOBLEY, 1999; KIRK, 2011). 

       
         

     
 (4.8) 

where   and   specify the polar and azimuthal directions, respectively. 

Figure 4.10 – Radiometric data collection sensor set-up: (a) The boat was kept aligned 
with solar direct beam direction as to keep above-water sensors 
orthogonal to these beams. (b) Downwelling Irradiance (Ed), Upwelling 
Radiance (Lu), Upwelling Irradiance (Eu). (c) Total Water Radiance (Lt), 
Diffuse Sky Radiance (Lsky), Global Solar Irradiance (Es). (d) Example of 
underwater measurement. 

 
Notes: boat orthogonal position varied between 90 – 135 degrees. 
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As described by Mishra et al. (2005), changes in sun illumination condition may 

cause variations in Es. Thus, in order to normalise the radiometric 

measurements below water surface, Mueller (2000)‘s method was adapted to 

quantify the variation in the obtained Ed spectra using simultaneously acquired 

Es measures as showed on Figure 4.10b, and c. The methodology calculates a 

normalization factor (NF) which can be estimated via equation 4.9. 

   
           

           
 (4.9) 

where, Es(t(zm),λ) is the Es measured at time t(z1) on the top of the boat at the 

first scan, and t(zm) the Es measured on top of the boat at the m scan. 

4.4.2. Underwater Light Field 

The underwater light field was estimated via the processing of E´d (normalised 

downwelling irradiance) at the varying local depths. Calculation of the vertical 

diffuse attenuation coefficient for downwelling irradiance, Kd(), integrated for 

the Photosynthetic Active Radiation (PAR), was carried out using Equation 4.10 

(MISHRA et al., 2005; KIRK, 2011) via an automated MatLab®: 
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  (4.10) 

where, z represents measurement-related depths (m). Kd(PAR) was acquired 

via the trapezoidal integration method between 400 and 700 nm.  

After Kd(PAR) calculation, a mean value over all depths was taken and applied 

into Beer‘s Law (Equation 2.1) along with the over-surface (0+) irradiance. 

Moreover, a topological stacked barplot was plotted for local maximum depth 

comparison against euphotic zone depth for all samplings points. The 

underwater light field was generated as a means to understand the EMR 3-D 

spatial variability throughout the reservoir. Moreover, it would allow the 
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identification of tendencies which could provide clues on how the WQP and 

OAC distribution occurs not only on 2-D but also on 3-D. 

4.4.3. Discrete Wavelet Transform Clustering Analysis (DWTCA) 

The DWTCA is a Matlab® routine already implemented in the software multi 

signal analysis package. This routine applies the concepts and mathematical 

framework from the discrete wavelet transform technique onto a set of signals. 

The user must set into the function arguments the following: a matrix containing 

the spectra to be evaluated; the number of groups to cluster the dataset (five 

groups were chosen for this study in an attempt to encompass the four major 

OACs classes plus an extra mixed-OAC class); a list indicating whether the 

wavelet coefficients to be used in the decomposition-reconstruction process are 

the coefficient of approximation (ca) or coefficient of detail (cd) (DAUBECHIES, 

1992); the wavelet families available from the software list (table 4.1) to analyse 

the dataset (only Haar and the discrete approximation of Meyer wavelet were 

feasible for this study (Appendix B) as the other wavelets were not suitable for 

this discrete analysis); the distance computation method between two objects in 

the data matrix (i.e., Euclidean was used in this study); and the hierarchical 

cluster tree computation method (i.e., ward method was used in this study – this 

method was appropriate for the Euclidean distance). 

Table 4.1 – Available wavelets within Matlab®. Highlighted are the only wavelets 
suitable for this study‘s discrete analysis. 

Wavelet Family 

Short Name 
Wavelet Family Name 

Wavelet Family 

Short Name 
Wavelet Family Name 

'haar' Haar wavelet 'dmey' Discrete approximation of 
Meyer wavelet 

'db' Daubechies wavelets 'gaus' Gaussian wavelets 
'sym' Symlets 'mexh' Mexican hat wavelet 
'coif' Coiflets 'morl' Morlet wavelet 
'bior' Biorthogonal wavelets 'cgau' Complex Gaussian wavelets 
'fk' Fejer-Korovkin filters 'shan' Shannon wavelets 
'rbio' Reverse biorthogonal 

wavelets 
'fbsp' Frequency B-Spline wavelets 

'meyr' Meyer wavelet 'cmor' Complex Morlet wavelets 
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Once the appropriate parameters are set, the function clusters the original 

spectra into the five groups of interest for each level of decomposition, following 

the attributes space analysis metrics. cds rather than cas were chosen for this 

study because they are associated with wavelet functions (SHENG, 2000). 

Since wavelet functions fill up the gap of any two adjacent scaling subspaces 

(Figure 4.11), they preserve the small scales details. Nine figures using Haar 

wavelet (one for each decomposition level, being the first level the original Rrs 

signal level) were generated in order to depict these clusters graphically 

(Appendix F). 

The Rrs(400-850 nm) spectra acquired from Trios sensors were the signal data 

used for clustering. This dataset was normalized over the 550 nm wavelength in 

order to eliminate a classification based on the signal magnitude values. 

Therefore, as the spectra became entangled around the 550 nm position, only 

the spectral shape was evaluated by the wavelet function. 

Figure 4.11 – Multi resolution analysis subspacing characteristics: (a) Scaling function: 
the subspaces spanned by the scaling function at low scales are nested 
within those spanned at higher scales. (b) Wavelet function: fill up the 
gap of any two adjacent scaling subspaces. (c) How an infinite set of 
wavelets is replaced by one low-pass spectrum approximation scaling 
function cork in order to avoid covering the spectrum all the way to zero 
with detailed wavelet spectra (MALLAT, 1989). 
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In order to evaluate the clusters consistency and correlation from each 

decomposition level cluster tree, the inconsistency coefficients (Equation 4.11) 

and the cophenetic correlation coefficients (Equation 4.12) were applied to the 

clustering results. The inconsistency coefficient (JAIN; DUBES, 1988) 

represents how each non-leaf cluster link height compares to average height of 

other links at the same level of hierarchy; the higher the values, the less similar 

the objects connected by the link. The cophenetic correlation (ROHLF; FISHER, 

1968) for a cluster tree is defined as the linear correlation coefficient between 

the cophenetic distances obtained from the tree, and original distances (or 

dissimilarities) used to construct the tree. Thus, it is a measure of how faithfully 

the tree represents the dissimilarities among observations. 

                              (4.11) 

Where: Y is inconsistency coefficient for each link of the hierarchical cluster tree 

z; k is the link from each tree. 

  
∑ (     )(     )   

√∑ (     )
 

   ∑ (     )
 

   

 
(4.12) 

Where: Yij is the distance between objects i and j in Y; Zij is the cophenetic 

distance between objects i and j, from the tree of hierarchical clusters; y and z 

are the average of Y and Z, respectively. 

Furthermore, a dendrogram was plotted for the matrix containing the cluster 

groups each spectrum was associated to at each level of decomposition after 

the DWTCA was run. This dendrogram depicted how those spectra were 

classified in the same cluster over the widest cd range possible. 

4.4.4. Spectral Angle Mapper (SAM) 

The goal of the SAM technique is to determine the degree of similarity between 

a test spectral dataset and a reference spectral library (ZHANG; LI, 2014). In 
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the present work, in situ hyperspectral Rrs data were the test data. Reference 

data used in this work was generated by the software water colour simulator 

(WASI) (GEGE, 2014). The spectral angle mapping was performed via an 

algorithm which determined the spectral similarity between two spectra 

(Equation 4.13), i.e., an automated method for comparing acquired spectra to a 

spectral library (KRUSE et al., 1993). 

       (
 ⃗   ⃗

  ⃗     ⃗  
) (4.13) 

where   is the test spectrum and   is the reference spectrum. 

The reference spectra generated by WASI software aimed to cover five different 

spectral classes. These classes have different OAC concentrations. Varying 

absorption coefficients values for each OAC characterised the different 

concentrations. Table 4.2 shows the different OAC concentration magnitude 

used to generate the spectra for a given class. Also, a non-default AOP-related 

parameter (fraction of sky radiance due to direct solar radiation (g_dd)) was 

used for classes four and five. This parameter represents the amount of direct 

radiance that is backscattered towards sky before reaching the water surface, 

and undergoes a diffuse reflectance back towards the water surface. Therefore, 

the higher this parameter value set into the Rrs model, the more higher-

frequency radiation misses the target (i.e., water body). Thus, the slope 

between the blue and green spectral ranges increases due to a decrease in 

magnitude at the blue range. This feature associated with g_dd was seized as 

to yield a different spectral class with a higher blue-green slope. 

After the algorithm was applied to the dataset, a matrix was generated. This 

matrix contained the different spectral angle errors for each pair of measured 

and reference spectrum. This matrix was generated in order to evaluate how 

the difference reference classes were associated with the measured spectra as 

a function of the algorithm error values.  
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Table 4.2 – OACs concentration magnitude within each spectral class generated by 
WASI.  

Class  Phyto 1 Phyto 2 Phyto 5 
Particulate 

Matter 
CDOM Detritus g_dd 

1 Medium None None Low High None 0.02 

2 None None Medium High Low None 0.02 

3 Low None None Low Medium Low 0.02 

4 None None None 
Medium 

High 
Medium 

Low 
Low 0.3 

5 High High High Medium High Low 0.18 

Low represents 0-25%; Medium Low represents 26-38%; Medium represents 39-62%; Medium 
High represents 63-75%; High represents 76-100%. Each phytoplankton type is associated with 
a specific phylum. Phyto 1 represents cryptophyta type L; phyto 2 represents cryptophyta type 
H; Phyto 5 represents green algae. The default g_dd value set by the software is 0.02. 

4.4.5. Laboratory-calculated, In-Situ-measured, and QAA-estimated IOPs 

Absorption coefficients such as at, aphy, anap and aCDOM – total particulate, 

phytoplankton, non-algal particles (tripton), and coloured dissolved organic 

matter, respectively - were measured at LAQUATEC Laboratory - INPE. For the 

aCDOM, the water samples from the field campaign were temporarily stored in a 

cooled chamber and filtered through 0.2-μm-large nylon filters. In order to 

retrieve the water samples CDOM absorption coefficient, the beam attenuation 

of the filtered water was measured on a Shimadzu UV/Vis spectrophotometer 

light detector after the beam passed through a transparent 100-mm quartz 

cuvette. As data from the equipment are noisy, an exponential shape of the 

aCDOM was fitted based on the 380–800 nm wavelength range. 

The absorption spectra of non-algal particles and phytoplankton were measured 

using the filter pad method using a Perkin Elmer integrating sphere attached to 

the Shimadzu UV/Vis spectrophotometer following the methods described by 

Tassan and Ferrari (2002). The method consisted on the determining the water 

samples at. The water samples were filtered under low pressure through a 25-

mm GF/F Whatman filter. at in the range 400 - 800 nm was determined in the 

spectrophotometer. Samples were then de-pigmented by soaking the filters in a 

sodium hypochlorite (NaClO) 10% solution. The values of anap were then 
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measured as described above and aphy values were calculated from Equation 

4.14. 

             (4.14) 

Measurements from AC-S allowed the development of attenuation and 

absorption plots. Pure water offsets supplied from the instrument's device file 

were applied to all vertical profiles to compute lake water total (particulate + 

dissolved matter) attenuation, and absorption (WETLABS, 2013). Before 

correcting for salinity and temperature (WETLABS, 2013), profiles were binned 

using a 10-cm median window. Once salinity and temperature corrections were 

carried out, depth per absorption and per attenuation plots were generated for 

five wavelengths (443, 500, 549, 670, 716 nm) which represent best the 

spectral regions in which the most common OACs interact with the EMR.  

The absorption measurements were, then, submitted to the scattering 

corrections (WETLABS, 2013; SANDER DE CARVALHO et al., 2015) as 

follows: the Flat method subtracts the absorption measurement at a reference 

wavelength (Equation 4.15): 

                 (    ) (4.15) 

where aFlat stands for the AC-S absorption corrected by the Flat method, acorr is 

the absorption coefficient corrected for temperature/salinity and λref is the 

reference wavelength. Based on Leymarie et al. (2010) instead of 715 nm as 

reference wavelength, it was used the 743 nm wavelength in an attempt to 

improve this correction, since the absorption wavelength coefficient is expected 

to be lower at 743 nm than at 715 nm. The Proportional Correction is described 

by Equation 4.16 

                 (    )  
        

     (    )
 (4.16) 
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Leymarie et al. (2010), assessed two reference wavelengths, 715 and 870, for 

10-cm AC-9, based on computer simulations. In this study, the wavelengths 

tested were 715 (aP715) and 743 (aP743) due to the spectral range limit imposed 

by AC-S. The temperature/salinity corrected scattering (bcorr) was estimated as 

a difference between ccorr and acorr. The Kirk method is described as (Eq. 4.17): 

                      (4.17) 

in which the constant fraction of scattering (CFS) proposed by Kirk (1992) for 

coastal water ranges from 0.121 to 0.162. Wet Labs manual (WETLABS, 2013), 

however, recommends 0.18 for turbid waters. Four scattering coefficients were 

calculated from ccorr and four scattering corrected absorptions. They were 

named as: bFlat (ccorr − aFlat), bP715 (ccorr − aP715), bP743 (ccorr − aP743), and bKirk 

(ccorr − aKirk). Thence, a figure was generated depicting the absorption per unit 

wavelength from 400 towards 750 nm. 

The Quasi-Analytical Algorithm (QAA) was originally developed by Lee et al. 

(2002) to derive the absorption and backscattering coefficients by analytically 

inverting the spectral remote-sensing reflectance (Rrs(λ)). The version used in 

this master´s thesis was the QAAv6. QAA starts with the calculation of the total 

absorption coefficient (a) at a reference wavelength (λ0), and then propagate 

the calculation to other wavelengths. Component absorption coefficients 

(contributions by non-algal particles, CDOM and phytoplankton pigments) are 

further algebraically decomposed from the total absorption spectrum. To 

summarize, briefly, QAA is consisted of the following elements: 

1. The ratio of backscattering coefficient (bb) to the sum of backscattering 

and absorption coefficients (bb/(a+bb)) at λ is calculated algebraically 

based on the models of Gordon et al. (1988) and Lee et al. (1999), 

     

           
 

        √                 

     
 (4.18)◘ 
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Here rrs(λ) is the nadir-viewing spectral remote-sensing reflectance just below 

the surface and is calculated from nadir-viewing Rrs(λ) through, 

                             (4.19) 

2. The spectral bb(λ) is modelled with the widely used expression from 

Gordon and Morel (1983) and Smith and Baker (1981), 

                    (
  

 
)
 

 (4.20) 

where bbw and bbp are the backscattering coefficients of pure seawater and 

suspended particles, respectively. Values of bbw(λ) are provided in Morel (1974). 

3. When at(λ0), the ratio of bb/(at+bb) at λ0, and bbw(λ0) are known, bbp(λ0) in 

Equation 4.16 can be easily derived with the combination of Equations. 

4.14 and 4.16. The values of bb(λ) at other wavelengths are then 

calculated after the power parameter (η) is estimated (LEE et al., 2002). 

4. Applying bb(λ) to the ratio of bb/(at+bb) at λ (Equation 4.18), the total 

absorption coefficient at λ, at(λ), is then calculated algebraically. 

5. After at(λ) is known, aCDM(λ) (absorption coefficient for CDOM and NAP) 

and aphy(λ) is calculated through 

{
 
 

 
           

(              )  (                )

   
  
 

                                      

 (4.21) 

Here ζ equals aphy(411)/aphy(443) and ξ equals aCDM(411)/aCDM(443). 

  



61 
 

4.4.5.1 Ternary Plot, IOPs-WQPs Least Squares Regression, and at Total 

Least Squares Regressions 

A ternary plot containing the relationship among the relative absorption 

coefficients for CDOM, NAP, e phytoplankton was generated in order to 

evaluate which constituent dominated the water – excluding pure water 

absorption coefficient - in a given wavelength. These absorption coefficients 

used in the ternary plot were the laboratory-calculated coefficients. Seven 

wavelengths were chosen for this procedure: 412, 443, 560, 620, 665, 675, 700 

nm (BABIN et al., 2003; RIDDICK et al., 2015). 

Once the IOPs were acquired from the three different methodologies described 

above (laboratory-calculated, in-situ-measured (AC-S), and QAA-estimated), 

several regression analyses were carried out to evaluate the relationships 

among the IOPs (i.e, bbp(555), aCDOM(440), aphy(440), aphy(620), aphy(675), 

anap(440),) and five WQPs (i.e., chl-a, PC, TSM, TSI, and DOC). In order to 

achieve that bbp(555) was correlated against PC, TSM, and chl-a (HUOT et al., 

2007); aphy(620) correlated against PC, and PC+chl-a; aphy(440) against chl-a; 

aphy(675) against chl-a; aCDOM(440) against chl-a and TSM; and anap(440) 

against TSI (BABIN et al., 2003; WHITMIRE et al., 2010; RIDDICK et al., 2015). 

Statistics and error analysis carried out for these regressions are listed in Table 

4.4.  

The IOPs used in the correlations were the ones obtained from the laboratory 

analyses. These correlations intended to further evaluate the relationships 

between IOPs and AOPs, and assess how these correlations could lead up to 

the identification of a re-parameterisation approach towards the semi-empirical 

bio-optical algorithm. It is important to point out that the particulate 

backscattering at 555 nm, bbp(555), was calculated via Gordon et al. (1975a) 

from AC-S data. The absorption data used from AC-S instrument was the one 

corrected only for temperature. The choice for this method of correction was 

that it it presented the most robust statistics from the Total least Squares 
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regression (TLS) analysis. It seemed a more accurate data representation of 

total absorption coefficient than laboratory data since it was being measured in 

situ without further error-inducing steps possibly linked with laboratory 

measurements which can further propagate errors after splitting the water into 

three components (phytoplankton, CDOM and non-algal particles absorptions) 

and then, summing them up again to acquire the total absorption coefficient. 

Nevertheless, two distinct sources of measurement errors must be considered 

separately. The first source mainly results from pure water calibration of the 

instrument, while the second source is inherent to the instrument itself 

(Leymarie et al, 2010). And both errors are sources of uncertainties within the 

data used in this work. 

After the least squares regression analyses, TLS was carried out over the three 

differently-acquired absorption coefficients. TLS primarily uses Principal 

Components Analysis (PCA) within its mathematical framework. PCA is a highly 

sophisticated mathematical framework for dimensionality reduction of large 

datasets (NEUMANN et al., 1993; LELONG et al., 1998; PAL et al., 2007; 

ZABALZA et al., 2014). PCA minimizes the perpendicular distances from the 

data to the fitted model. This is the linear case of what is known as TLS, and is 

appropriate when there is no natural distinction between predictor and response 

variables, or when all variables are measured with error (NIEVERGELT, 1994; 

GROEN, 1998; MARKOVSKY; HUFFEL, VAN, 2007). This is in contrast to the 

usual regression assumption that predictor variables are measured exactly, and 

only the response variable has an error component (HELSEL; HIRSCH, 1992; 

LEGENDRE; LEGENDRE, 2012). PCA was, in this study, applied onto an 

orthogonal regression best fitting within a 3-dimensional scatterplot for the at 

variable which has been acquired via three different methodologies.  

One TLS plot was generated per wavelength for the laboratory-measured at, 

AC-S calculated at, and QAA output at (for the five QAA output wavelengths: 

412, 443, 489, 530, 555). These wavelength plots sub-plotted in themselves five 

different TLS regressions for the five corrections applied to ACS data (i.e., Flat 
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750, Prop. 715, Prop. 750, Kirk, Temperature-only corrections). This PCA 

application intended to evaluate the relationships among the IOP results from 

different methodologies; and investigate whether these correlations could yield 

results corroborating the identification of a possible re-parameterisation 

approach towards the semi-empirical bio-optical algorithm. 

4.4.6. Semi-empirical bio-optical models and re-parameterisation 

The semi-empirical bio-optical (Table 4.3) models were tested on the Rrs 

dataset (Figure 4.12). This dataset presented varied Rrs results both in 

magnitude and spectral behaviour. Therefore it was presented in individual 

plots, one per sampling station, rather than all overlapping in one plot. A linear 

calibration curve was set between the each model output value and measured 

PC concentration. Then, the bio-optical models were plotted in a 1:1 scatterplot 

and statistically analysed via the Pearson Product Moment Correlation 

Coefficient (PPMCC) - R value. After an evaluation of the best R values, the 

best-performance PC algorithm was selected for the re-parameterisation. Some 

common Chl-a and chl-a-to-TSM (chl-a:TSM) ratio algorithms were tested to 

evaluate which generated the best results for this study and whether much 

variability would be encountered among them. Chl-a:TSM algorithm was 

evaluated for its ability to demonstrate the level of proportionality existing 

between chl-a and TSM concentrations for Guarapiranga. 
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Figure 4.12 – Remote Sensing Reflectance (Rrs) for 15 sampling stations. Stations 1 and 6 were excluded from this calculation due 
to faulty equipment at the measurement site. 
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Table 4.3 – Summary of Rrs-based bio-optical algorithms used in this study.  

Model Algorithm  Reference 

SY00     ({[
        

        
]      }        ) 

Schalles and 

Yacobi (2000) 

SI07*        ,*
        

        
                        +                - 

Simis et al., (2005) 

and (2007a) 

HU10      [   
           

       ]           
Hunter et al., 

(2008) and (2010) 

LE11     [   
           

       ]  [   
           

       ]   Le et al. (2011) 

MI14      [   
                   

  ]           
Mishra and Mishra 

(2014) 

OC3              
O‘Reilly et al. 

(1998) 

OC4      
O‘Reilly et al. 

(2000) 

2HU14       [   
       /   

       ] 
Huang et al. 

(2014) 

3HU14       [   
           

       ]  [   
       ] 

Huang et al. 

(2014) 

SU13 
    

   
      *

                 

                
+        Sun et al. (2013b) 

Notes: *bb was estimated via a band ratio (GONS, 1999); aphy was estimated adapted from a band ratio (GORDON et al., 1975a; GORDON; 

MCCLUNEY, 1975b).
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Error analysis was performed by comparing measured and predicted OAC 

concentrations. PPMCC, Adjusted R2, and Normalized Root Mean Square Error 

(NRMSE) were used to evaluate models performance and were calculated 

according to Table 4.4. 

Table 4.4 –Summary of error estimator, correlation coefficients, and estimation curve 
robustness used in this study.  

Estimator  Formulae 

PPMCC 
  

  ∑     
 
      ∑   

 
     ∑   

 
    

√ (∑    
   )  (∑   

   )
 
√ (∑    

   )  (∑   
   )

 
 

SRC 
    

 ∑   
  

   

       
 

KRC   
     

 
 
      

 

Adjusted R2 

         

     
     ⁄

   
     ⁄

 

NRMSE 

      
√ 
 
∑        

  
   

         
 

PPMCC stands for Pearson Product Moment Correlation Coefficient where x and y are the 
measured and predicted values; SRC stands for the Spearman Rank Correlation Coefficient 
where di is the difference between ranks of corresponding values x and y; KRC stands for 
Kendal Correlation Coefficient, where nc is the number of concordant and nd is the number of 
discordant; unlike the R

2
, the adjusted R

2
 gives the percentage of variation explained by only 

those independent variables that in reality affect the dependent variable, where SSres is the sum 
of squares error, and SSt is the total sum of squares, n is the total number of samples, and k is 
the number of populations; the NRMSE has a percentage error output which allows easier 
comparison among different model results. 

The re-parameterisation proposed in this study investigated the change of 

coefficient that aimed to reduce the chl-a interference in PC prediction for very 

low PC concentration (0-15 µg/L), which was a step further from what Yacobi et 

al. (2015) who explored a broader range (0.5-126.4 µg/L). A sensitivity analysis 

was carried out for the re-parameterising coefficient. This analysis was 

performed to study how the re-parameterisation coefficient was behaving in 

correlation with the PC concentration. The sensitivity analysis was conducted 

plotting a three-dimensional surface scatterplot containing the PC concentration 
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measured in situ, and a two-dimensional correlation between the new proposed 

blue-green band ratio (re-parameterising coefficient,    ) and the 620-nm PC 

absorption band ratio.  

The new coefficient,    , was then applied to the three-band semi-empirical 

algorithm. Thence, the original algorithm (MI14; Table 4.3) was evaluated for its 

R2 and NRMSE results against the re-parameterised algorithm statistics and 

error analysis. Furthermore, in an attempt to validate the re-parameterisation 

coefficient, a new set of comparison was carried out for an Rrs dataset from 

Funil reservoir colleted by Augusto-Silva et al., (2014).  

However, an important point must be considered. This new Rrs dataset did not 

have an in situ set of PC concentration measurements. Therefore, a randomly-

generated set of PC concentration values within the same range of those from 

this study´s was created by equating the sample number between this study´s 

sample number and Augusto-Silva et al., (2014) sample number. This was 

achieved by adding four extra sample values to this study´s sample number 

from the same range of values (0-15 µg/L) this study encountered. Then, a 

randomisation procedure was applied to this new dataset in order to allocate 

each sample value for PC concentration to a Rrs value from Augusto-Silva et al., 

(2014). At last, this new set of synthetic PC concentration samples had 19 

values all within the this study´s value range. 

Thus, Funil dataset was not evaluated for the actual NRMSE and adjusted R2 

magnitudes but only, for how these two statistical metrics varied between the 

algorithms, i.e., whether the new-coefficient algorithm had a higher adjusted R2 

and a better NRMSE than the original algorithm. Figure 4.13 depicted Funil 

reservoir Rrs dataset. 
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Figure 4.13 – Rrs spectra from Funil reservoir collected in May, 2012 (AUGUSTO-
SILVA et al., 2014). 

 

4.5. OLCI/Sentinel 3 simulation 

Sensors such as OLCI intend to monitor water quality, and therefore, they 

need to identify the major interesting spectral features for water quality 

monitoring. OLCI-sensor resampling from Rrs data was carried out to evaluate 

whether OLCI bands would represent the spectra peaks and troughs for the 

OACs absorption and reflectance maxima. To simulate the Rrs(λi) signals that 

would be recorded by satellite sensor channels centered at wavelength λi, 

weighted averages of each Rrs spectrum were calculated by using as weights 

the spectral band response functions of OLCI (ESA, 2016), as given below 
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where S(λ) is the OLCI spectral response function, and Rrs_s(λ) is the simulated 

Rrs. Also, the re-parameterised three-band semi-empirical algorithm reference 
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to how they might misrepresent or imbue errors in this study‘s calculated Rrs 

spectra. Figure 4.14 depicted the response functions for OLCI sensor bands. 

Figure 4.14 – Spectral response functions for OLCI sensor. Twenty one bands over the 
visible-NIR spectral range (ESA, 2016). 
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4.6. Methodology Flowchart 

Figure 4.15 depicts the methodological flowchart used in this study. On the lefthand 

side of the chart one observes the series of methodological steps associated with 

specific aim number one. On the far right side of the chart one notes the steps linked 

to specific aim number two. And right down the centre, there are the third specific aim 

steps. All these steps converge towards the main goal and a further extrapolation of 

the in situ radiometric data to OLCI´s bands spectral response function. 
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Figure 4.15 – Methodological flowchart for this study. Square boxes indicate datasets collected or generated for this work. 
Circular or ellipsoidal shapes represent the objectives-related steps within the methodology. Rhombus represents the main 
statistics applied to the dataset. Flags represent specific aims and main goal. 
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5  RESULTS AND DISCUSSION 

5.1. Bathymetry 

Bathymetric results for Guarapiranga reservoir are represented in Figures 5.1, 

5.2, and 5.3. Figure 5.1 was a topological representation of each sampling point 

maximum depth as well as the one-per-cent euphotic zone depth. The solar 

irradiance that reaches the euphotic zone one-per-cent limit (Zeu1) has an 

average depth just less than four meters. The average and maximum local 

depths for all points assessed in this study were approximately 5.8 and 9.5 

meters, respectively.  

Figure 5.1 – Topological bathymetric plot for this study‘s individual sampling stations. 
Grey bars represent the euphotic zone depth where the radiation reaching 
the water surface extinguishes at the 1% level. The white bars represent 
the difference between the Zeu1 and the actual local reservoir depth. 

 

The maximum depth estimated by the interpolation was 11.54 meters. CPLEA 

and COBRAPE (2006) stated that the average and maximum depths for the 

reservoir are 5.7 and 13 meters. Therefore, the values encountered by this 
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study correlated well with data collected by CPLEA and COBRAPE (2006). It is 

important to note that the reservoir volume at the field campaign time was 70% 

of total volume. Therefore, the difference between the depth values 

encountered by this study and values provided by CPLEA and COBRAPE 

(2006) could be linked to that percentage difference. 

Figures 5.2 and 5.3 depicted the overall reservoir morphology which dictates its 

hydraulics. It is noted how the input streams flow from east, south, and 

southwest into the main water body. Annex B showed how the input streams 

were under the influence of major socioeconomic areas. Each area was 

described in section 3. These areas are major sources of the pollution that flows 

into the reservoir, except area number four which is considered an area of 

better socioeconomic status and therefore maintains a better sanitary 

infrastructure, not allowing sewage overflow towards the reservoir. 

Four main thalwegs drain stream waters into the reservoir main body (Annex B). 

These areas cover all five groups suggested by SABESP except group four. 

Summarising the groups already described in section 3, they can be 

characterised as: group 1, highly polluted lower-urban areas; 2, lower-urban 

areas; 3, non-urban areas; 4, higher-urban areas; 5, mostly unaltered rural 

areas. By the description of each group, one can note how all groups act as 

major pollution dischargers via the four main thalwegs. Then, water is carried 

from these input locations inwards and northwards. The reservoir body tends to 

reach a flatter structure at around 6 km from the southernmost part (Figure 5.2) 

from where it moves towards the dam. Besides the main input streams 

thalwegs, minor streams occur all the way from the southernmost part up until 

the northwesternmost locations of the reservoir, especially areas on the western 

regions.  

Therefore, Guarapiranga reservoir dynamic hydraulic system allow for a varied 

water type at different locations in the reservoir. This characteristic affected the 

WQP concentration values range distribution. The hydraulics also indicate how 



75 
 

one type of constituent can be generated or found at the input locations where 

the main input streams thalwegs become the water body itself. And further into 

the reservoir, the water limnological characteristics can vary according to water 

treatment strategies and flow dynamics towards the dam at the northernmost 

limit. 
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Figure 5.2 – Guarapiranga north-south bathymetry cross-section. Leftmost part of figure represents the southernmost area, and the 
rightmost part, the northernmost. Different shades of purple represent the various regions along the cross section 
where the reservoir has more than one depth variation for that latitude. 
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Figure 5.3 – Guarapiranga west-east bathymetry cross-section. Leftmost pat of figure represents the westernmost area, and the 
rightmost part, the easternmost. Different shades of purple represent the various regions along the cross section where 
the reservoir has more than one depth variation for that longitude. 
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5.1.1. Underwater Light Field 

Overall, secchi depth for points measured correlated well with Zeu1 (Figure 5.4a). 

Applying Beer‘s Law to the Secchi depth over Zeu1 depth ratio, and assuming a 

homogeneous water column for those depths, one gets an average of 48.47% 

(half) of the light energy that reaches Zeu1 being backscattered to above-surface 

level from Secchi depth, and being perceivable to human sight (Figure 5.4b). 

Figure 5.4 – (a) Regression analysis between secchi depth and one-per-cent euphotic 
zone depth Zeu1. (b) Secchi depth and Zeu1 ratio for all points with standard 
error bars. Trend line indicates the average ratio value of 48.47%. 

 

 

Underwater light field (ULF) depicted how the EMR available at the above-

surface (0+) behaves after it penetrates the water column. ULF expresses the 

amount of radiation or energy per unit wavelength or integrated over the PAR 

EMR region available within the water body. Overall, the depth reaching Zeu1 by 

this available radiation over the PAR EMR region is expressed as a yellow line 

and shaded-grey bars in Figures 5.5 and 5.1, respectively. The lower bottom of 

slope = 2.0515 
intercept = 0.074 

R² = 54.45% 
NRMSE = 21.45% 
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each sampling point coloured-shaded subplot in Figure 5.5 represented the 

maximum depth for that point. 

Higher initial irradiance values do not imply a higher Zeu1 depth. Kd determines 

how quickly light gets extinct down the water column. Kd varies for each 

sampling point according to the OACs concentrations, and an investigation on 

how IOPs correlate with WQPs is carried out in section 5.7. These correlations 

act as proxy for Kd variability over all sampled points. 

Taking each point‘s average Kd calculated from each irradiance-measured 

depth, the ULF for each point was calculated per unit wavelength, and 

integrated over the PAR region for Zeu1 (Figure 5.5). Also, the reciprocal of Kd  in 

units of meters was calculated and plotted per sampling point per unit 

wavelength as the white line in Figure 5.5. This line provides information on the 

average photosynthetic pigment concentration – IOP-related - for the upper 

22% of the homogeneous euphotic zone depth (KIRK, 2011); such depth 

comprising 36.8% of surface irradiance value (STRAMSKA; STRAMSKI, 2005); 

and being the depth reached by remote sensors (Z90) – AOP-related - 

(GORDON; MCCLUNEY, 1975b; HIDALGO-GONZÁLEZ; ALVAREZ-

BORREGO, 2001). 

Red lines in Figure 5.5 accounted for Zeu1 depth per unit wavelength. Integrating 

over the PAR EMR spectrum region, one observes what is depicted as yellow 

lines in Figure 5.5. Sampling station nine has its yellow line equal to its 

maximum bathymetric depth. One can identify by this feature that some 

wavelengths can reach bottom substrate and some other wavelengths cannot. 

Therefore, more of useful photosynthetic-active wavelengths (e.g., red-

wavelength region) might be available for lake bottom vegetation at distances 

from reservoir margin such as that of point nine (southeasternmost sampled 

point, at 150 m from reservoirs west and eastern margins). However, it must be 

considered the reservoir bottom slope. Varying bottom slopes might make same 

distances from margin have different maximum depths.  
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Figure 5.5 – Irradiance extinction depth per unit wavelength and integrated over the PAR region per sampling point. White line 
represents the reciprocal of averaged Kd per unit wavelength for all irradiance-measured depths. Red line represents 
the irradiance per unit wavelength extinguished by one per cent of above-water (0+) irradiance values. Yellow line 
represents the integrated Zeu1 values. 

 

Note: Two samples (sampling points 1 and 6) presented error during field campaign acquisition and were exclude from data processing. 
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Figure 5.5 – Irradiance extinction depth per unit wavelength and integrated over the PAR region per sampling point. White line 
represents the reciprocal of averaged Kd per unit wavelength for all irradiance-measured depths. Red line represents 
the irradiance per unit wavelength extinguished by one per cent of above-water (0+) irradiance values. Yellow line 
represents the integrated Zeu1 values – Continuation. 

 

Note: Two samples presented error during field campaign acquisition and were exclude from data processing. 
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5.2. AOP dataset 

The original Rrs spectra calculated for this study had a highly varying magnitude. 

Therefore, the spectra were normalised at the 550 nm in order to assess its 

spectral behaviour or shape more efficiently (Figure 5.6). A notable aspect of 

these spectra is how the slope from 400 nm towards the 550 nm varies 

significantly. Some spectra have a negative slope, some others have a positive 

slope, and others have a zero-value (flat) slope. However, one can note that the 

higher the slope, either positive or negative (the more negative the more ocean-

like shape it seemed to be), the greater the absorption local maximum within the 

450-490 nm. The closer to zero the slope, the shallower this absorption 

maximum – this is true except for one spectrum with a straight positive slope 

from 400 till 550 nm. This slope feature can be an indication of a constituent 

(e.g., chl-a) absorption in this range, and it could be considered a confusion 

factor in the estimation of other constituents such as PC. 

Figure 5.6 – Normalised remote sensing reflectance (nRrs) spectra at 550 nm for fifteen 
samples.  

 

Note: Two samples presented error during field campaign acquisition and were excluded from 

further analysis. 
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Further down the wavelength range from the minimum absorption at 550 nm, 

the spectra presented features such as a plato within the red part of the 

spectrum for points in which the overall TSM concentration was higher to 

features. But also, the spectra presented features resembling lower magnitudes 

in the red part of spectrum. This was so for spectra with 675-nm and 620-nm 

absorption maximums quite high, indicating the presence of both chl-a and PC. 

Beyond the need to identify specific features within the spectra‘s behaviour, the 

normalisation was carried out in order to minimise the Rrs magnitude variation 

over the DWTCA processing. This will be further discussed in section 5.9. 

5.3 Limnological and Fluorometric Dataset 

Some limnological WQPs are major water agents which characterise OACs. 

WQPs samples distribution for this study was graphed as boxplots (Figure 5.7). 

Boxplots condense most of useful information regarding samples characteristics 

such as minimum, maximum values, median, outliers and kurtoses (KIRK, 

2008). Also, distribution patterns in samples concentrations could also be 

identified more easily via these plots. 

While considering the general statistics of all variables sample distribution, one 

notes that only three variables, ammonium (NH4
+), TN, and DOC, presented 

higher kurtoses. Even so, they presented outliers Figure 5.7b. Further 

investigating Figure 5.7b one notes that all variables present a sparse sample 

distribution but only those with higher kurtoses generated statistical outliers. 

Outliers and kurtoses for variables within Figure 5.7a presented similar patterns 

between each other and seemed to have proportional value range. This feature 

indicates some level of correlation between PC and chl-a concentrations which 

suggests the need for an appropriate de-correlation procedure while predicting 

PC via bio-optical modelling. Figure 5.7c variables presented lower kurtoses 

and some outliers unlike Figure 5.7b. Such feature is most likely due to the 

higher concentration range associated with Figure 5.7c variables, increasing the 

likelihood of extreme values development.  
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Figure 5.7 – Limnological water quality parameters boxplots for all samples. 

 

Notes: Phosphates were measured in laboratory for this study, however the concentrations 
were so low that the IC machine did not account for it in an appropriate manner and the results 
were discarded. Total phosphorus was not measured due to technical difficulties. 
 

An important feature in Figure 5.7 was the fact it generated three groups 

separated as Figure 5.7a, b, and c in an increasing concentration order. Figure 

5.7a group was linked to two major OACs (chl-a and PC). Figure 5.7c group, 

diametrically opposed to Figure 5.7a concentrationwise, contained mostly ions 

linked to water treatment and DIC. Figure 5.7b contained TSM, TSO, total TSI, 

TN, and DOC. 

SABESP treats the water stored within the reservoir in order to control HABs 

and other pathogens that might contaminate the water supply. Algaecides 

(sulphate-based and chloride-based compounds) are very commonly used in 

water treatment due to their oxidising properties (MOSCHINI-CARLOS; 

FREITAS, 2009; MOSCHINI-CARLOS et al., 2010). Accordingly, this study 

(a) (b) (c) 
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identified high concentration levels of sulphates (SO4
2-) and chloride (Cl-) as 

well as the metals calcium (Ca2+) and sodium (Na+) which are cations 

commonly associated with the previously mentioned anions. And as a 

consequence, low concentrations of chl-a and PC. Despite the fact that water is 

being treated locally, toxins can be released as an aftermath of the rapid decay 

of algal blooms takes place. Therefore, the most appropriate measures to 

maintain high levels of water quality would be to reduce nutrient inputs to water 

catchments (KALLIS, 2001). This can be achieved by applying phosphate 

removal processes into sewage-loaded stream branches. 

Figure 5.7b variables could be associated with organic compounds since both 

dissolved organic carbon and organic solids are in this group. As a stepwise 

way to consolidate this affirmation, one can take the following inductive-

deductive approach: the higher the organic matter concentration, the more food 

for bacteria to feed on and convert ammonium to nitrate (INGESTAD; ÅGREN, 

1995). Therefore, higher levels of nitrate and lower levels of ammonium should 

occur, following that process. And that is what has been identified by data from 

this study. It is important to note that this bacterial activity most likely occurs in 

soil due to agricultural practices. Then, these activities by-products (including 

potassium (K+) and nitrates (NO3
-) as fertilisers) are washed away into the 

reservoir. 

Another account on limnological parameters should be done by exposing the 

correlation between total nitrogen to total phosphorus ratio (N:P) among chl-a 

and PC concentrations. Literature on the subject (BULGAKOV; LEVICH, 1999; 

DE HOYOS et al., 2004) shows that the lower the N:P the higher the 

cyanobacterial dominance. This study found the reciprocal of an equivalent ratio 

(higher N:PO4
3-) with low levels of phosphates and high levels of TN. A higher 

N:PO4
3- ratio can be a proxy for the cyanobacteria non-dominance in that 

environment. Again, low measured PC concentrations sustain this affirmation 

since PC acts as a known proxy for cyanobacteria presence. Total phosphorus 

could not be measured due to technical difficulties on laboratory. 
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Following Carlson (1977) and Lamparelli (2004) the chl-a TSIx averaged out for 

the entire reservoir was 62.25. This value places the reservoir in a eutrophic 

water body category. Instead, the Secchi TSIx rated 52.63 placing the reservoir 

in the oligotrophic category but right about the mesotrophic threshold. Usually, a 

third TSIx for phosphorus would be considered and a mean value calculated for 

the overall TSIx. However, very low levels of phosphates (phosphorus-proxy) 

could not even be accounted for in laboratory measurements. And this could 

indicate that the reservoir phosphorus TSIx was ultraoligotrohic (lowest 

possible). A mean TSIx value for Guarapiranga reservoir for April, 2015 would, 

therefore, place it somewhere between the oligotrophic and mesotrophic 

categories. This means the reservoir is characterised as a clean or intermediate 

productivity water body, with none to possible implications for the reservoir 

quality (CETESB, 2007). 

5.3.1 Correlation Matrices 

The basis of variable dependence is to identify positive and negative 

correlations that indicate these variables might have a common relation. A basic 

statistics practice is not to infer causation, but identify variable correlations over 

mutual influential drivers. Skewness is an important statistical sample 

distribution parameter for correlation analyses since it may influence the data 

correlation linearity. That was also considered for the correlation coefficients 

chosen in this study. Thence, this section evaluated the degree of correlation 

among all WQP variables.  

Figure 5.8 presented a shaded-colour correlogram among all WQPs, and Figure 

5.9 depicts the correlation between NH4
+

 and all other WQP for each correlation 

coefficient. Three different correlation coefficients were used (Figure 5.8a, b, 

and c). The choice for applying the different correlation coefficients was based 

on the elaboration given in section 4.3. Overall, one notes that Figures 5.8a, 

Figures 5.8b, and Figures 5.8c had the same general correlation patterns. 

However, one also notes that Kendall ( ), Spearman ( ), and Pearson (R) 
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coefficients have increasing correlation strengths in that order respectively.  ,   

are ranked coefficients; moreover,   is a non-parametric test that does not make 

any assumptions on the variables distributions. R is not a ranked coefficient and 

has parametric assumptions. These qualities make R capable of generating 

more robust results if compared to  , and  . However, two assumptions need to 

be met for that to be true: robustness (evaluated by inspecting the scatterplot) 

and outlier resistance (evaluated by inspecting the histogram) (WILCOX, 2005). 

So, the variables, in this study, that matched those assumptions (see Figure C.1 

scatterplots) yielded stronger R than   and  . 
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Figure 5.8 – Kendall (a), Spearman (b), and Pearson (c) correlation coefficients for 
limnological water quality parameters. NH4

+ was removed from this figure 
due to difference in sample numbers. 

 

 

(c) 
(a) 

Kendall Correlation 

(b) 
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Figure 5.8 – Kendall (a), Spearman (b), and Pearson (c) correlation coefficients for 
limnological water quality parameters. NH4

+ was removed from this figure 
due to difference in sample numbers. – Continuation 

 

Figure 5.9 – Kendall, Spearman, and Pearson correlation coefficients for NH4
+ against 

all other parameters. NH4
+ had three inappropriate samples; therefore, the 

whole dataset was adjusted to the NH4
+ sample range (fourteen rather 

than seventeen samples). 

 

An important point regarding the apparent overall monotonic increase in 

correlation robustness from   through   till R is that   for SO4
2- and TSI 

(c) 
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produced a better negative correlation than R, reversing the monotonic trend. 

That happened as an aftermath of the non-linear relation between the two 

variables samples distribution. Despite the fact, R yielded overall more robust 

correlations,   also presented better results for variables correlations such 

those for NH4
+ and Cl-, Na+, K+, DIC which also presented a non-linear relation, 

with some degree of curve saturation trend (Figure C.1). Once again, this is a 

finding in accordance with the literature background information. 

Considering positive dependencies, two main groups were found: first, TSM and 

phytoplankton-related pigments; second, inorganic carbon, nitrogen-based ions 

and TN, and water treatment ions. The first group further indicates as pointed in 

the previous section that most suspended particles are primarily organic in 

nature. As a consequence chl-a has a high correlation with TSO. PC follows the 

same pattern as chl-a but with weaker correlation, most likely due to low 

concentrations which allow for more random sampling distribution which in turn 

affects the scatterplot correlation.  

Chl-a and PC presented a weaker correlation (<0.4). This result indicated that 

despite their sampling distribution being similar, neither of them comes from a 

same biological nor location source, and perhaps from neither biological nor 

location source. This further corroborated the fact that the hydraulic dynamics of 

the reservoir carries the OACs within it from one place to another as mentioned 

previously in section 5.1, imbuing some degree of randomization in the 

analysed variables correlation. 

PC presented very clear variations in  ,  , and R values against TSM, TSI, and 

TSO. Figure C.1 allowed one to infer that PC against TSM and TSO scatterplots 

presented a non-linear behaviour. PC against TSI presented outliers but 

nevertheless an overall linear relation. Should these statements well represent 

the samples distributions, one can infer that   yielded a better correlation for PC 

and TSI since this scatterplot had a clear outlier and a linear relation; also, one 

can infer that   yielded a better correlation for PC against TSM and TSO since 
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their scatterplots presented a non-linear behaviour with no extremely influential 

outlier, and that sample distribution feature could be better represented by  . R 

has some strong parametric assumptions, which could not be met by these 

samples distributions, and therefore, presented a weaker correlation value. 

The second group is linked to water treatment compounds, TN and nitrogen 

ions, and inorganic carbon. The water treatment ions are highly correlated 

because they come from same chemical sources to treat the water. Nitrogen-

based compounds also correlated well with Na+, Cl-, K+, SO4
2-, and Ca2+. Since 

K+ and NO3
- originate from fertilisers and are washed into the water body, these 

ions might come from agricultural sources. Also, DIC correlates well with these 

ions, indicating that carbonate minerals, along with fertiliser-based and sewage-

generated compounds, make their way into the water body, getting dissolved 

once in it (WETZEL, 2001; CPLEA; COBRAPE, 2006). 

Considering the negative dependencies, the higher correlation values are those 

among water treatment compounds and phytoplankton-related pigments. If a 

lake has a high photosynthetic rate, a decrease occurs in CO2 (TSI proxy) which 

is used up in the process. The less CO2, the more alkaline and less acidic the 

water body (higher pH). The higher pH favours the decomposition of organic 

matter (MCKINLEY; VESTAL, 1982). And as mentioned previously, the higher 

the decomposition, the less organic matter for bacteria to carry out NH4
+ 

conversion into NO3
-. Therefore, the higher the TSI concentration in a 

photosynthetic-active lake, the less NO3
- generated within the lake 

biogeochemical dynamics. And that sort of negative dependence was also 

encountered in this study. Finally, individual scatterplots for all correlations can 

be found in Figure C.1, and tables for all correlations can be found in Appendix 

D containing correlation values as well as their p-values. 
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5.4 Laboratory spectrophotometric dataset 

Figure 5.10a showed the aCDOM spectra for Guarapiranga Reservoir. The 

spectra seemed similar to other aCDOM spectra from literature, following the 

typical shape with high absorption coefficients in the blue spectral region, 

followed by a rapid decay in the green spectral region, and continuing to 

decrease towards longer wavelengths but at lower rates. Figure 5.10c showed 

aphy spectra in which it was observed not only a high absorption peak around 

675 nm but also a short peak around 620 nm because of PC absorption. Figure 

5.10d showed the anap spectra. As described in the literature the anap spectra 

follows the same shape of aCDOM backing the idea that blue and green spectral 

regions are influenced by these two components. Figure 5.10b was the total 

particulate matter absorption coefficient and represents the sum of aphy and anap. 

Figure 5.10 – Laboratory-calculated CDOM (a), total (b), phytoplankton (c), and non-
algal particles (tripton) (d) absorption coefficients. 

 

(a) (b) 

(c) (d) 



93 
 

5.4.1 Ternary Plot 

Ternary plot is a graphical representation of three variables being evaluated for 

one or more aspects. Its purpose is to correlate the relative magnitude of each 

of the variables aspects as to how each variable - in this study, three out of the 

four major water bodies OACs relative absorption coefficients (aphy, aCDOM, and 

anap) - contributes to the total relative sum. This study‘s ternary plot shows 

seven different variable aspects. They are the wavelengths from the EMR 

visible-NIR range (BABIN et al., 2003). 

The wavelengths used in the ternary plot (Figure 5.11) were closely linked to 

the OACs considered in this study. Each colour in the ternary plot was 

approximately associated with its respective EMR wavelength, in order to 

facilitate visual interpretation of the graph. 

Figure 5.11 – Ternary plot representing the relative absorption coefficients for 
phytoplankton (aphy), tripton (anap), and CDOM (aCDOM). Wavelengths 
(nm) represent the ones most used in bio-optical algorithms, imaging 
satellite sensors bands, and OAC-related minimum/maximum absorption 
bands. 
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The shorter 412-443 nm wavelengths showed the relative dominance of CDOM, 

and samples presented themselves with a reasonably circular cohesive 

distribution. The latter meaning all samples having approximately the same 

distance from the mean value within the ternary plot sample distribution. 665 

and 675 nm presented a tendency to fall under phytoplankton absorption 

dominance. 700 nm started a distribution that ranged from phytoplankton 

absorption dominance to a no-OAC dominance. The fact the 620 nm did not 

resemble entirely the phytoplankton dominance indicated - as can be observed 

by closely investigating Figure 5.10c - that waters bearing low PC 

concentrations can shift the actual reference wavelength to a different location 

(in this study it shifted slightly forward near the 630 nm position) in the 

wavelength domain. 

Literature on this topic matches the OAC dominance on the wavelengths 

depicted in Figure 5.11. CDOM and phytoplankton tended to absorb EMR more 

intensely in wavelengths 443 and 675 nm, respectively. However, it is a relative 

absorption rather than the absolute one linked to the actual OACs concentration 

(Figure 5.7). High CDOM absorption relative dominance at 443 nm has been 

observed by (BRICAUD et al., 1981; KUTSER et al., 2005; BREZONIK et al., 

2015). This absorption occurs as a consequence of optically-active dissolved 

organic matter originated from natural and industrial land discharges (BRICAUD 

et al., 1981). 

High phytoplankton absorption relative dominance at 675 nm is associated with 

high chl-a pigment concentration, which absorbs most of the incoming EMR if 

compared to tripton (non-algal particles) and CDOM in that wavelength. It is 

important to note how in the shorter wavelengths (412 and 443 nm) relative 

proportion was fairly distributed around the ternary plot mean value for those 

wavelengths; tripton and phytoplankton relative absorption contributions were 

10% to 30% and 10% to 30%, respectively, for the 412 and 443 nm 

wavelengths. Considering the lower frequency wavelengths (665 and 675 nm), 

relative proportion was not as homogeneously distributed around mean value; 
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they ranged from 10% to 40% and from 40% to 85%, respectively, for tripton 

and phytoplankton. It is important to remember the relative absorption ternary 

plot does not include the fourth major OAC: pure water. And this means that a 

high contribution from a certain ternary plot OAC does not necessarily imply that 

sample water is highly loaded with that specific OAC. 

As mentioned in the previous paragraph, absorption in the ternary plot for 443 

nm presented a more homogeneous distribution around the mean. This 

homogeneity cohesiveness instigated this study on the possibility of using the 

higher frequency wavelengths in the re-parameterisation proposed in this study. 

And, thence, evaluate whether this spectral range absorptivity cohesiveness, 

indeed could be a graphical representation of the more precise OAC confusion 

improver coefficient for discriminating between chl-a and PC. 
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5.5 AC-S plots 

Laboratory measurements of absorption coefficients can be further 

decomposed into the OACs contribution. Instead, in situ absorption coefficients 

measurements via AC-S instrument acquire only total absorption coefficients via 

the absorption tube (WETLABS, 2013) and the total attenuation coefficients via 

the attenuation tube (WETLABS, 2013). Both these coefficients allowed the 

absorption and attenuation (Figures 5.12 and 5.13) vertical profiles generation 

for Guarapiranga reservoir. These profiles were created for five wavelengths 

within visible-NIR range (i.e., blue, cyan, green, red, and black (NIR)). Also, 

absorption plots (Figure 5.14) for the 400-700 nm PAR range for five different 

scattering correction methods were generated for the first measurement depth 

(approximately 40-cm depth). 

Figure 5.12 depicted total absorption coefficients for the fifteen available 

sampling stations measurements. Overall, total absorption for each station had 

larger values for shorter wavelengths. As wavelengths got longer, absorption 

values decreased exponentially, which is a known feature in the literature. The 

absorption magnitudes did not vary significantly over the vertical profile for all 

points. Only a few sampling points presented abrupt variations or non-linear 

variations on absorption magnitude over depth. Also, these variations seemed 

to be weaker for longer wavelengths. 

P13, P15, P16 represented the points with fairly higher variations over larger 

depths (Figure 5.12). P13 and P16 had slightly opposite variation in which 

absorption magnitudes moved to higher and lower values, respectively. P15 

presented a slightly more unstable variation on absorption magnitudes. These 

three points are close to EMBUMIRIM and EMBUGUAÇU input streams 

thalwegs. And as such, they receive the fastest-moving amount of input water, 

due to the fact the water takes longer to reach maximum bottom depth, as 

EMBUMIRIM and EMBUGUAÇU input streams belong to the longest reservoir 

branches. This depth-varying water speed might change the OACs 
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concentrations over the gradient depth causing the absorption to vary. This 

phenomenon is clearer in P16 where absorption quickly decreases as the 

measurements are carried out at higher depths where, possibly, the input flow 

carries clearer waters with lower OAC concentrations, and therefore, lower total 

absorption per unit volume. 

P6 and P13, both located over the drainage basin in-reservoir thalweg, 

presented an increase in absorption magnitude, unlike P16. These again, 

demonstrated how the hydraulic dynamics of the reservoir together with OACs 

concentration variation altered on a point-by-point basis the water IOP 

characteristics. Figure 5.13 depicted the attenuation coefficient magnitudes over 

depth which was similar to the absorption magnitudes. Attenuation magnitude, 

though, was higher since it includes both total absorption and total scattering. 

Figure 5.14 depicted the total absorption per unit wavelength for the available 

points for each correction method. . Overall, individual subplots for each point 

presented the same exponential decrease shape towards lower frequency 

wavelengths. A slight absorption high could be noted at 675 nm due to 

phytoplankton presence. Overall, average absorption values from all points from 

Figure 5.14 (not accounting extreme values) matched average values 

summation from Figure 5.10a and Figure 5.10b. Extreme values from Figures 

5.10a and 5.10b were underestimated in comparison with Figure 5.14. This 

most likely happened due to inconsistencies associated with CDOM adjustment 

curve for Figure 5.10a; or due to possible data loss from laboratory CDOM 

storage via rapid decay; or even, due to possible water samples filtering 

inconsistencies for particulate matter laboratory data.  

Finally, P15 (Figure 5.14) presented a highly variable absorption magnitude in 

comparison with all other points among all correction methods. Furthermore, 

Appendix E three-dimensional scatterplots for five different wavelengths 

showed a similar behaviour to that of Figure 5.14-P15. Kirk and temperature-

only corrections yielded similar results considering the absorption spectral 
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shape as yielded proportional 715 and 750 corrections. Flat correction was the 

main discrepant one in Figure 5.14-P15. One notes how flat correction started 

at the same magnitude level as Kirk and Temperature-only corrections at the 

400 nm wavelength and ended at the 750 nm at the same magnitude as the 

proportional corrections. Therefore, Flat correction presented a steeper slope 

than the other corrections. The three-dimensional scatterplots in Appendix E will 

be further discussed in section 5.8. 
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Figure 5.12 – ACS-measured total absorption coefficient per unit depth for fifteen sampling stations. Individual figures for each 
station are standardised by the point with maximum depth (y-axis) and absorption magnitude (x-axis). Stations with 
fewer measurements represent points with shorter maximum depth. Data colours are linked to their respective 
spectrum wavelength colour, black being the NIR range. Two sampling stations failed to appropriately collect data 
and were discarded. 
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Figure 5.13 – ACS-measured total attenuation coefficient per unit depth for fifteen sampling stations. Individual figures for each 
station are standardised by point with maximum depth (y-axis). P9, P15, and P16 absorption magnitudes have their 
own plot ranges, and all other points‘ absorption magnitudes are standardised by P14‘s magnitude range. Stations 
with fewer measurements represent points with shorter maximum depth. Data colours are linked to their respective 
spectrum wavelength colour, black being the NIR range. Two sampling stations failed to appropriately collect data 
and were discarded. 
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Figure 5.14 – ACS-measured total absorption coefficient per unit wavelength for fifteen sampling stations. Individual figures for each 
station are standardised by the wavelength (x-axis) range (400-750 nm), and by 10 m-1 absorption magnitude. Data 
colours are linked to the different correction methods applied to the dataset. Two sampling stations (P1 and P12) 
failed to appropriately collect data and were discarded. 
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5.5.1. Total Least Squares Regression 

In the present study, results differed from Riddick et al. (2015) and were similar 

to Leymarie et al. (2010), with increasing underestimation results the longer the 

wavelengths. Riddick et al. (2015) correlated absorption data from 

spectrophotometry laboratory analysis and in situ ACS measurements in three 

different wavelengths (440 nm, 555 nm, and 676 nm). The authors found an 

agreement improvement in the red portion of the spectrum. However, Leymarie 

et al. (2010), identified that while using the proportional correction, an 

underestimation occurred, with the errors highest in the red portion of the 

spectrum.  

Figures E.1, E.2, E.3, E.4, and E.5 depicted the features found in this study. 

However, this study only evaluated wavelengths in the blue and green region. 

The reason for that was that a total least squares regression (TLS; fitting the 

first principal component (PCt1) to data) was carried out on the dataset rather 

than a simple linear regression. And for such, TLS also correlated the results 

estimated from a QAA algorithm (LEE et al., 2002) with laboratory and in situ 

AC-S data, composing a 3-D regression plot (Figures E.1, E.2, E.3, E.4, E.5, 

and Table 5.1). 

Regarding the correlation between AC-S and laboratory absorption data, AC-S 

Flat 750 scattering correction yielded results that varied from overestimating at 

the shorter wavelengths to more stable one-to-one estimation at longer 

wavelengths. Kirk and temperature-only corrections showed better correlations 

at shorter wavelengths and overestimation at longer wavelengths (Figures E.1, 

E.2, E.3, E.4, and E.5). Appendix E also indicated that TLS in the 412 nm 

region for all correction methods was more consistent than the other 

wavelengths. They displayed a better correlation slope between laboratory-

calculated and AC-S-measured absorptions with weaker data over- or 

underestimation. Once again, the shorter wavelengths of the EMR spectrum 

presented a more enhanced result, furthering the possibility of applying this 
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spectral region into a re-parameterisation algorithm for PC retrieval via remote 

sensing techniques. 

QAA estimation of total absorption yielded a highly underestimated result. An 

adjusted QAA for tropical waters proposed by (OGASHAWARA, 2014) was also 

applied to the dataset, in order to evaluate whether it could yield better results. 

However, it did not yield satisfactory results as all absorption data yielded 

negative values. Therefore, the original QAA proposed by Lee et al. (2002) was 

kept for the dataset results. An important aspect of this TLS approach is that 

results like the one found in this study can support the development of an 

enhanced semi- and quasi-analytical algorithm which can further improve the 

results of this 3-D orthogonal regression. This can be achieved by evaluating 

whether the main fit axis (PCt1) revolves around the data attribute space until it 

finds itself in a proper one-to-one position in which no over- or under-estimation 

is encountered; and also, until a robust sum of squared errors (SSE) and RMSE 

(Table 5.1) is yielded. 

Table 5.1 presented the results of SSE, RMSE, and total variances explained 

by each principal component (PCt1, 2, and 3) from the TLS. These results were 

computed for each AC-S correction method. The SSE is a statistical quantity 

proportional to the R2. In the case of this 3-D regression, it was only possible to 

generate SSE rather than R2. However, the larger the SSE value, the more 

robust the correlation just as with R2. SSE-PCt1 represented the robustness for 

the highest data variability fit curve. Therefore, it sought to represent the 

direction of greater data continuity. PCt2 and PCt3 represented second and 

third principal components for the correlation. Table 5.1 depicted the total 

variances for each principal component for each wavelength for each correction 

method. However, the main discussion for the total absorption correlation from 

AC-S data, laboratory data and QAA estimation revolved around PCt1 for its 

representation of the total least square regression. The evaluation of PCt2 and 

3 in fitting for this dataset is beyond the scope of this section. However, as they 

represented the remaining variance not explained by PCt1, their results were  
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Table 5.1 – Principal-component (PCt) fitting total least squares regression sum of 
squared errors and root mean squared error (RMSE) for PCts one, two, 
and three for each wavelength and absorption correction method. PCts 
explanatory variances for each wavelength and correction method are 
also presented.  

SSE PCt1 F 750 F 715 P 750 Kirk Temp RMSE PCt1 F 750 F 715 P 750 Kirk Temp 

412 51.09 33.91 34.94 57.52 66.03 412 2.06 1.68 1.71 2.19 2.35 

430 21.58 13.70 14.24 27.14 31.96 430 1.34 1.07 1.09 1.50 1.63 

489 7.39 4.59 4.83 11.52 14.16 489 0.78 0.62 0.63 0.98 1.09 

530 2.60 1.62 1.68 6.05 7.75 530 0.47 0.37 0.37 0.71 0.80 

555 1.44 0.99 0.98 4.75 6.11 555 0.35 0.29 0.29 0.63 0.71 

SSE PCt2 F 750 F 715 P 750 Kirk Temp RMSE PCt2 F 750 F 715 P 750 Kirk Temp 

412 4.03 9.29 9.07 3.53 3.30 412 0.58 0.88 0.87 0.54 0.52 

430 2.28 5.49 5.36 2.02 1.94 430 0.44 0.68 0.67 0.41 0.40 

489 1.11 2.80 2.72 1.21 1.18 489 0.30 0.48 0.48 0.32 0.31 

530 0.48 1.19 1.19 0.76 0.73 530 0.20 0.31 0.31 0.25 0.25 

555 0.28 0.60 0.63 0.56 0.53 555 0.15 0.22 0.23 0.22 0.21 

SSE PCt3 F 750 F 715 P 750 Kirk Temp RMSE PCt3 F 750 F 715 P 750 Kirk Temp 

412 1.20 1.30 1.30 1.20 1.19 412 0.32 0.33 0.33 0.32 0.31 

430 0.71 0.75 0.75 0.72 0.72 430 0.24 0.25 0.25 0.24 0.25 

489 0.23 0.24 0.25 0.25 0.25 489 0.14 0.14 0.14 0.14 0.14 

530 0.14 0.14 0.14 0.15 0.15 530 0.11 0.11 0.11 0.11 0.11 

555 0.08 0.07 0.07 0.09 0.09 555 0.08 0.08 0.08 0.08 0.08 

Variance 412 F 750 F 715 P 750 Kirk Temp Variance 430 F 750 F 715 P 750 Kirk Temp 

PCt1 0.91 0.76 0.77 0.92 0.94 PCt1 0.88 0.69 0.7 0.9 0.923 

PCt2 0.07 0.21 0.20 0.06 0.05 PCt2 0.09 0.28 0.26 0.1 0.056 

PCt3 0.02 0.03 0.03 0.02 0.02 PCt3 0.03 0.04 0.04 0 0.021 

Variance 489 F 750 F 715 P 750 Kirk Temp Variance 530 F 750 F 715 P 750 Kirk Temp 

PCt1 0.85 0.6 0.62 0.89 0.908 PCt1 0.81 0.55 0.56 0.9 0.897 

PCt2 0.13 0.37 0.35 0.09 0.076 PCt2 0.15 0.4 0.39 0.1 0.085 

PCt3 0.03 0.03 0.03 0.02 0.016 PCt3 0.04 0.05 0.05 0 0.018 

Variance 555 F 750 F 715 P 750 Kirk Temp       

PCt1 0.8 0.59 0.58 0.88 0.909       

PCt2 0.16 0.36 0.37 0.1 0.078       

PCt3 0.04 0.04 0.04 0.02 0.013       

 

also included in Table 5.1. Equal logic was applied to RMSE. SSE-PCt1 for the 

higher frequency wavelengths presented better results as mentioned previously. 

Also, regarding the correction methods, Kirk and temperature-only yielded the 

best results. RMSE, proportional to the absorption range magnitude, were 

similar to all dataset. The proportion between average RMSE for all corrections 
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for each wavelength equals the proportion of the average absorptions for all 

corrections for each wavelength. 

5.6. Sonde measurements 

Figure 5.15 depicted DO and chl-a (modelled via Figure 4.9 regression) 

concentrations over depth for sampling points with error-free measurements. 

DO and chl-a concurrent plots aimed to evaluate whether there could be a trend 

relation between chl-a and oxygen, the latter being a by-product of local 

production/consumption photosynthetic process. Overall, no special trend was 

observed to confirm this local source/sink process, indicating that the reservoir 

dynamics constantly rearranges the biogeochemical water components. 

However, some sampling points presented a degree of relation between the two 

variables; and some others did not show a specific pattern. DO presented an 

overall trend toward lower values (i.e., bottom hypoxia) at higher depths (LIN et 

al., 2006).  

Chl-a data step-like behaviour was due to the sampling time during instrument 

descent in the water column as well as instrument measurements drift. P4, P5, 

and P13 surface values were exclude from plotting because they were extreme 

values. All other points represent chlorophyll estimations from the modelled 

curve extrapolated for all depths and, as such, they contain errors (e.g., P9 

bottom values far from the statistically significant 5-15 µg/L range). However, P9 

higher-depth chl-a values were most likely higher due to the fact that P9 is very 

close to the reservoir southeastern border at a shallow and narrow spot. The 

point location increased nutrient inflow, enhancing phytoplankton activity, which 

might be taking place still within the Zeu1. P16 presented a very sharp decline in 

DO at about the 2-m depth near the zero-value concentration. This feature 

happened before the Zeu1 limit. Despite the low chl-a concentration level, the 

rapid increase in chl-a concentration (indicating higher biological activity) 

associated with DO depletion and with the higher nutrient input caused by the 

sampling point location at the southernmost part of the reservoir indicated a 
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highly active organic matter decomposition process which might have caused 

the rapid decrease in DO concentration (RAMSTEDT et al., 2003).  

Figure 5.16 presented an overall trend of temperature decrease with depth. This 

decrease was smooth except for P6 which had a rapid decline at near-bottom 

depth. This feature in P6 was most likely due to the fact a local water basin 

thalweg was located right beneath that sampling point, injecting colder inflowing 

water. An important feature was observed in Figures 5.15 and 5.16. P5, P6, 

P10, P11, P15, and P16, all had significant an increase in conductivity levels 

(Figure 5.16). Conductivity can be regarded as a salinity proxy. Therefore, 

whenever this conductivity increase occurred, a halocline might be found. As 

noted by Ramsted et al. (2003), after a halocline (in this case, a rapid increase 

in salinity levels) appearance, DO levels dropped significantly (PINILLA, 2006), 

and such feature was observed in Figure 5.15. 
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Figure 5.15 – Dissolved Oxygen (DO) versus chlorophyll-a plot over depth for fourteen sampling stations. Red lines represent DO 
data, and green lines represent chlorophyll data. Black straight line across depth axis represents the one-per-cent 
euphotic zone depth for that point. Missing sampling points were excluded from data plotting due to faulty in situ 
measurements. 

 

Estimated 
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Figure 5.16 – Temperature versus conductivity plot over depth for fifteen sampling stations. Maroon lines represent temperature 
data, and blue lines represent conductivity data. Black straight line across depth axis represents the one-per-cent 
euphotic zone depth for that point. Missing sampling points were excluded from data plotting due to faulty in situ 
measurements. 
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5.7. Least Squares Regression 

Figures 5.17, 5.18, 5.19, 5.20, 5.21, and 5.22 depicted the relationships 

between PC, chl-a, TSM, TSI, and DOC against the major IOPs. The regression 

relationships allowed the evaluation of whether the reservoir sampling 

distribution could provide any pattern in the reservoir OACs distribution. 

Generally, almost all correlations needed to have points excluded. They 

seemed clear outliers which did not represent the overall expected directly 

proportional relationships among the correlated variables. 

Overall, the correlations varied significantly. Firstly, Figures 5.19b and 5.21a 

depicted the highest adjusted R2 (> 0.8) which were found for chl-a correlations 

against bbp(555) and aphy(675) (BRICAUD et al., 1995; BABIN et al., 2003). This 

indicated higher phytoplankton dominance in Guarapiranga reservoir waters 

among tripton and CDOM. The 675 nm is a known absorption band for chl-a 

pigment; and backscattering at the 555 nm could represent that the 

backscattered radiation at the green region of the EMR spectrum is dominated 

by phytoplankton. However, the excluded points must be accounted for prior to 

this conclusion since five points were removed from the bbp(555)-chl-a 

regression. Secondly, aphy(620) against chl-a+PC (Figure 5.19a), and 

aCDOM(440) (Figure 5.20a), and aphy(440) (Figure 5.20b) against chl-a showed 

slightly lower, but still reasonable, adjusted R2 (between 0.56 and 0.72). 

Moreover, aphy(620) against PC (Figure 5.18b) concentration actually presented 

a very low adjusted R2 (0.1826). 

These features indicated that chl-a highly influenced the absorption at 620 nm 

which should be, primarily, a PC absorption band; and that chl-a concentration 

also positively correlated with absorption in the blue region of the spectrum for 

both CDOM and phytoplankton absorptions. aphy(675) correlation with chl-a is a 

known feature in the literature. However, CDOM correlation against chl-a 

concentration only had a higher robustness due to the second-order fit curve, 

depicting an exponential relation between the two variables. The confusion that 
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chl-a applied onto the 620-nm PC-proxy absorption band indicated a necessity 

for the improvement in a PC-retrieval bio-optical algorithm for this study in order 

to minimise this confounding effect. 

An important feature identified in all aCDOM(440) correlations (Figures 5.17, 

5.20a, and 5.22b) was that they all needed an exponential adjustment fit curve 

in order to improve the correlation robustness. This behaviour might have 

indicated some level of saturation tendency at the lower OACs concentration 

range with respect to the aCDOM(440) not getting below the 1 m-1 absorption 

value. A keen assessment on Figure 5.10a allows one to notice that at the 440 

nm no aCDOM(440) value gets below 1 m-1. This feature might be the reason for 

the exponential fitting among aCDOM correlations.  

Also, all bbp(555) correlations (except that against chl-a (Figure 5.19b)) 

presented a strong underestimation behaviour (Figures 5.18a, and 5.22a). Such 

feature could be attributed to the minor contribution of PC and TSM on bbp(555), 

and the better contribution of chl-a on bbp(555). Also, an important consideration 

must be made over the results of bbp(555) in comparison with the dataset in 

from which it was estimated. That is, AC-S total absorption coefficients 

overestimated laboratory-measured total absorption for the TLS results (Figure 

E.5), considering temperature-only correction for 555 nm. Instead, bbp(555) 

calculated from AC-S data underestimated TSM and PC, and just about 

reached near-one-to-one slope against chl-a data. At last, a correlation between 

anap(440) against TSI (Figure 5.21b) concentration depicted a positive 

dependence but not a strong robustness (R2 = 0.2352). Nevertheless, this can 

be an indication of the strong influence by the mineral component of TSM 

towards tripton absorption (RIDDICK et al., 2015). 
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Figure 5.17 – Regression analysis plots for aCDOM(440) as a function of dissolved 
organic matter (DOC) concentrations. 
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Figure 5.18 – Regression analysis plots for (a)bbp(555) and (b)aphy(620) as a function of 
phycocyanin (PC) concentrations. 
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Figure 5.19 – Regression analysis plots for (a)aphy(620) as a function of chlorophyll-a 
(chl-a) plus phycocyanin (PC) concentrations, and (b)bbp(555) as a 
function of only chl-a. 

 

 

(a) 

a
p
h
y
(6

2
0

) 
[m

-1
] 

Chl-a + PC (µg/L) 

(b) 

b
b
p
(5

5
5

) 
[m

-1
] 

Chl-a (µg/L) 



114 
 

Figure 5.20 – Regression analysis plots for (a)aCDOM(440) and (b)aphy(440) as a function 
of chlorophyll-a (chl-a) concentrations. 
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Figure 5.21 – Regression analysis plots for (a)aphy(675) as a function of chlorophyll-a 
concentrations, and (b)anap(440) as a function of total suspended 
inorganics (TSI) concentrations. 
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Figure 5.22 – Regression analysis plots for (a)bbp(555) and (b)aCDOM(440) as a function 
of total suspended matter (TSM) concentrations. 
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5.8. Signal processing techniques 

5.8.1. DWTCA 

This section covers the evaluation of DWTCA (Section 5.8.2 will cover SAM). 

These techniques serve as signal clustering tools in order to assess signal 

behaviour. Initial appraisal for DWTCA applied directly on Rrs data did not yield 

satisfactory results. Non-normalised spectra generated DWTCA results purely 

magnitude-based. Meaning, Spectra were clustered based on how large was 

the Rrs magnitude. In order to tackle that problem, the spectra were normalised 

(Figure 5.6). In this way, it was possible to evaluate the clustering process over 

the spectral shape only. 

Both Haar and Dmeyer wavelets in DWTCA grouped the Rrs according to 

features identified by the wavelets (AMPE et al., 2014; 2015; Appendix F; Table 

5.2). All grouped spectra in Table 5.2 could be compared to its graphic 

representation in Figure 4.12 in order for one to check visually the results.  

Each decomposition level generated a particular grouping of spectra. However, 

the wavelets yielded results that differed from one another. This aspect was 

such due to the difference in nature of each wavelet (Appendix B). Haar wavelet 

was one of the first developed wavelets, therefore, a simpler one 

(DAUBECHIES, 1992). Such trait could allow a more inefficient OAC-related 

data clustering. Thereby, Dmeyer wavelet was also tested in order to evaluate 

which wavelet behaved more efficiently in discriminating the Rrs spectral 

features and grouping the spectra accordingly. The results were shown in 

Tables 5.3 and 5.4. 
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Table 5.2 – Groups allocated by the discrete wavelet transform clustering 
analysis for each sampling station for each decomposition level 
for both Haar and Discrete Meyer wavelets. 

Haar Signal cd1 cd2 cd3 cd4 cd5 cd6 cd7 cd8 

P2 4 1 2 1 1 2 5 2 3 
P3 3 2 1 2 2 1 4 3 1 
P4 4 2 1 2 2 2 3 4 1 
P5 2 4 4 4 4 4 1 5 5 
P7 2 5 5 5 5 5 2 5 5 
P8 2 5 5 5 5 5 2 5 5 
P9 4 1 2 1 1 2 3 2 4 
P10 2 5 5 5 5 5 2 5 5 
P11 1 3 3 3 3 3 4 4 2 
P12 2 5 5 5 5 5 2 5 5 
P13 2 5 5 5 5 5 2 5 5 
P14 1 1 2 1 1 2 3 4 2 
P15 5 2 1 2 2 2 5 1 4 
P16 5 1 2 1 1 2 5 1 3 
P17 5 1 2 1 1 2 3 4 4 

Dmeyer Signal cd1 cd2 cd3 cd4 cd5 cd6 cd7 cd8 

P2 4 4 5 5 2 5 5 4 1 
P3 3 4 5 5 2 5 4 1 5 
P4 4 3 5 5 2 5 4 4 5 
P5 2 5 1 3 3 3 1 5 2 
P7 2 5 2 5 2 5 2 4 1 
P8 2 5 1 4 4 4 2 5 2 
P9 4 4 5 5 2 5 4 4 5 
P10 2 2 3 4 4 4 2 5 1 
P11 1 1 3 1 5 1 3 2 3 
P12 2 2 2 5 2 5 2 4 1 
P13 2 5 2 5 2 5 2 5 2 
P14 1 2 3 5 2 5 4 4 3 
P15 5 4 5 5 2 5 5 3 4 
P16 5 3 4 5 2 5 5 3 4 
P17 5 3 5 2 1 2 4 4 3 

Notes: decomposition levels are described as: signal, representing the actual signal scale level, 

and coefficients of detail (cd) ranging from one till eight. The number of cds is determined 

directly by the processing routine according to the levels identified in the input data. 

Despite the fact that Tables 5.3 and 5.4 represented the statistical coefficients 

for Haar and Dmeyer wavelets results, respectively, for all decomposition levels, 

dendrograms in Figures 5.23 and 5.24 were not based on these tables. Instead 

of generating nine dendrograms, one for each decomposition level containing 

the linkages of each sampling station, one dendrogram (based on Table 5.2), 

per wavelet, was created as a summary of the relationship found by each 

wavelet clustering among all spectra. As such, the dendrograms are not 

representation of how the actual spectra relate to one another over the 

wavelength domain. Instead, Figures 5.23 and 5.24 correlated how those 
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spectra were classified in similar clusters over the cd range domain (Table 5.2). 

It is noted how Dmeyer‘s dendrogram yielded more balanced links among all 

sampling points than Haar‘s, meaning it could sieve through spectral details 

more robustly. 

Cophenetic correlation coefficients were a measure of how faithfully the linkage 

tree represented the dissimilarities among observations. They quantitatively 

represented statistics of Rrs plots in Appendix F. Better results for Haar‘s 

wavelet cophenetic correlation were observed for cds seven and eight (Table 

5.3) than for Dmeyer‘s (Table 5.4). Dmeyer‘s clustering was more efficient from 

cds one till six. Signal level (i.e., actual Rrs signal level considered by the 

wavelets before decomposing the Rrs into several levels) presented the same 

correlation value for both wavelets. Figures F.1c1 and F.9c3 depicted how 

signal level and cd 8 grouped the spectra associated with the spectra with 

greatest slope between the blue to green region of the spectrum plus a plato in 

the green to red region. Also, Figures from F.2c1 and F.2c2 until F.5c1 and 

F.5c2 depicted the groups where variations in slope within blue to green, and 

then, from green to red were also accounted for during clustering. For 

conciseness, only Haar wavelet results were shown in Appendix F. The actual 

statistics appraisal was conducted via the correlation coefficients in Tables 5.3 

and 5.4. Once again, variations in the blue region seemed just as relevant a 

variation as in the red part of the EMR spectrum. Therefore, this section also 

imbued the author towards attempting a semi-empirical algorithm re-

parameterisation for PC prediction using information in the blue region of the 

spectrum. 

Inconsistency coefficients correlated each of the fourteen links generated in 

Figures 5.23 and 5.24 for how they compared to other links at the same linkage 

height. Higher values represented a worse correlation; lower values, a better 

correlation. Monotonically decreasing numbers in the first column of Tables 5.3 

and 5.4 indicated each dendrogram link. Smaller numbers represented links 

closest to zero-value linkage distance; higher values represented links closest 
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to the highest-value linkage distance. This aspect is the reason the 

inconsistency values are listed from top value of fourteen down to bottom value 

of one. Once clarified tables characteristics, one notes how bottom of tables 

have smaller values and top have higher values corresponding to the 

aforementioned aspect of this coefficient that higher values represent a worse 

correlation; and lower values, a better correlation. As such, lower values 

corresponded to lower linkage distances; and higher vales corresponded to 

higher linkage distances. 

Comparing Tables 5.3 and 5.4 (Haar and Dmeyer wavelets, respectively) one 

notes very subtle differences. For the longest linkage distance Dmeyer yielded 

slightly better correlation coefficients. For the second and third longest linkage 

distances, Haar yielded better results, especially for intermediate cds. For all 

the other linkage distances, both wavelets interchanged very heterogeneously 

on which performed best. This heterogeneity associated with Tables 5.3 and 5.4 

results could be interpreted as a result of the lack of input data (i.e., Rrs spectra). 

Should more data be used as input, perhaps clearer results - indicating which 

wavelet actually behaved best for each link of each cd - could be inferred from 

these correlation coefficients. 

Despite the results generated so far, the actual intention for the utilisation of 

DWTCA was to use a large number of input data (i.e., a few hundred Rrs 

spectra). Then, cluster these signals with all possible wavelets able to be 

applied onto the dataset, and correlate the clusters results with as many as 

possible bio-optical algorithm-predicted OAC concentrations. And then evaluate 

results robustness and error and conclude which wavelets, decomposition 

levels, and bio-optical algorithms performed best in estimating OAC 

concentrations. However, as this work had only fifteen useful signals, and some 

clusters only had one Rrs signal associated with it, carrying out statistical 

analysis over these results was not a viable approach. Once this sort of results 

is acquired, comparisons with other works already carried out in this regard 

could be done. Examples of these works are those of Ampe et al. (2014) and 
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Ampe et al. (2015). Ampe et al. (2014) attempted to isolate the most informative 

wavelet regions via thresholding, and then, relate all five regions to known 

inherent optical properties. And also, Ampe et al. (2015) proposed a wavelet-

enhanced inversion method, specifically designed for complex waters in which it 

integrated wavelet-transformed high-spectral resolution reflectance spectra in a 

multi-scale analysis tool. 
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Figure 5.23 – Haar wavelet clustering analysis dendrogram for fifteen sampling points. 

 
Notes: the links in the cluster tree were generated based on table 5.2, rather than via the Rrs 
spectra themselves. 

Table 5.3 – Haar wavelet cophenetic and inconsistency coefficients. 

Cophenetic 
coefficient Signal cd1 cd 2 cd 3 cd 4 cd 5 cd 6 cd 7 cd8 

  0.806 0.520 0.509 0.499 0.517 0.566 0.511 0.691 0.781 
 

Inconsistency 
coefficient Signal cd 1 cd 2 cd 3 cd 4 cd 5 cd 6 cd 7 cd 8 

14 1.135 1.150 1.151 1.152 1.153 1.147 0.850 1.023 0.765 

13 0.961 0.707 0.707 0.707 0.707 0.707 0.976 1.026 1.116 

12 0.707 0.707 0.707 0.707 0.707 0.707 0.832 0.707 1.118 

11 1.083 1.154 1.154 1.152 1.141 0.707 0.707 1.144 1.114 

10 0.707 1.146 1.136 1.133 0.707 1.151 0.000 1.058 0.707 

9 1.075 0.707 1.133 0.707 1.116 0.775 0.707 0.000 0.707 

8 0.000 1.126 0.707 1.104 1.145 1.032 0.707 0.856 0.000 

7 0.707 0.000 0.000 0.000 0.000 0.000 0.989 0.000 0.000 

6 0.000 0.707 0.707 0.707 0.707 0.707 0.707 0.707 0.707 

5 0.707 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.107 

4 0.000 0.000 0.000 0.000 0.000 0.707 0.000 0.000 0.000 

3 0.000 0.707 0.707 0.707 0.707 0.000 0.707 0.000 0.000 

2 0.707 0.000 0.000 0.000 0.000 0.000 0.000 0.707 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 

Notes: decomposition levels are described as: signal, representing the actual signal scale level, 
and coefficients of detail (cd) ranging from one till eight. The number of cds was determined 
directly by the processing routine according to the levels identified in the input data. 

Sampling Points 

L
in

k
a

g
e

 D
is

ta
n

c
e

 



123 
 

Figure 5.24 – Discrete Meyer wavelet clustering analysis dendrogram for fifteen 
sampling points. 

 
Notes: the links in the cluster tree were generated based on table 5.2, rather than via the Rrs 
spectra themselves. 

Table 5.4 – Discrete Meyer cophenetic and inconsistency coefficients. 

Cophenetic 
coefficient Signal cd 1 cd 2 cd 3 cd 4 cd 5 cd 6 cd 7 cd 8 

  0.806 0.719 0.703 0.710 0.757 0.763 0.662 0.618 0.715 
 

Inconsistency 
coefficient Signal cd 1 cd 2 cd 3 cd 4 cd 5 cd 6 cd 7 cd 8 

14 1.135 1.150 1.152 1.073 1.030 1.105 0.719 0.854 0.855 

13 0.961 1.151 0.707 1.146 0.707 1.154 1.085 1.117 1.117 

12 0.707 1.086 1.154 0.707 0.707 0.707 0.707 1.016 1.140 

11 1.083 0.707 1.109 0.000 0.707 0.000 0.707 0.000 1.151 

10 0.707 0.707 0.707 0.707 0.813 1.085 0.707 0.707 0.707 

9 1.075 0.707 1.114 0.711 0.972 0.814 0.707 1.066 0.000 

8 0.000 0.707 0.000 1.104 0.707 0.707 0.707 0.809 0.000 

7 0.707 0.707 0.707 0.707 0.707 0.000 0.000 0.707 0.707 

6 0.000 0.707 1.078 0.707 0.000 1.097 1.141 0.000 0.707 

5 0.707 0.707 0.000 0.000 0.707 0.000 0.707 0.707 0.707 

4 0.000 0.000 0.000 0.707 0.000 0.000 0.000 0.000 0.707 

3 0.000 0.000 0.000 0.000 0.707 0.000 0.000 0.000 0.000 

2 0.707 0.000 0.000 0.000 0.000 0.707 0.707 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 

Notes: decomposition levels are described as: signal, representing the actual signal scale level, 
and coefficients of detail (cd) ranging from one till eight. The number of cds was determined 
directly by the processing routine according to the levels identified in the input data.  
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5.8.2. Spectral Angle Mapping (SAM) 

SAM analysis is a very useful signal processing technique commonly applied to 

signal data for the study of optically complex waters (SANDER DE CARVALHO 

et al., 2015; SHEN et al., 2015). SAM results were represented in Table 5.5 and 

in Figure 5.25. The Table 5.5 was the numerical representation of Figure 5.25b 

(colour shading matrix). Table 5.5 depicted the spectral angle error values. 

Also, bold numbers represent to which reference class each sampling point 

spectrum was associated. All points were allocated to classes one, three, or 

five. None was designated to classes two or four. However, sampling points 

seven (P7) and fifteen (P15) were nearly classified as classes three and one, 

respectively, rather than one and five, respectively. 

Comparing P7 and P15 in Figure 4.12 against the reference classes (Figure 

5.25a) to which they were allocated, one notes that P7 was classified as class 

one which had the shallowest blue-green slope. And it was almost classified as 

class three which had the second (paired with class five) shallowest blue-green 

slope; and a slight negative slope in the green-red spectral region. P15 was 

classified as class five which had the second (paired with class three) 

shallowest blue-green slope; and a slight plato in the 550-600 nm region; and 

an absorption trough near where chl-a has a red absorption maximum (675 

nm). And P15 was almost classified as class one, which had the shallowest 

blue-green slope; and a slightly negative slope plato in the 550-600 nm.  

One can identify by looking at these two sampling points (P7 and P15) 

classification results that the spectral angle error calculation, respectively, 

pondered over how each of these spectral features regions (i.e., blue-green and 

green-red regions) contributed to the final classification. Perhaps, nearly being 

classified as another class might be an indication that subtle variations in these 

regions accumulated more or less errors as the calculation took place. And this 

process might have led the final error to be a mesh of different regions 

contributions. Therefore, as yet again, the blue spectral region seemed as much 
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an important parameter as the red region for the Rrs signal analysis. These 

results further consolidated the re-parameterisation attempt carried out on the 

semi-empirical bio-optical algorithm using information from the higher frequency 

blue-green spectral region.  

Figure 5.25b depicted a shaded coloured matrix in which the redder the cells 

the lesser the spectral angle error. Sampling points were mostly designated to 

classes one, three and five, as previously mentioned. Moreover, reference class 

two performed very badly in the classification process. This feature was most 

likely associated with the fact that this spectrum had a distinct type of 

phytoplankton (phyto5, Figure 5.25a) concentration compared to the other ones. 

The actual biology of this group is not of interest here mainly because it cannot 

be further evaluated as no cell count for a specific group had been performed 

for field samples. However, the fact it is a different group indicated that it would 

perform differently from the other groups; in this case, it did not match this 

study‘s signal data appropriately, whereas the other classes displayed some 

degree of concordance. 

If the average error value for each reference class in Table 5.5 (bottom row) 

were taken for all sampling points, the following reference class rank order 

would be achieved from first place to fifth place: reference class five, one, four, 

three, and two. This aspect could be expected by investigating Figure 5.25b 

overall colour distribution. It could, then, be compared to the normalised spectra 

in Figure 5.6, thence, one can infer that Guarapiranga reservoir waters would 

fall somewhere in between the OAC concentration of water classes five and 

one. Mostly class five whose OAC heterogeneity was in fact the highest of all 

classes. Since the OACs concentration in all classes was only a representation 

of reality, the actual average OAC concentration for the reservoir was not 

considered for comparison. 

Lastly, an elaboration should account for the comparison and contrast of both 

DWTCA and SAM analyses. These techniques have fairly different theoretical 
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and mathematical frameworks. DWTCA can evaluate signal data and 

investigate the similarities they might possess among themselves. No reference 

signal is necessary, other than the actual test data. Further analyses, such as 

that suggested at the last paragraph of the previous chapter could then be 

carried out. On the other hand, SAM requires reference signal data to 

investigate test data. In this study WASI software was used to generate these 

reference data. These specificities of each technique are important to be 

considered. Mainly because the objective of this section was to demonstrate via 

the results acquired the dichotomy existing between these two techniques. 

Table 5.5 – Spectral angle error from spectral angle mapping (SAM) analysis for each 
sampling point (column-title) against reference classes (row-title) 
generated in WASI. Bold numbers represent to which class each sampling 
point has been allocated. 

 
Class 1 Class 2 Class 3 Class 4 Class 5 

P1 0.056 0.337 0.122 0.235 0.206 
P2 0.144 0.235 0.100 0.164 0.183 
P3 0.118 0.307 0.139 0.119 0.102 
P4 0.134 0.377 0.200 0.176 0.103 
P5 0.157 0.396 0.224 0.175 0.092 
P6 0.171 0.401 0.236 0.180 0.097 
P7 0.061 0.288 0.073 0.181 0.174 
P8 0.127 0.381 0.199 0.173 0.097 
P9 0.210 0.391 0.253 0.149 0.086 
P10 0.151 0.378 0.211 0.157 0.074 
P11 0.159 0.406 0.231 0.194 0.112 
P12 0.185 0.396 0.239 0.150 0.071 
P13 0.091 0.354 0.153 0.177 0.142 
P14 0.076 0.371 0.164 0.190 0.138 
P15 0.106 0.351 0.166 0.146 0.091 

Mean 0.130 

 

0.358 0.181 0.171 0.118 
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Figure 5.25 – Reference spectra generated from WASI software used for spectral angle mapping (SAM) classification and spectral 
angle errors for fifteen sampling stations correlated with each reference class. The redder (smaller) the error value 
the more correlated the station spectrum is to the reference class. Reddest values represent the reference class to 
which the station spectrum was allocated during the SAM classification. 

 

Notes: each reference spectrum is presented with their respective OACs concentrations. L, M, H indices indicated low, medium and high 
concentrations, according to WASI default range values. phyto1, phyto2, phyto5, pm, cdom, det stand, respectively, for cryptophyta type L, 
cryptophyta type H, green algae, particulate matter, coloured dissolved organic matter, and detritus. Table 5.5 has the numerical representation 
of Figure 5.25b. 
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5.9. Semi-empirical algorithms 

Ogashawara (2015) presented a letter suggesting a novel bio-optical modelling 

classification method. Following the elaboration in that work and previous works 

on this subject (OGASHAWARA et al., 2013; AUGUSTO-SILVA et al., 2014; 

MISHRA; MISHRA, 2014; OGASHAWARA; MORENO-MADRIÑAN, 2014), this 

section tested several semi-empirical bio-optical algorithms (Table 4.3; Figure 

5.26). An investigation was then applied to the results to assess which 

performed best at predicting chl-a, PC, and chl-a:TSM in Guarapiranga 

Reservoir. All algorithms in Figure 5.26 underwent adjustment by fitting a curve 

between their model results to this study‘s OAC concentration. Then, the best 

Pearson‘s correlation, R, among PC-predictive algorithms indicated onto which 

the re-parameterisation would be applied. 

All four chl-a predictive algorithms presented R values ranging from 0.272-

0.517, all being very weak correlation values. 3HU14 R was 0.374. Thence, a 

slightly overestimating positive correlation was achieved. 2HU14 presented the 

weakest R (0.268), and a flat correlation slope, indicating no correlation 

whatsoever. OC3 R value was also weak (0.272), and it did not yield a 

significant correlation slope. OC4 had the best chl-a prediction R (0.517) result, 

despite fairly underestimating the prediction results. Overall, chl-a estimation 

was not very efficient. SU13 presented a weak R value (0.193). However, this 

value was better than the initial results for this correlation. A very strong outlier 

was identified in this dataset and was removed from the scatterplot. The results 

presented an overestimation for lower ratio and an underestimation for higher 

ratio. Chl-a:TSM estimation, as chl-a results, did not present efficient prediction 

results for this study‘s dataset. 

PC predictive algorithms yielded worse R values than chl-a and chl-a:TSM 

algorithms. R values for HU10, LE11, SY00, and SI07 were respectively, 

0.0506, 0071, 0.009, and -0.041. SI07 negative correlation was not attempted to 

be fixed and was maintained negative since all other scatterplots also presented 
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very poor results. All these poor results probably had greater relation with the 

reservoir very low OAC concentration coupled with the reservoir hydraulic 

dynamics. Such characteristics are capable of creating confusion during the 

signal data acquisition due to constituents overwhelming one another. Another 

reason for the poor results is the fact such algorithms are not suitable for the 

water type encountered in Guarapiranga reservoir. However, as literature has 

shown over the past years of research in this topic, there has been a difficulty in 

standardise a global model for OAC prediction in any given water body and 

then, efficiently further extrapolate the results towards other regions. 

Ogashawara et al., (2013) also found poor results in their model calibrations. 

The authors also tested HU10 algorithm and concluded the poor results from 

such algorithm demonstrated an inability to suppress specular reflection from 

wavy conditions. Their results support how such high water composition 

variability influence on bio-optical modelling of inland waters. Finally, in this 

study, MI14 had the best result among PC-predictive algorithms despite its low 

value. Its adjusted R2 value for the calibration dataset was 2.3% (0.023) (Figure 

5.31). And, therefore, it was the chosen algorithm for the re-parameterisation. 

The following section will describe the re-parameterisation process. 
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Figure 5.26 – Chlorophyll-a (chl-a), phycocyanin (PC), and chl-a to total suspended 
matter (TSM) ratio bio-optical algorithms evaluation. Statistics for the 
correlations are given by Pearson-coefficient (R) for predicted against 
measured values. 

 

Notes: green, blue, and red lines represent, respectively, the best fit lines for chl-a, PC, and chl-
a to TSM ratio. Adimensional x label is only for SU13 algorithm. 

μ 
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5.10. Semi-empirical three-band PC-retrieval algorithm re-

parameterisation 

Figure 5.7 depicted the boxplots for all WQPs. Chl-a and PC concentrations had 

medians at around 9 and 4 µg/L, respectively. Overall, chl-a was found in higher 

concentrations than PC in Guarapiranga reservoir. Figure 5.27a, depicted 

exactly how many sampling stations had higher chl-a concentrations than PC 

for Guarapiranga. About 64.71% of samples had PC concentrations with less 

than half that of chl-a concentrations; only 11.76% of samples had PC 

concentrations higher than chl-a, with a magnitude of 20% to 40% of higher PC 

concentration than chl-a. Considering that Figure 5.27b described the PC to chl-

a ratio (PC:chl-a) from Funil reservoir and a Catfish Pond (Ogashawara et al. 

2013). The authors also described issues over the influence of chl-a on PC 

concentrations. Moreover, they found 56.52% of samples having PC 

concentrations higher than chl-a. They also found only 21.74% samples 

containing PC concentrations with less than half that of chl-a. These numbers 

indicated this study had samples even more influenced by chl-a presence than 

the previous study in Funil reservoir, and that a confusion-enhancer re-

parameterisation needed to be sensitive to that level.  

Figure 5.28 depicted the scatterplot between Rrs620:Rrs709 ratio and PC 

concentration. Mishra and Mishra (2014) stated the non-linearity existing 

between PC-predictive algorithms and PC concentration, also found in this 

study (Figure 5.28). Also, they invested on the conclusion that their novel 

algorithm had a more robust linearity than its band ratio counterparts (MISHRA; 

MISHRA, 2014; Figure 4b for that study). Following on this premise, this study 

evaluated the results from previous sections, and identified the need for a re-

parameterisation of a PC-predictive algorithm (MI14-Table 4.3), applying the 

prediction to a water body with low PC concentration, and suggested a new 

coefficient for PC prediction in MI14.  
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Results from previous sections that motivated the generation of this new re-

parameterisation coefficient were: 

 Least squares regression between aphy(620) against chl-a+PC showed 

better correlation strength than that between aphy(620) against PC only, 

indicating chl-a was masking PC; 

 TLS results generally presented more robust correlation in the higher 

frequency wavelengths (412-443 nm); 

 Ternary plot had the 412 and 443 nm results yielding a more cohesive 

data distribution, meaning the distance from each point to the mean 

value in those wavelengths was less variable than for the other 

wavelengths; 

 Outliers and kurtoses for PC and chl-a concentration distribution seemed 

proportional and influential on one another, specially possible chl-a 

influence over PC due to higher chl-a concentration; 

 DWTCA clusters (Appendix F) presented significant variation among 

groups in the blue region as well as in the red region; 

 And lastly, Guarapiranga‘s normalised Rrs showed a highly varying slope 

between 400-550 nm, indicating some fertile spectral region for bio-

optical investigation; 

These reasons collaborated for the investigation of a possible association 

between the blue-green region of the spectrum and PC prediction. 

The reasoning behind the coefficient generation was as follows: firstly, the non-

linearity was encountered in the dataset as shown in Figure 5.28. Then, a 

thorough investigation of Figure 4.12 along with the last reason in the 

aforementioned previous sections results list, allowed the identification of 

dependence between the 460-556 nm slope (S1) and the PC-proxy 600-640 nm 

depth spectral band (phycocyanin line height, PLH). Thence, Figure 5.29 

depicted the reasoning behind the dependence. If S1 to PLH ratio (S1:PLH) 

displayed a coefficient of proportionality, (i.e., a statistically significant best fit 

regression line (Figure 5.30a)) then S1 could act as a new re-parameterisation 
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coefficient replacement for PC-prediction into the bio-optical algorithm MI14 for 

PC estimation in a tropical reservoir bearing low PC concentration. 

Figure 5.30a depicted the regression between S1 and PLH. Adjusted R2 and 

NRMSE were, respectively, 0.68 and 15% (0.15), indicating a reasonable linear 

agreement between variables. An important point is to notice that two sampling 

stations were excluded from regression in order to improve the correlation. This 

removal was carried out as to focus the regression results on the scatterplot 

regions between the variables that displayed the relevant linear correlation 

degree. Figure 5.30b depicted a surface sensitivity plot for measured PC 

concentration. It was created in order to evaluate the relation among S1, PLH, 

and PC as to how S1 and PLH correlated with PC. Lower values of both S1 and 

PLH were linked to larger PC concentrations; followed by a rapid decrease in 

PC, then again, an exponential increase in PC concentration as S1 and PLH 

reached larger values. This trend was similar to that of Figure 5.28, indicating 

that Rrs620:Rrs709, S1, and PLH, presented a non-linear correlation with PC 

concentration.  

Sampling stations P8, P10, P15, and P16 were the ones increasing the PC 

concentration at lower PLH values in Figure 5.30b. P15 and P16 had high 

concentrations of both TSM and chl-a. Also, these four sampling points had the 

highest PC concentration in this study. As PC concentration measured in this 

study was low, other OACs might have overwhelmed PC response to incoming 

radiation in those sampling points. Rrs spectra used to calculate S1 and PLH 

might have generated spectral artefacts such that of placing higher PC 

concentration values at the lower end of S1 and PLH. Therefore, a highly 

sensitive PC-retrieval algorithm, for optically complex inland waters with low PC 

concentration, in order to reduce confounding factors and spectral artefacts was 

again demonstrated as needed. As S1 and PLH were considered having a 

linear correlation (Figure 5.30a), PLH as a function of S1 was then applied into 

MI14 (MISHRA; MISHRA, 2014), replacing the originally suggested coefficient 

( ), and creating the adjusted MI14 by adding the new coefficient,      instead.



134 
 

Figure 5.27 – PC to chl-a ratio (PC:chl-a) monotonically increasing for all sampling stations from this study‘s dataset and from 
Ogashawara et al. (2013). Horizontal line at the ratio value of one indicates how many samples have higher 
concentrations of PC (above line) or chl-a (beneath line). 
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Figure 5.28 – Scatterplot between a reflectance band ratio 
[Rrs(620):Rrs(709)] and measured PC concentration. 

 
 

Figure 5.29 – Remote sensing reflectance (Rrs) spectrum for 
sampling station three, slope one (S1), and 
phycocyanin line height (PLH). The coefficient 
of proportionality represents the correlation 
between S1 and PLH for all sampling points. 
The slope between     and    (Figure 30a) 
represents the re-parameterisation coefficient. 

Notes: PLH represents the ratio between the value of the adjusted fit line 
between 600 and 640 nm and the actual Rrs value at 620 nm; S1 
represents the ratio between the Rrs(556) over Rrs(460). CP stands for 
coefficient of proportionality between    and    ; and     stands for 
the new coefficient applied to the adjusted algorithm. 

P
C

 (
µ

g
/L

) 

Rrs(620):Rrs(709) 

S1 
PLH 

ᴕ =   
 

 

If then 

n = number of spectra 

CP = coefficient of  
          proportionality 

= re-parameterisation 
         coefficient 

R
e
m

o
te

 S
e
n
s
in

g
 R

e
fl
e
c
ta

n
c
e
 (

R
rs
) 

[s
r-1

] 

Wavelength (nm) 

S1 
PLH 

ᴕ =   
 

 

If then 

n = number of spectra 

CP = coefficient of  
          proportionality 

= re-parameterisation 
         coefficient 

R
e
m

o
te

 S
e
n
s
in

g
 R

e
fl
e
c
ta

n
c
e
 (

R
rs
) 

[s
r-

1
] 

Wavelength (nm) 



136 
 

Figure 5.30 – (a) Regression analysis between phycocyanin (PC) line height (PLH) and slope one (S1). (b) Sensitivity plot between 
PLH, S1 and PC concentration. 

 

Notes: PLH represents the ratio between the value of the adjusted fit line between 600 and 640 nm and the actual Rrs value at 620 nm; S1 
represents the ratio between the Rrs(556) over Rrs(460). 
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Dash et al. (2011) evaluated whether wavelengths less than 620 nm were 

applicable for the estimating PC. This study has reached a bit further and 

attempted to stipulate whether the blue-green region slope could improve PC 

prediction. Higher frequency regions had already been used by Dong et al. 

(2013). Moreover, Yacobi et al. (2015) attempted to minimise chlorophylls 

influence over PC on the basis of chlorophylls relative absorption at 625 nm, 

using 675 nm as reference wavelength. 

In order to further the scientific frontier associated with this area of study, this 

master´s thesis capitalised on the initial attempts proposed by the 

aforementioned studies. Unlike Yacobi et al. (2015), this thesis has not used 

specific absorptions coefficients for eliminating the confusion between chl-a and 

PC. Nonetheless, this thesis followed on Dash et al. (2011)´s work, altogether 

with the endeavour to further the semi-empirical algorithm proposed by Gitelson 

et al. (2003), adapted by Hunter et al. (2010), and enhanced by Mishra and 

Mishra (2014). And peremptorily, it aimed to excelling in bettering PC retrieval 

at very low concentrations. 

Figure 5.31 depicted the results for the new algorithm calibration, using this 

study‘s dataset, and validation, using dataset from Augusto-Silva et al. (2014). 

Calibration of original algorithm (MI14) and adjusted algorithm (MI14-Adjst.) 

were represented by blue best fit lines; and validation results were represented 

by red best fit lines. MI14 algorithm, for both calibration and validation, kept the 

coefficient fit curve (         [                 ]
     ) proposed by Mishra 

and Mishra (2014). The MI14 Adjst. used the new re-parameterising coefficient 

slope and intercept depicted in Figure 5.30a correlating S1 and PLH. Optimal 

bands for both MI14 and MI14-Adjst. were selected based on the previous 

works of Hunter et al. (2010) and Mishra and Mishra (2014). 

MI14 and MI14-Adjst. calibrations yielded adjusted R2 of 2.3%, 17.6%, 

respectively; and NRMSE of 32.28%, and 30.52%, respectively. Also, there was 

a slight improvement in slope prediction angles from MI14 to MI14-Adjst. 



138 
 

shifting towards the one-to-one position, however, all datasets presented 

overestimation trend at lower concentrations and underestimation trend at 

higher concentrations. Both algorithms performed poorly overall, mostly 

because of the very low PC concentration range appraised in the study which, 

as mentioned previously, might have generated spectral artefacts increasing 

uncertainty in OAC predictions. At very low concentrations, confounding effects 

could negatively contribute by neglecting PC interaction with the incoming 

radiation. However, it is clear from the results that the adjusted algorithm 

calibration dataset improved the correlation robustness (R2), and slightly 

minimised the prediction error.  

It is important to note that the validation (Funil reservoir) dataset must not be 

assessed for its results statistics magnitude. Funil‘s dataset did not have 

available measured PC concentration, but only the Rrs dataset for applying the 

prediction algorithm. Therefore, a randomisation procedure was applied to 

Guarapiranga‘s measured PC concentration, and then, it was used as 

measured PC data into the validation dataset. Therefore, regression analysis for 

the validation dataset should only be evaluated for the difference between the 

original and adjusted algorithms rather than the actual results magnitudes. 

One can observe that for validation dataset, both algorithms presented 

corresponding NRMSE. However, R2 from MI14-Adjst. was still better than that 

of MI14, in spite of displaying a narrower R2 gap value between the two 

algorithms. Such feature indicated that the re-parameterisation tended to reach 

a saturation difference. This might be an indication that, somehow, the blue 

spectral region improved PC prediction in Guarapiranga better than it did for 

Funil reservoir which had slight more homogeneous blue-green Rrs slope than 

Guarapiranga reservoir. Perhaps, higher-complexity waters might benefit most 

from this re-parameterisation. 

.  
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Figure 5.31 – Calibration (this study‘s dataset) and validation (dataset from Augusto-
Silva, 2014) of the adjusted MI14 algorithm, and comparison with the 
original MI14 algorithm. Brackets indicate 95% confidence level. 

Notes: measured PC concentrations for the validation dataset were randomly generated from 
the calibration dataset. Four extra samples were added in the randomisation in order to match 
the calibration dataset sample size with the validation dataset sample size (i.e., nineteen 
values). Therefore, R

2
 and NRMSE values for the validation dataset must not be assessed for 

their actual magnitude. These magnitudes must only be investigated as a comparison between 
the original and the adjusted algorithms is carried out.  

a 

intercept = 4.87 (0.09, 9.65) 

n=15 n=15 

n=19 
n=19 

(a) (b) 

(c) (d) 
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5.11. OLCI/Sentinel 3 simulation 

OLCI simulation was carried out in order to investigate how this new sensor 

would have behaved acquiring signal data from Guarapiranga reservoir waters. 

Firstly, a simulated dataset of OLCI spectral bands was created following its 

spectral response function showed on section 4.5 (Figure 4.14). A comparison 

between hyperspectral and the synthetic datasets was shown on Figure 5.32 

which showed both the hyperspectral in situ data, overlapped by the synthetic 

dataset for each successfully measured sampling station.  

The simulated dataset of the 16 spectral bands of OLCI could estimate well the 

hyperspectral data, and could retrieve efficiently some important OAC-related 

features from the Rrs spectra. The absorption feature of chl-a at 665 nm was not 

well described in the simulated dataset. That happened due to the fact the 675 

nm was more clearly representative of maximum absorption in Guarapiranga‘s 

spectra. Moreover, the three narrowly related 666, 674, and 682 nm bands 

presented varying positions over all spectra.  

P2, P3, P10 and P16 in Figure 5.32 showed a clear absorption trough at the 

674 nm position. It was an indication these sampling points matched the 

spectral characteristics from data used to generate conclusions over the choice 

for OLCI‘s 666, 674, and 682 nm bands. However, other stations did not so 

equivalently matched that chl-a absorption trough. One point had that trio band 

left-shifted (P9). Some others, had it right-shifted (P4, P7, P11, P12, P14, P15, 

and, P17). And some had it flat-lined (P5 and P8). These features indicated how 

one study site might have had its spectral data slightly altered by fixedly-

selected narrow bands. And due to the complexity found in inland water 

environments, great care must be taken while generating universal algorithms 

for OAC prediction.  

The same reasoning could be applied to the 620 nm region where PC maximum 

absorption is located. Some of the synthetic spectra matched this region‘s 

features from the hyperspectral in situ dataset, and some others did not. Again, 



141 
 

while developing algorithms for PC prediction using OLCI data, one must be 

careful as to note how subtle variations in OLCI data in comparison with in situ 

data could imbue uncertainties in the results. Overall, this study evaluated 

optimal bands for the re-parameterisation, closely identifying the maximum 

absorption happening near the 620 nm region. Therefore, the re-

parameterisation included the 630 nm instead of 629 nm for the PC band 

suggested by Mishra and Mishra (2014); also, it was used 670 nm, instead of 

659 nm for chl-a band; and the 730 nm instead of the 724 nm band for high 

water absorption region, by noting some shifts in the over-700 nm region in 

Guarapiranga dataset. 

Lastly, although OLCI is a MERIS heritage sensor, a difficulty has always 

existed for inland water scientists to universally apply bio-optical remote-

sensing algorithms for OAC prediction. This fact has been due to the high 

complexity associated with inland complex waters. And such complexity might 

appear in signal data in such a way that even sensors like OLCI may collect 

signal variation subtleties capable of hindering scientists from excelling in OCW 

research. 
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Figure 5.32 – Remote sensing reflectance (Rrs) (red line) for each sampling station calculated from in situ-collected radiance and 
irradiance data via Ramses TRioS; and resampled Rrs data to the first sixteen OLCI sensor bands (400- 779 nm) 
(blue line). 
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Figure 5.32 – Remote sensing reflectance (Rrs) (red line) for each sampling station calculated from in situ-collected radiance and 
irradiance data via Ramses TRioS; and resampled Rrs data to the first sixteen OLCI sensor bands (400- 779 nm) 
(blue line) – Continuation. 
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6 FINAL CONSIDERATIONS AND CONCLUDING REMARKS 

In this research, a three-band semi-empirical PC-predictive algorithm, MI14, 

was improved, MI14-Adjst., to accurately retrieve PC concentration in an inland 

water body bearing low PC concentration. Best bands were selected for the re-

parameterised algorithm input wavelengths at 630 nm, 670 nm, and 730 nm for 

wavelengths that are most sensitive to PC absorption, least sensitive to PC 

absorption (via the inclusion of enhancing coefficient) and, a wavelength region 

where pigment absorption is negligible, respectively. The optimal adjusted 

algorithm improved prediction from the original MI14. It showed an improvement 

from 2.3% to 17.6% in the adjusted R2 and a decrease from 32.28% to 30.52% 

in the NRMSE for the calibration dataset. As for the validation dataset, adjusted 

R2 was less improved but still better (from 44.74% to 49.53%) and NRMSE 

reached an equalised value (from 13.00% to 13.19%).  

For practical applicability of the algorithm, OLCI spectral bands were considered 

while re-parameterising the algorithm. However, application of OLCI-specific 

bands into the algorithms has not been made because bands (630 nm, 670 nm, 

and 730 nm) used in MI14-Adjst. showed different Rrs magnitude and shape for 

the simulated dataset, and would have not shown optimal results just as Mishra 

and Mishra (2014) found for their study. This was true because optimal bands 

vary from study site to study site, and for one sort of OAC concentration to 

another. The new coefficient introduced in this study had the green band (556) 

centred at 5-nm distance from OLCI‘s band location (561). And the blue band 

(460) was located halfway through from the 442-nm band and the 491-nm band 

allowing it to be averaged out from those two values. Nevertheless, the 

coefficient and main algorithm bands in this study were very proximal to OLCI‘s 

bands, and for the purposes of remote sensing studies, OLCI sensor is still the 

best opportunity to further inland water research. And above all, the new 

improved algorithm seemed to improve prediction for waters with low PC 

concentration range as a shortcoming pointed out by Mishra and Mishra (2014) 

for future research investigations. 
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It is evident from the results that: (a) MI14-Adjst. can be applied to retrieve low-

concentration PC in inland waters with slight higher accuracy than an existing 

algorithm; (b) inclusion of     in the model compensates better for the 

confounding effect of Chl-a absorption at the PC absorption band - i.e. 620 nm 

– than MI14 coefficient ( ); and (c) unlike reflectance band ratios, MI14-Adjst. 

addressed the non-linearity issue also found in lower PC concentrations. 

However, it is a must for other studies to be carried out using this improved 

algorithm under similar PC concentrations for further validation. Development of 

remote sensing algorithms for quantifying cyanobacteria PC is a challenging 

task primarily because specific absorption coefficient of PC and chl-a varies 

significantly with change in phytoplankton species composition. In addition, chl-

a absorption at the PC absorbance maxima causes significant interference that 

adds to the model complexities (MISHRA et al., 2013; SONG et al., 2013a). 

The aforementioned conclusions reinforce that the hypothesis set for this study 

has been accepted. Also, as for the three specific aims set-out, the first was 

fairly descriptively concluded, and supported the third one which led to the 

algorithm re-parameterisation. The first specific aim managed to explain the 

high complexity associated with Guarapiranga water reservoir which is used for 

a major city supply such as the city of São Paulo. Such complexity exists mostly 

because of the highly varying land cover and land use present in the city‘s 

surroundings. This complexity makes it more difficult the understanding of 

pollution sources into the reservoir but also overwhelms the remote sensing 

techniques used for this very same pollution evaluation.  

The second specific aim had a minor contribution for the final re-

parameterisation as this objective was far less extensive than the first one. 

However, differently from the first specific aim, the second one intended to 

further the state-of-art associated with the most-wanted analytical bio-optical 

OAC-prediction algorithms, which is an all-encompassing bio-optical model. The 

second specific aim initial intention (not achieved in this work) was for using the 

DWTCA coupled with many spectra. And, then, set empirical relations that 
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described more efficiently every OAC present in water bodies via only Rrs signal 

data without the need for all the IOPs used in semi-analytical algorithms. This 

feat could generate results which would greatly contribute for future satellite 

missions. 

Local indices for environmental parameters estimation can be highly useful for 

practical purposes such as real-time monitoring of water quality. This study‘s 

results aimed to better future inland waters monitoring systems as 

cyanobacterial bloom prevention systems in waters bearing low OAC 

concentration. It suggests OCW not to be treated simplistically, as their variation 

complexity over the spatial-temporal domain is similar to the complexity of 

signals datasets investigated by a wavelet technique. Such technique can 

investigate much information inside intricate signal levels that are not easily 

perceivable at certain scales. All this complexity requires much effort from 

scientific community, and collective work. This way, perhaps, future inland water 

research might achieve more productive results than those brought forth to this 

very day. 
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APPENDIX A 

Figure A.1– List of some bio-optical models found in literature covering from empirical to QAA algorithms 

Model Reference Sensor Algorithm 

Empirical Vincent (2004) TM and ETM+ 

 

Empirical Song, Kaishan et al. (2012) AISA 
 

Empirical Song, Kaishan et al. (2013) ASD FieldSpec / Ocean Optics 
 

Empirical Sun et al. (2012) FieldSpec spectroradiometer 

 

Semi-Empirical Dekker (1993) CAESAR / CASI 
 

Semi-Empirical Schalles and Yacobi (2000) Ocean Optics 
 

Semi-Empirical Simis et al. (2005) MERIS 

 

Semi-Empirical Wynne et al. (2008) MERIS 

 

Semi-Empirical Hunter et al. (2008) ASD FieldSpec 
 

Semi-Empirical Mishra et al. (2009) Ocean Optics 
 

Semi-Empirical Hunter et al. (2010) AISA / CASI-2 
 

Semi-Empirical Le et al. (2011) ASD FieldSpec 
 

Semi-Empirical Dash et al. (2011) Ocean Color Monitor 
 

Semi-Empirical Dominguez et al. (2011) MERIS/CHRIS 
 

Semi-Empirical Wheeler etal. (2012) QuickBird 
 

Semi-Analytical Li, Linhai et al. (2012) OceanOpticsUSB4000 
 

QAA Mishra et al. (2013) Ocean Optics 

 

 

Where: TRM is Landsat TM Radiance; FDR is the first derivative; nLw is the normalized water leaving radiance; OCMRrs is the Rrs from OCM sensor; MB is 
MERIS band; QBNIR is the Quickbird NIR channel and QBRed is the Quickbird red channel;   is the ratio between ach{665) and achi(620) and    is the ratio 
between aPC(665) and aPC(620). 
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APPENDIX B 

Figure B.1– Haar and Discrete Meyer wavelets scaling and wavelet functions 
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APPENDIX C 

Figure C.1– Water Quality Parameters Cross Correlation Scatterplots and histogram 

 

 



173 
 

 



174 
 

APPENDIX D 

Table D.1 - Kendall correlation coefficients for the limnological dataset 

  TSM TSI TSO Chla PC Na+ Cl- K+ SO42- Ca2+ NH4+ NO3- TN IC NPOC 

TSM 1 
              TSI 0.61 1 

             TSO 0.80 0.37 1 
            Chla 0.28 0.12 0.32 1 

           PC 0.35 0.38 0.32 0.30 1 
          Na+ 0.07 0.20 0.19 0.32 0.03 1 

         Cl- 0.05 0.15 0.20 0.31 0.01 0.96 1 
        K+ 0.19 0.23 0.28 0.21 0.01 0.76 0.78 1 

       SO42- 0.34 0.50 0.33 0.26 0.22 0.59 0.63 0.59 1 
      Ca2+ 0.10 0.06 0.22 0.41 0.01 0.76 0.75 0.71 0.47 1 

     NH4+ NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 
    NO3- 0.43 0.53 0.32 0.32 0.28 0.32 0.28 0.32 0.65 0.41 NaN 1 

   TN 0.11 0.21 0.26 0.25 0.08 0.74 0.76 0.76 0.58 0.58 NaN 0.25 1 
  IC 0.11 0.06 0.29 0.25 0.07 0.78 0.79 0.81 0.49 0.72 NaN 0.19 0.80 1 

 NPOC 0.03 0.05 0.04 0.05 0.14 0.38 0.36 0.14 0.15 0.17 NaN -0.02 0.17 0.18 1 

Notes: NaN represent not-available-number values 

Table D.2 - Kendall p-value for the limnological dataset 

  TSM TSI TSO Chla PC Na+ Cl- K+ SO42- Ca2+ NH4+ NO3- TN IC NPOC 

TSM 0 
              TSI 0.001 0 

             TSO 0.000 0.046 0 
            Chla 0.136 0.534 0.083 0 

           PC 0.056 0.042 0.082 0.108 0 
          Na+ 0.741 0.300 0.321 0.076 0.901 0 

         Cl- 0.804 0.431 0.283 0.091 0.967 0.000 0 
        K+ 0.321 0.230 0.137 0.271 0.967 0.000 0.000 0 

       SO42- 0.069 0.007 0.069 0.151 0.231 0.001 0.000 0.001 0 
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Table D.2 - Kendall p-value for the limnological dataset - Continuation 

Ca2+ 0.619 0.772 0.247 0.022 0.967 0.000 0.000 0.000 0.008 0 
     NH4+ NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0 

    NO3- 0.020 0.004 0.083 0.076 0.127 0.076 0.129 0.076 0.000 0.022 NaN 0 
   TN 0.562 0.263 0.159 0.173 0.679 0.000 0.000 0.000 0.001 0.001 NaN 0.173 0 

  IC 0.562 0.772 0.116 0.177 0.710 0.000 0.000 0.000 0.006 0.000 NaN 0.308 0.000 0 
 NPOC 0.901 0.804 0.836 0.805 0.457 0.039 0.048 0.458 0.410 0.364 NaN 0.934 0.364 0.322 0 

Notes: NaN represent not-available-number values 

Table D.3 – Spearman correlation coefficient for the limnological dataset 

  TSM TSI TSO Chla PC Na+ Cl- K+ SO42- Ca2+ NH4+ NO3- TN IC NPOC 

TSM 1 
             

  
TSI 0.79 1 

            
  

TSO 0.91 0.55 1 
           

  
Chla 0.36 0.16 0.43 1 

          
  

PC 0.49 0.44 0.44 0.43 1 
         

  
Na+ -0.13 -0.17 -0.29 -0.53 0.01 1 

        
  

Cl- -0.13 -0.14 -0.30 -0.51 0.02 0.99 1 
       

  
K+ -0.25 -0.24 -0.41 -0.41 -0.01 0.87 0.89 1 

      
  

SO42- -0.54 -0.68 -0.49 -0.46 -0.31 0.72 0.73 0.73 1 
     

  
Ca2+ -0.13 -0.03 -0.29 -0.61 0.07 0.88 0.88 0.84 0.62 1 

    
  

NH4+ NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 
   

  
NO3- -0.58 -0.69 -0.44 -0.48 -0.36 0.36 0.35 0.37 0.77 0.47 NaN 1 

  
  

TN -0.17 -0.25 -0.35 -0.46 -0.01 0.87 0.88 0.90 0.71 0.72 NaN 0.32 1 
 

  
IC -0.18 -0.08 -0.40 -0.45 0.14 0.89 0.92 0.92 0.65 0.83 NaN 0.26 0.92 1   
NPOC 0.02 0.00 -0.09 0.08 0.18 0.43 0.41 0.22 0.19 0.22 NaN -0.09 0.24 0.26 1 

Notes: NaN represent not-available-number values 
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Table D.4 - Spearman p-value for the limnological dataset 

  TSM TSI TSO Chla PC Na+ Cl- K+ SO42- Ca2+ NH4+ NO3- TN IC NPOC 

TSM 1 
             

  
TSI 0.000 1 

            
  

TSO 0.000 0.022 1 
           

  
Chla 0.160 0.540 0.087 1 

          
  

PC 0.047 0.080 0.079 0.088 1 
         

  
Na+ 0.608 0.524 0.259 0.028 0.963 1 

        
  

Cl- 0.621 0.594 0.242 0.038 0.937 0.000 1 
       

  
K+ 0.326 0.348 0.100 0.103 0.966 0.000 0.000 1 

      
  

SO42- 0.024 0.003 0.044 0.063 0.223 0.001 0.001 0.001 1 
     

  
Ca2+ 0.608 0.910 0.263 0.009 0.775 0.000 0.000 0.000 0.008 1 

    
  

NH4+ NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 
   

  
NO3- 0.014 0.002 0.079 0.052 0.159 0.158 0.171 0.141 0.000 0.057 NaN 1 

  
  

TN 0.504 0.339 0.168 0.066 0.978 0.000 0.000 0.000 0.001 0.001 NaN 0.205 1 
 

  
IC 0.484 0.760 0.111 0.068 0.579 0.000 0.000 0.000 0.005 0.000 NaN 0.319 0.000 1   
NPOC 0.950 0.994 0.743 0.754 0.496 0.087 0.105 0.387 0.459 0.400 NaN 0.743 0.361 0.323 1 

Notes: NaN represent not-available-number values 

Table D.5 – Pearson correlation coefficient for the limnological dataset 

  TSM TSI TSO Chla PC Na+ Cl- K+ SO42- Ca2+ NH4+ NO3- TN IC NPOC 

TSM 1 
              TSI 0.87 1 

             TSO 0.93 0.63 1 
            Chla 0.51 0.20 0.66 1 

           PC 0.30 0.16 0.36 0.35 1 
          Na+ -0.20 0.07 -0.37 -0.57 -0.05 1 

         Cl- -0.17 0.11 -0.36 -0.60 -0.07 0.99 1 
        K+ -0.42 -0.19 -0.53 -0.64 -0.09 0.95 0.94 1 

       SO42- -0.54 -0.39 -0.56 -0.66 -0.17 0.80 0.79 0.92 1 
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Table D.5 - Pearson correlation coefficient for the limnological dataset – Continuation 

Ca2+ -0.36 -0.08 -0.51 -0.73 -0.02 0.91 0.91 0.95 0.88 1 
     NH4+ NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 

    NO3- -0.61 -0.66 -0.48 -0.55 -0.05 0.35 0.31 0.58 0.77 0.59 NaN 1 
   TN -0.34 -0.15 -0.43 -0.49 -0.15 0.86 0.86 0.87 0.88 0.77 NaN 0.40 1 

  IC -0.28 0.04 -0.48 -0.63 -0.04 0.97 0.98 0.94 0.82 0.94 NaN 0.35 0.87 1 
 NPOC -0.08 -0.01 -0.12 0.23 0.24 0.38 0.31 0.33 0.19 0.26 NaN -0.04 0.32 0.35 1 

Notes: NaN represent not-available-number values 

Table D.6 - Pearson p-value for the limnological dataset 

  TSM TSI TSO Chla PC Na+ Cl- K+ SO42- Ca2+ NH4+ NO3- TN IC NPOC 

TSM 1 
             

  
TSI 0.000 1 

            
  

TSO 0.000 0.006 1 
           

  
Chla 0.037 0.446 0.004 1 

          
  

PC 0.236 0.542 0.151 0.163 1 
         

  
Na+ 0.438 0.798 0.142 0.017 0.856 1 

        
  

Cl- 0.503 0.664 0.151 0.012 0.792 0.000 1 
       

  
K+ 0.092 0.472 0.029 0.005 0.744 0.000 0.000 1 

      
  

SO42- 0.027 0.123 0.020 0.004 0.509 0.000 0.000 0.000 1 
     

  
Ca2+ 0.157 0.765 0.036 0.001 0.933 0.000 0.000 0.000 0.000 1 

    
  

NH4+ NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 
   

  
NO3- 0.009 0.004 0.054 0.023 0.859 0.171 0.230 0.015 0.000 0.012 NaN 1 

  
  

TN 0.183 0.572 0.087 0.048 0.569 0.000 0.000 0.000 0.000 0.000 NaN 0.116 1 
 

  
IC 0.279 0.870 0.053 0.006 0.888 0.000 0.000 0.000 0.000 0.000 NaN 0.167 0.000 1   
NPOC 0.763 0.983 0.642 0.379 0.353 0.137 0.230 0.200 0.472 0.319 NaN 0.871 0.206 0.163 1 

Notes: NaN represent not-available-number values 
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APPENDIX E 

Figure E.1 – TLS scatterplots for laboratory-calculated, ACS-measured, and QAA-estimated absorption coefficients 

 

PCt1 – 412 nm 
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Figure E.2 – TLS scatterplots for laboratory-calculated, ACS-measured, and QAA-estimated absorption coefficients 

 

 

PCt1 – 443 nm 
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Figure E.3 – TLS scatterplots for laboratory-calculated, ACS-measured, and QAA-estimated absorption coefficients 

 

  

PCt1 – 489 nm PCt1 – 489 nm 
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Figure E.4 – TLS scatterplots for laboratory-calculated, ACS-measured, and QAA-estimated absorption coefficients 

 

 

PCt1 – 489 nm PCt1 – 530 nm 
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Figure E.5 – TLS scatterplots for laboratory-calculated, ACS-measured, and QAA-estimated absorption coefficients 

 

PCt1 – 489 nm PCt1 – 555 nm 
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APPENDIX F 

Figure F.1 – DWTCA-Clustered Rrs Spectra for signal decomposition level (Haar wavelet). 
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Figure F.2 – DWTCA-Clustered Rrs Spectra for decomposition level one (Haar wavelet). 
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Figure F.3 – DWTCA-Clustered Rrs Spectra for decomposition level two (Haar wavelet). 
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Figure F.4 – DWTCA-Clustered Rrs Spectra for decomposition level three (Haar wavelet). 
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Figure F.5 – DWTCA-Clustered Rrs Spectra for decomposition level four (Haar wavelet). 
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Figure F.6 – DWTCA-Clustered Rrs Spectra for decomposition level five (Haar wavelet). 
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Figure F.7 – DWTCA-Clustered Rrs Spectra for decomposition level six (Haar wavelet). 
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Figure F.8 – DWTCA-Clustered Rrs Spectra for decomposition level seven (Haar wavelet). 
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Figure F.9 – DWTCA-Clustered Rrs Spectra for decomposition level eight (Haar wavelet). 
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ANNEX A. UTM Coordinate Table Location of All Water Quality Sampling 

Stations Monitored by SABESP and CETESB at Guarapiranga Reservoir 
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ANNEX B. Input Feeding Streams by Socio-Economic-Environmental 

Areas and Water Quality Sampling Stations by SABESP and CETESB 

 
Note: group 1, highly polluted lower-urban areas; 2, lower-urban areas; 3, non-urban areas; 4, 

higher-urban areas; 5, mostly unaltered rural areas. 
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ANNEX C. Sentinel-3 OLCI instrument technical characteristics 

Swath 1440 km 

SSI at SSP (km) 300 m 

  

 

MERIS type calibration arrangement 

 

with spectral calibration using a 
doped 

 

Erbium diffuser plate, PTFE diffuser 

Calibration plate and dark current plate viewed 

 

~ every 2 weeks at the South Pole 

 

ecliptic. Spare diffuser plate viewed 

 

~ periodically for calibration 
degradation 

 

monitoring. 

  

 

ENVISAT MERIS heritage back 

 

illuminated CCD55-20 frame-transfer 

Detectors imaging device (780 columns by 576 

 

row array of 22.5 pm square active 

 

elements). 

  

 

Push-broom sensor. 5 cameras 

 

recurrent from MERIS dedicated 

Optical scanning 
design 

Scrambling Widow Assembly 

 

supporting 5 Video Acquisition 
Modules 

 

(VAM) for analogue to digital 

 

conversion. 

  Spectral resolution 1.25 nm (MERIS heritage), 21 bands. 

  

 

< 2% with reference to the sun for the 

 

400-900 nm waveband and < 5% with 

 

reference to the sun for wavebands 

 

> 900 nm 

Radiometric accuracy 

 

 

0.1% stability for radiometric 
accuracy 

 

over each orbit and 0.5% relative 

 

accuracy for the calibration diffuser 

 

BRDF. 

  Radiometric 
resolution 

< 0.03 W m"
2
 sr"

1
 mm"

1
 

  Mass 150 kg 

Size 1.3 m
3
 

Design lifetime 7.5 years 

Source: Donlon et al. (2012) 
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