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ABSTRACT

We first revisit the energy loss mechanism known as quantum vacuum friction (QVF), clarifying some of its
subtleties. Then we investigate the observables that could easily differentiate QVF from the classical magnetic
dipole radiation for pulsars with accurately measured braking indices (n). We show that this is particularly the case
for the time evolution of a pulsar’s magnetic dipole direction (ḟ) and surface magnetic field (Ḃ0). As is well known
in the context of the classic magnetic dipole radiation, n < 3 would only be possible for positive
( ˙ ˙ )f f+B B tan0 0 , which, for instance, leads to ˙ >B 00 (ḟ > 0) when f (B0) is constant. On the other hand,
we show that QVF can result in very different predictions with respect to those above. Finally, even if Ḃ0 has the
same sign in both of the aforementioned models for a pulsar, then, for a given f, we show that they give rise to
different associated timescales, which could be another way to falsify QVF.
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1. INTRODUCTION

The important concept of the rotational energy of a neutron
star (NS) as an energy reservoir for the pulsar’s activity, put
forward by Gold (1968) and Pacini (1968), is a way to explain
its kinematical source of energy loss (Gunn & Ostriker 1969).
A pulsar’s surface magnetic field has since then been estimated
by equating its temporal change of rotational energy,

˙ ˙ ( )ww=E I , 1rot

to the radiating power of a rotating magnetic point-like dipole
in vacuum (see, e.g., Landau & Lifshitz 1975; Padmanab-
han 2001),
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where ω and ẇ are the star’s angular velocity and its derivative,
respectively, I is its moment of inertia, f=m̂ m sin0 is the
component of the magnetic dipole m0 perpendicular to the axis
of rotation (which is parallel to w), and f is the angle the
magnetic dipole makes with w.

One can readily show that
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when B0 is taken as the mean surface magnetic field (coming
from a magnetic dipole) of a star of radius R. Thus, from
Equations (1)–(3) we have
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where P = 2π/ω and Ṗ are the rotational period and spin-down
rate of a pulsar (observational parameters), while the star’s
moment of inertia and radius are model-dependent parameters.
General considerations for the nature of pulsars have
traditionally been obtained in the literature from the application
of the above equations for systems with a representative mass

M = 1.4Me and radius R = 10 km (fiducial parameters; see,
e.g., Padmanabhan 2001), implying a moment of inertia of the
order of I ∼ 1045 g cm2. For instance, a class of NSs known as
high magnetic field pulsars (high-B pulsars; Ng & Kaspi 2011;
Zhu et al. 2011; Belvedere et al. 2015) would have B0s higher
than the scale field of the QED, namely,

( )  » ´B m c e 4.4 10 Gc e
2 3 13 (Ruffini et al. 2010).

Ordinary pulsars would have B0  Bc (see, e.g., Shapiro &
Teukolsky 1983; Camilo et al. 2000).
Nevertheless, whenever the magnetic field of a given system

is close to Bc, quantum effects should play a significant role.
Thus, one would expect that a more accurate description of
pulsars, still from the classical point of view, could only be
attained by using generalizations to the Maxwell Lagrangian,
such as the Euler–Heisenberg Lagrangian for QED (Ruffini
et al. 2010).
In this regard, it seems that the so-called quantum vacuum

friction (QVF) effect, put forward by Dupays et al.
(2008, 2012), has been overlooked in the literature. QVF can
be understood as follows. In their seminal work, Born and
Infeld (Born & Infeld 1934) showed that any nonlinear theory
of electromagnetism in a vacuum described by a Lagrangian
density  can be completely exchanged for the Maxwell theory
in a convenient nonlinear medium. This is very important and
powerful in the sense that one does not need to derive all of the
involved properties and byproducts of , but rather one can
work with Maxwell equations in continuous media. This means
that for any , the concept of magnetization is present
whenever non-null magnetic fields arise and its physical
implications are as real as any tangible material medium. For
the astrophysical case, it is well known that the magnetic dipole
approximation already leads to the correct order of magnitude
for the relevant physical quantities there, and thus should be the
starting point of any model (Padmanabhan 2001). This is
exactly where QVF comes into play: the effective magnetized
medium (naturally outside the star) should interact with the
magnetic dipole of the system (source of the magnetic field),
leading it to eventually lose energy. Such an energy loss is due
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to the torque the magnetic field from the magnetization exerts
on the rotating magnetic dipole. We will subsequently show in
detail that such a resultant (time-averaged) torque is anti-
parallel to the angular velocity of the star and linearly
dependent on its norm (thus showing that the associated force
is dissipative), which slows the star’s rotation down while
converting the rotational energy into heat. One could thus
picture QVF as an energy loss mechanism caused by the
“friction” between the magnetized vacuum and the rotating
star, exactly as its name suggests (Dupays et al. 2008). The
medium of the star itself is only important for determining the
properties of the magnetic dipole (such as its magnitude and
spatial orientation with respect to the axis of symmetry of the
system) and does not directly contribute to QVF.

Based on the above reasoning, one can clearly see that QVF
has an utterly different physical nature than that underlying the
radiation of a rotating magnetic dipole. Therefore, it is
meaningless to automatically assume that the former is smaller
than the latter, even within the scope of small nonlinear
corrections to the classical Maxwellian Lagrangian (known as
weak field nonlinear Lagrangians). In this case, what does
happen is that the corrections to the classic magnetic dipole
radiation due to the nonlinearities of the Lagrangian are very
small, and thus could be totally disregarded when other types of
energy loss are also involved.

Besides modifying Equation (4), QVF also modifies the
expression for the so-called braking index, with important
consequences. Recall that this quantity is defined as (see, e.g.,
Padmanabhan 2001)

˙
( )w w
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where ẅ is the second time derivative of the angular velocity. It
is well known from the literature that when energy losses are
only related to the magnetic dipole radiation, n = 3; this fact is
in disagreement with observations, which generally show
n < 3. We will see later in this paper that n < 3 is naturally the
case whenever QVF is also featured in the energy loss budget
of pulsars, along with classic magnetic dipole radiation.

It is worth noting that there are several scenarios that
challenge the magnetic dipole model, such as that involving the
accretion of fall-back material via a circumstellar disk (Chen &
Li 2016), relativistic particle winds (Xu & Qiao 2001; Wu
et al. 2003), and modified canonical models used to explain the
observed braking index ranges (see, e.g., Allen & Hor-
vath 1997; Magalhaes et al. 2012 and references therein for
further models). However, no model has yet been developed
which can satisfactorily explain all of the measured braking
indices, and none of the existing models have been ruled out by
current data. Therefore, energy loss mechanisms for pulsars are
still a topic of persistent debate.

Our aim in this work is to explore QVF in the context of
pulsars (in particular, those that have accurately measured
braking indices) solely with classic magnetic dipole radiation,
since, as we will show, it can already explain several aspects of
their phenomenology. Following this reasoning, we also
explore the QVF model to perform evolutionary analyses of
the pulsars’ characteristic parameters, seeking for quantities
that could easily provide a contrast of such model with classic
magnetic dipole radiation and ultimately even falsify QVF.

This paper is organized as follows. In the next section, we
revisit QVF within compact stars and derive its associated

energy loss and rotational period evolution expression for weak
field nonlinear Lagrangians, focusing mainly on QED.
Section 3 is devoted to the investigation of the braking indices
and the self-consistency of the model when both QVF and
classic dipole radiation are responsible for the spin down of
pulsars, for the simpler case in which only the evolution of P is
of relevance. In Section 4, we elaborate on the evolution of
other pulsars’ characteristic parameters, such as B0 and f, in the
context of QVF. Finally, in Section 5, we discuss the principal
issues raised by QVF within the scope of pulsars. Here, we
work with Gaussian units.

2. QVF IN STARS REVISITED

In this section we revisit in detail QVF as originally put
forward by Dupays et al. (2008) in order to correct some
misprints present there and to elucidate the physical ideas
involved. The energy loss to be derived basically stems from a
backreaction procedure, and thus is approximate. It would be of
interest to contrast it with the result coming from direct
analyses of the field equations for a nonlinear Lagrangian 
(especially the effective nonlinear Lagrangian of QED),
following the work of Deutsch (1955). We plan to do this
elsewhere.
The phenomenon of QVF is basically an energy loss

mechanism due to the interaction of a magnetic dipole (m)
with angular velocity w (taken to be in the z-direction) and the
magnetization Mqv it produces in a surrounding medium. The
associated induced magnetic field exerts a torque on the
rotating magnetic dipole, leading the latter to lose energy. The
infinitesimal version of such power is given by (Dupays
et al. 2008)

˙ ( ) ( ) ( ) ·
( )




w+ + ´ +r m BdE t r c t r c d t r c, 0, ,

6
qv qv

where r is the norm of the radial vector r connecting the
volume element dV (which generates the infinitesimal magnetic
field Bd qv) to the origin of the system (where the magnetic
dipole is supposed to be) and
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where m Md dVqv qv . Note from the above equations that
retarded effects were considered and only the dipole approx-
imation has been used for the determination of the magnetic
fields. For completeness, we recall that the magnetic field
generated by the magnetic dipole is given by

( ) [ ( ) · ] ( ) ( )=
-

-
-

B r
r m r m

t
t r c

r

t r c

r
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In the following, we attempt to describe QVF related to the
external region of a star of radius R that generates m and also
rotates with angular velocity w, assuming that m makes an
angle f with its axis of rotation. In other words, kinematically,

( ) [ ˆ ˆ ( ) ˆ ( )] ( )f f w f w= + +m t m z x t y tcos sin cos sin sin , 90

where m0 is given by Equation (3).
Our description is only meaningful when there is a medium

for r � R because that of the star does not contribute to QVF
directly, but only to determining m. As already mentioned, an
effective medium is present whenever electromagnetism is

2
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nonlinear and its byproducts are as real as any physical
medium. Its magnetization due to a nonlinear theory of
electromagnetism  is (Gaussian units; Born & Infeld 1934;
Jackson 1975)

( ) 

p
p+
¶
¶

⎜ ⎟⎛
⎝

⎞
⎠M B

B
1

4
4 . 10qv

The functional form of the Lagrangians that we will be
interested in this work is

( ) ( )
p

m= - +F F
1

16
, 112

with ( ) = -mn
mnF F F B E2 2 2 , Fμν being the electromagnetic

field tensor (Landau & Lifshitz 1975), and for a given vector X ,
· X XX2 . In addition, we assume that ∣ ∣  mF 1 , which

means that we work within the weak field limit for a nonlinear
theory whose scale field is proportional to m1 (see its
motivation in Section 1 in the scope of QED). Let us consider
that B2 ? E2, which is exacty the case for extended
astrophysical bodies. Then, substituting Equation (11) into
(10), we are left with

( ) ( ) ( ) m
p

=m r M B rd t dV B t dV, , . 12qv qv
2

From Equations (6)–(9) and (12), the infinitesimal mean value
over a period (2π/ω) of energy loss due to QVF in a given
polar direction θ and radial distance from the origin r is

˙
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One can then integrate the above equation for r � R and all
angular directions, and after simple calculations obtain

˙ ( ) m w f
á ñ -E

m

cR

24 sin

5
, 14qv

0
4 2 2
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assuming that ωR/c = 1. Note that the aforementioned integral
can be solved exactly, and thus further powers of Rω/c can be
readily obtained whenever necessary.

We stress that the electromagnetic properties of the star can
be entirely summarized by its mean surface magnetic field for
the dipole approximation (Equation (3)). Therefore, general
relativistic corrections to this classical model could all be
incorporated into B0. Belvedere et al. (2015) have already
shown that they mainly lead to a decrease of B0 concerning its
classical counterpart by a multiplicative factor related to the
compactness of the star. Thus, classical analyses already suffice
to obtain the main physical radiation aspects of pulsars.

As a realization of our analyses, let us consider the
Lagrangian density of QED. In this case (Ruffini et al. 2010),

( )m
a
p

=
B90

, 15
c
2

where α is the fine structure constant. Substituting Equation (3)
into Equation (14) and taking into account Equation (15), we

finally have

˙ ( )a p f
á ñ = -E

B R

B cP

4

75

sin
, 16qv

qed

c

0
4 4 2

2 2

where we have considered, instead of the frequency of the star,
its period P, ω = 2π/P. Note that this result is half of that
reported by Dupays et al. (2008). The main reasons behind this
are believed to be the factor of 2 within the last multiplicative
sinusoidal term on the right-hand side of Equation (13),
obtained when dealing with retarded effects, and also the
definition of the surface magnetic field due to a magnetic
dipole, Equation (3), in terms of an area average procedure.
On the other hand, as is well known and has already been

mentioned in the previous section, pulsars also lose energy via
magnetic dipole radiation, ˙ E Pd dip, i.e., (see Equations (2)
and (3); Landau & Lifshitz 1975; Padmanabhan 2001)

˙ ∣ ∣ ( )p f
= - = -mE
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In this work, we surmise that the total energy of the star is
provided by its rotational counterpart, w=E I 2rot

2 , and its
change is attributed to both ˙á ñEqv and Ėr . Therefore,

˙ ˙ ˙ ( )º á ñ +E E E . 18qv drot

Thus, from Equations (1) and (16)–(18), the evolution of the
period of a star is given by

˙ ( )p f a f
p
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B R
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From the above equation, one clearly sees that its period of
rotation tends to increase with time (it slows down as time goes
on) and that the first term on the right-hand side is predominant
for systems with small periods, while the opposite is true for its
second term. Therefore, one would expect that in magnetized
white dwarfs (see, e.g., Ferrario et al. 2015), super-Chandra-
sekhar White Dwarfs (Das & Mukhopadhyay 2013), Soft
Gamma-Ray Repeaters, and Anomalous X-ray Pulsars (see
McGill Magnetar Catalog (Olausen & Kaspi 2014)), the effect
of QVF (more likely its generalization by means of the
insertion of higher powers of F into the Euler–Heisenberg
Lagrangian density in order to describe supercritical magnetic
fields) could be significant. This will be investigated elsewhere.

3. QVF BRAKING INDEX FOR CONSTANT I, B0, AND f

Now we turn our attention to the braking indices. Typically,
n is associated with pulsars and it is a measure of the spin-
down’s slope curve. It can be used to determine how close a
rotationally powered pulsar is from the magnetic dipole model
pertaining to its energy losses, namely, 3. Among the known
radio pulsars, only young pulsars have accurately measured
braking indices. We emphasize that nearly all of the reported
braking indices have values smaller than 3 (see Table 1 and
Figure 1).
This quantity has a special relevance for compact stars, since

it is a direct observable. Using Equations (16), (17), and (19), it
is simple to show that for the model given by Equation (18) in
the case where B0, I, R, and f are all constants (physically
equivalent to having ˙ (∣ ˙ ∣ ∣ ∣̇P P B B I I,0 0 and ∣ ˙ ∣ )f ftan ), n

3
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is given by
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Note from Equation (20) that when ˙ ˙E Eqv r

[ ( )] p a wB B R c5 c0 , n 1. When the classical radiation
term is much larger than QVF, the braking index tends to 3.
Since the second term on the right-hand side of the above
equation is never larger than 2, we conclude that 1 < n < 3.
Besides, given a value of n in such an interval, one shows that
its corresponding B0 is

( )
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We recall that Equation (20) is only physically relevant in
the context of QVF when  p a »B B B90 200c c0 . From
Equation (21), this means that

( )w-
-
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n

n

R

c
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1
1. 22

The proximity of n to unity (from above) is dictated solely by
the system’s kinematic aspects (naturally Rω/c < 1). For a
typical pulsar, for instance, w » -R c 10 3 and one sees that any

n  1.001 leads the above inequality being fulfilled. This
means that within QVF, surface magnetic fields for pulsars
with 1 < n < 3 can be at most of the order of the critical
magnetic field of QED. Figure 1 shows that this is exactly the
case for all of the associated pulsars (the case n > 3 is clearly
not contemplated in the simple model analyzed here and will be
investigated in the next section; as one physically expects,
subcritical magnetic fields will also be raised there, but non-
null Ḃ0 or ḟ will be required). Note that the pulsar PSR J1734
−3333 seems to be a very special case. It has a braking index
of n = 0.9 ± 0.2 (see Espinoza et al. 2011 for details). This
value is well below 3 and, in light of our analyses, it indicates
that QVF could be the most relevant mechanism for the energy
loss in the system.
As in the case of the classic magnetic dipole radiation model,

one can solve Equation (19) for B0 by assuming that all of the
other quantities are given, and thus the result is

˙
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The consistency of QVF with observational quantities demands
that the averaged surface magnetic fields given by Equa-
tions (23) and (21) agree. This can be achieved by fixing some
of the free parameters of the model. One of the most primitive
parameters in this regard is the angle a magnetic dipole makes
with the axis of rotation of the star. Thus, from the previously
noted equations, one shows that

˙ ( )
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An immediate outgrowth of the above equation is
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where we assumed that =I MR2 52 , i.e., the moment of
inertia of a homogeneous sphere. Care should be taken here
concerning the physical interpretation of Equation (25). It is not
necessary for the mass and radius of a pulsar to satisfy this
constraint.It is solely a byproduct of the assumptions under-
lying Equation (20). Table 1 shows the fs associated with
Equation (24) for all of the pulsars with known braking indices.
For those cases where they cannot be found, it is simple to

Table 1
Estimates of f for Pulsars with Known Braking Index

Pulsar P (s) ˙ ( - -P 10 s s13 1) n References f

PSR B0833−45 (Vela) 0.089 1.25 1.4 ± 0.2 Lyne et al. (1996) ∼6°. 0
PSR B0540−69 0.050 4.79 2.140 ± 0.009 Livingstone et al. (2007) ∼19°. 6
PSR J1846−0258 0.324 71 2.19 ± 0.03 Archibald et al. (2015) L
PSR B0531+21 (Crab) 0.033 4.21 2.51 ± 0.01 Lyne et al. (1993) ∼17°. 3
PSR J1119−6127 0.408 40.2 2.684 ± 0.002 Weltevrede et al. (2011) L
PSR B1509−58 0.151 15.3 2.839 ± 0.001 Livingstone et al. (2007) L
PSR J1833−1034 0.062 2.02 1.8569 ± 0.0006 Roy et al. (2012) ∼11°. 3
PSR J1734−3333 1.17 22.8 0.9 ± 0.2a Espinoza et al. (2011) ∼28°. 6
PSR J1640−4631 0.207 9.72 3.15 ± 0.03 Archibald et al. (2016) L

Note.
a We adopted n = 1.01 to calculate f.

Figure 1. Braking index n (see Equation (20)) for some pulsars when both the
classic dipole and QVF models are taken into account.

4
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conclude that the associated changes which need to be made to
the fiducial parameters are unrealistic. Indeed, using Equa-
tion (25) for M = 1.4Me, the radii of PSR J1846−0258, PSR
J1119−6127, and PSR B1509−58 would have to be larger
than 29 km, 38 km, and 29 km, respectively, which are utterly
improbable for pulsars. This implies that one should actually
take into account the evolution of other parameters for the
braking index, such as those that were ignored to obtain
Equation (24). We will come back to this issue in the next
section.

4. PULSAR’S EVOLUTIONARY ASPECTS WITHIN THE
SCOPE OF QVF

It is very likely that pulsars, due to their dynamic nature,
should always present important temporal changes in quantities
other than P. This signifies that Equation (24) may not
represent the inclination of the magnetic moments of realistic
pulsars (which is equivalent to saying that Equation (20) is not
the most adequate equation for the braking index). Therefore,
more complex scenarios should be investigated, generalizing
the results of the previous section.

Let us start with the situation in which both f and B0 are
time-dependent. The case I = I(t) seems unrealistic for the
isolated pulsars we are investigating, or, at least, is less relevant
than the time dependence of B0 and f. From Equations (5) and
(19), one can readily show in this case that

˙
( ) ˙ ˙ ( )f f= -

-
+

⎡
⎣⎢

⎤
⎦⎥n n

P

P

n B

B
2

5

2
cot , 260

0 0

0

where n0 is the braking index for the case where both B0 and f
are constants, Equation (20), and B0 will be assumed to be
given by Equation (23). (In this case, as self-consistency
naturally demands, ḟ will be the same as from Equation (26),
given Ḃ0 and n, or direct analyses of Equation (23).)

It is believed that magnetic fields should decay in pulsars
(usually due to the Ohmic decay, Hall drift, and ambipolar
diffusion; Jones 1988; Goldreich & Reisenegger 1992) on
timescales of the order of (106–107) years (see, e.g., Goldreich
& Reisenegger 1992; Graber et al. 2015 and references
therein). Nevertheless, there are also suggestions that the
timescales for B0 could actually be smaller, on the order of
105 years (Igoshev & Popov 2014, 2015). Thus, bearing in
mind that magnetic fields in the context of QVF for pulsars are
of the order of (1012–1013) G (see Figure 1), let us assume in
what follows that ˙ <B 00 and ∣ ˙ ∣B0 is of the order of (10−2

–

10−1)G s−1. (This is estimated directly from the above-
mentioned usual timescales TB, such that ∣ ˙ ∣ ~B B TB0 0 .) Our
analyses for this case concerning ḟ, taking into account the
braking indices of the relevant pulsars, are summarized in
Table 2 for the representative angle f = π/4 (see Equa-
tion (26)). Since the physically relevant values of Ḃ0 are small,
the conclusions that ensue are essentially the same as for the
case of constant B0. Note that some pulsars have positive ḟs
while others have negative, and all of them present subcritical
magnetic fields (thus also clearly showing the self-consistency
of QVF in this more complex scenario). Special attention
should be paid to the Crab pulsar. The value ˙ f ´ -3 10 12

rad s−1 has been observationally inferred for this pulsar (Lyne
et al. 2013, 2015; Yi & Zhang 2015), which has the same sign
and magnitude as that predicted by QVF, and thus could

always be related to a specific angle f there. We emphasize that
the same analyses as those above could be performed in the
scope of the classic magnetic dipole model. In this case, one
can easily verify that all of the pulsars in Table 1 with n < 3 are
such that ḟ > 0 and it is of the order of 10−12 rad s−1 (see
Equation (26) for the formal case a  0). Therefore,
measurements of ḟ for other pulsars (especially those with
ḟ < 0 in the context of QVF) could easily falsify any of these
models for the given mechanisms of magnetic field decay and
evidence their underlying physics (e.g., NS precessions could
lead to ḟ > 0; Zanazzi & Lai 2015; Kerr et al. 2016). For the
special pulsar PSR J1640-4631, both QVF and the classic
magnetic dipole model result in ḟ < 0, but the former model
predicts a faster rate of change than the latter. Finally, note that
all ḟs in Table 2 are positive only when ˙  -B 100

2 G s−1,
always leading to values larger than their classical counterparts.
The difficulty in this case, however, would be the physical
explanation of timescales at least three orders of magnitude
smaller than those from known mechanisms of magnetic field
decay.
Since the Crab pulsar has an observationally inferred ḟ, let

us study more precisely the implications of QVF and the classic
magnetic dipole for this pulsar. Figure 2 depicts the behavior of
ḟ (see Equation (26)) for the Crab pulsar when
˙ = -B 0.050 G s−1 for both of the above-mentioned models.
Note that for angles f  5°, QVF analyses are not trustworthy
because we are approaching its threshold of validity (see
Figure 3 and Equation (23) for this case). Besides, ḟs related to
the classic dipolar model are always larger than those from
QVF, which means that in the latter model, for a given ḟ, the
actual (instantaneous) f is always larger than that from the
former model. For instance, for ˙ f ´ -3 10 12 rad s−1, the
classic dipole model implies f ≈ 45°, while QVF predicts f ≈
51°. For completeness, in Figure 3, we plot the instantaneous
surface magnetic field for the Crab pulsar as a function of f.
Here, it is evident that for angles larger than f  15°, only
subcritical magnetic fields rise. In Figure 2, one can also see
that for the QVF model, there is a nontrivial angle such that
ḟ = 0. This is already expected due to the existence of a f
satisfying the simpler case given by Equation (24) (see
Table 1). Their proximity is simply due to the smallness of Ḃ0.
Finally, in the case of the Crab pulsar, QVF can only be
differentiated from the classic magnetic dipole model if precise
measurements of its f are available, which is still not the case.

Table 2
Estimates of ḟ for the same Pulsars as in Table 1, with ˙ = -B 0.050 G s−1, for

the Representative Inclination Angle f = π/4

Pulsar ḟ (10−12 rad s−1) B0 (10
12 G)

PSR B0833−45 (Vela) 0.8 6.2
PSR B0540−69 2.3 9.3
PSR J1846−0258 −12 17
PSR B0531+21 (Crab) 2.3 7.7
PSR J1119−6127 −8 14
PSR B1509−58 −7.5 14
PSR J1833−1034 1.3 6.9
PSR J1734−3333 0.02a 9.5
PSR J1640−4631 −4.4 11

Note.
a We have adopted n = 1 here.
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We now consider the case in which only B0 is allowed to
change with time. This would be a natural consequence of the
existence of equilibrium angles to the directions of the pulsars’
magnetic dipoles. Using Equation (26) one can verify that (self-
consistent) fs could only be found for the pulsars with n < 3
that do not satisfy Equation (24) in Table 1 when ˙ <B 00 and
∣ ˙ ∣B0 ∼ (102–103)G s−1. Hence, when QVF is taken into account
for these pulsars, it would lead surface magnetic fields to
decrease with time, and in a such a way that their rotational
energy always overwhelms their magnetic energy. From
previous results, one also determines that the characteristic
timescales for the surface magnetic fields of the pulsars under
discussion are (103–104) years. It is interesting to note that such
timescales are in agreement with those from ˙P P for the same
pulsars. This suggests that the evolution of B0s in pulsars with
known braking indices and not associated f in Table 1 should
be connected to their spindown, pointing to the relevance of the
mechanisms where this takes place, such as in Ruderman’s

neutron vortices (which will drag along protons, and thus also
influence the magnetic field of a pulsar; Ruderman 1970, 1972).
We emphasize that the above timescales for surface magnetic
fields obtained within QVF clearly contrast with those related
to a purely magnetic dipole radiation model for pulsars where
surface magnetic fields should increase with time, having
timescales of (102–103) years (Muslimov & Page 1996). The
fact that the magnetic timescales found within the scope of
QVF for n < 3 are much smaller than those coming from
Ohmic decay and Hall drift, for instance, suggests that the
associated pulsars are currently experiencing transient periods.
This would be supported by PSR J1846−0258, which had
n = 2.65 six years ago (Archibald et al. 2015). Another natural
conclusion would be that the assumption of having constant f
is incorrect, as suggested by Yi & Zhang (2015). Only further
observations could settle this ambiguity. For completeness, for
the pulsars in Table 1 that already have associated angles, one
can check that QVF leads to positive Ḃ0 of the order of
10 G s−1 whenever the chosen fs are larger than those
satisfying Equation (24). Due to a simple continuity argument,
˙ <B 00 when they are smaller. For the former case, one sees
that the associated timescales of magnetic field growth are of
the order of 104 years, which is larger than their classical
counterparts. In summary, measurements of Ḃ0 for n < 3 could
also easily falsify QVF, since it leads to both positive and
negative values of such a quantity, which is not the case for the
classic magnetic dipole model. Besides, if magnetic fields
increase, then the above-mentioned models predict that they
will have very different timescales. The same ensues for the
case n > 3, where now in both models the magnetic fields
should decrease with time.

5. DISCUSSION AND CONCLUSIONS

Since the stars we analyzed are rotating, the physically
relevant quantities should be time averaged (per period of
rotation), as in Section 2. This is particularly the case for the
resultant mean torque per cycle á ñN on the star’s surface due to
the whole effective magnetized medium surrounding it. As is
evident from the symmetry of the problem, á ñN must be
colinear with the rotation axis of the star. The simplest way to
obtain it is from Equation (16) along with the definition of the
power associated with any torque ( · wN ), which leads to

( )wa f
p

á ñ = -N
B R

B c75

sin
. 27

c

0
4 4 2

2

(One can also obtain á ñN as above by a direct computation,
starting from the definition of the infinitesimal torque related to
Equation (6) and then following the same procedure that led us
to Equation (16).) One sees from Equation (27) that the
resultant time-averaged torque is anti-parallel to w, intrinsically
associated with a force proportional to the negative of the
velocity. Thus, QVF leads the decrease of rotational energy of
the star to be converted into heat. This explains the energy
balance related to QVF. It clearly contrasts with magnetic
dipole radiation in which the star’s slowdown is due to the
emission of electromagnetic radiation. The byproducts of this
heat are beyond the scope of this work and will be investigated
elsewhere.
It should be stressed that QVF is an intrinsically quantum

effect related to the backreaction of the vacuum polarization on

Figure 2. Instantaneous evolution of ḟ as a function of the inclination angle f
for the Crab pulsar (see Equation (26) and Table 1) with ˙ = -B 0.050 G s−1 for
both QVF and magnetic dipole (a  0) models. Note that for f  5°, QVF
analyses are not reliable because we are close to the threshold of its validity
(see Figure 3). For the parameters in this figure, one sees, for instance, that
˙ f ´ -3 10 12 rad s−1 (Crab’s inferred inclination rate), which would imply f
≈ 45° for the classic magnetic dipole model, while ḟ in the context of QVF
would be approximately 51°.

Figure 3. Instantaneous surface magnetic field as a function of the inclination
angle f for the Crab pulsar (see Equation (26) and Table 1) in the scope of
QVF and the classic dipolar model. Note that fields of the order of the critical
one rise for f  5° (see Equation (23)), indicating the limit of validity of QVF
analyses. Besides, QVF always leads to smaller magnetic fields when
compared to the classical model.
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a classical magnetic dipole, leading the star to lose energy by
means of a torque. There is no reason for it to be much smaller
than the radiation associated with a classic magnetic dipole
simply because the effects do not have the same nature. Only
corrections to the classical magnetic dipole radiation due to the
nonlinearites of the Lagrangian density are automatically small
within the QVF model, see Equation (11), and for just this
reason they were disregarded in our analyses.

Let us quickly discuss some evolutionary aspects of the
braking indices of pulsars in light of QVF. Since the energy
loss due to QVF decreases with P2 while the classic magnetic
dipole radiation decreases with P4, see Equations (16) and (17),
QVF should be predominant only at later evolutionary times of
a pulsar, making its braking index tend to unity if B0 and f are
asymptotically stationary (see Equation (26)). In this regard,
one could tentatively state that this could be the case for (or
supported by) the pulsar PSR J1734−3333, due to its relatively
large value of P and to its measured braking index. At the same
time, the aforementioned pulsar could also be an example that
falsifies QVF in the case studied in Section 3. This naturally
motivates further studies concerning PSR J1734−3333 in order
to decrease the uncertainty present in its braking index (the
same can be said of the pulsar PSR J0537–6910, whose
normally associated braking index of −1.5 (see, e.g., Ho 2015)
is not at all accurate due to the large dispersion in P̈ it presents;
Middleditch et al. 2006), as well as to restrict the evolutionary
aspects of its B0 and f. Whenever Ḃ0 and ḟ are not
asymptotically stationary, one can clearly see from Equa-
tion (26) that several scenarios arise within QVF, even that in
which n < 1, which can be obtained when ˙ B B0 0

˙ [( ) ]f f- - n2 5 tan . (Here, similar to what happens in the
classic model, one notes that when ˙ <B 00 , ḟ must be positive
for 0 < f < π/2 and negative for π/2 < f < π, thus indicating
that f = π/2 is an attractor to the magnetic dipole direction.)
Another example would be that studied in Section 4 in which,
for the time being, 1 < n < 3. In such a case, QVF could only
constrain the temporal evolution of some pulsars’ parameters
(as we have done for ḟ and Ḃ0) and only their measurement
could rule it out. Thus, generically speaking, observations of
the braking index alone cannot fully falsify QFV, but only
constrain it.

QVF can in principle be easily distinguished from the classic
magnetic dipole radiation. As we have shown in Section 4, it
predicts in such a scenario that f should change with time,
being either negative or positive for different pulsars, which is
quite different from the classic magnetic dipole model. Similar
conclusions can be drawn for the evolution of B0. For the Crab
pulsar, both of the above-mentioned models lead to current
inclination angles which differ from each other by some
degrees. This motivates further analyses in this direction.

We point out that a simplified model has been chosen in
order to assess more transparently the relevance of QVF.
Actually, it is known that a pulsar should have a plasma
atmosphere (see, e.g., Michel 1974 and references therein) and
it is not simply surrounded by vacuum. Besides modifying the
standard magnetic dipole radiation model (with an extra
torque), it is also expected to influence QVF due to the
following reason: this plasma region would influence the
resultant magnetic field felt in the (outer) vacuous region,
which would directly influence the vacuum magnetization (see
Equation (12)), which would lead, in turn, the quantum vacuum
to exert a different torque on the star, which would change its

slowdown. Clearly, this is a more elaborated scenario, and we
will discuss it more precisely elsewhere.
In summary, in this work, we have taken QVF as a

fundamental energy loss mechanism and have tried to assess its
relevance to the description of pulsars. In its simplest form, it
leads magnetic fields to automatically be subcritical (in plain
contrast, for instance, with high-B pulsars in the context of the
classic magnetic dipole). In addition, measurements of
quantities other than P and its derivatives for pulsars (such as
ḟ and Ḃ0) could easily falsify QVF for the case n < 3. Finally,
it seems that QVF should be a relevant source of energy loss
for the pulsar PSR J1734−3333.
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