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Abstract: From Physics to Sociology, complex networks
have been presented ubiquitously in the last decade. A par-
ticular feature inherited by almost any real-world network is
the presence of groups of densely connected nodes, named
modules, clusters or communities. In this work, we present
a novel model based on coupled Kuramoto oscillators with
positive and negative links. Aiming to achieve reliable and
efficient community detection, we take advantage of special
vertices presented in real networks. This methodology has
provided consistent community detection outcomes, which
are compared to other related works in literature.
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1. INTRODUCTION

In 1975, the Japanese physicist Yoshiki Kuramoto [1],
intrigued by the works of the American biologist Arthur
Winfree, on modeling biological phenomena [2], worked
on a simple yet complete mathematical model which could
express the essential aspects of synchronization, which is
shown as follows:

dθi
dt

= ωi +
K

N

N∑
j=1

aijsin(θj − θi), i = 1, . . . , N

(1)

where θi is the phase variable and ωi is the intrinsic fre-
quency of the ith oscillator (vertex i), N is the total num-
ber of oscillators in the system, K is the coupling parameter
(coupling strength) which carry the oscillators to a common
phase value at the dynamic equilibrium and, finally, aij is
the cell element at the row i and column j of the adjacency
matrix [aij ] related to the input complex network.

In its standard form, the Kuramoto model, at the dynami-
cal stability, will not realize communities, since the coupling
parameter will make every node in the network evolve to the
same phase value (it is called phase locking in the synchro-
nization jargon [3]). In [4], Arenas et al. shown that when ap-
plying the Kuramoto model in clustered networks, they will,
at first synchronize locally and then, globally, reaching a col-
lective stable state.

In a way to highlight the local synchronization when the
system reaches stability, [5], inspired by [6] proposed a mod-
ified Kuramoto model as follows:

dθi
dt

= ωi +
Kp

N

N∑
j=1

aijsin(θj − θi)

+
Kn

N

N∑
j=1

(1− aij)sin(θj − θi)

i = 1, . . . , N Kp > 0,Kn 6 0

(2)



in this new form, phases of connected oscillators (aij = 1)
are under the original rule, having their phases evolving to-
gether but, unconnected oscillators will have the tendency
to reach far different phases due to the negative coupling
strength.

Since networks with communities are sparse [7], the ma-
jority of computation is related to the negative coupling. In
Oliveira et al. 2015 [8], an approach for lowering the time
complexity of Equation (2) is provided, but lacks on de-
fine precisely the group of vertices that will participate as
the complement of the network. Thus, the most important
contribution of this paper is to provide a better approach for
achieving the selection of these vertices.

In summary, this paper is structured as follows: First, in
Section 2, its purpose is given, it is shown how the heavy
computations are due to the negative coupling and a method-
ology, from the literature, for lowering the time complexity
of Equation (2) is presented. Since this methodology lacks
on defining, objectively, the special vertices used for the ap-
plication of the negative coupling we bring, in Section 3, a
new approach that provides results comparable to the ones in
the literature, which can be appreciated in Section 4. In Sec-
tion 5, a conclusion about the outcomes from the experiments
done is given, along with possible future works.

2. PURPOSE OF THE PAPER

When storing a graph on a computer, its primitive ele-
ments (vertices and edges) have to be placed in memory for
fully represent it. By this storage, an adjacency matrix can
be generated highlighting which pairs of vertices produces
an edge, or not.

Networks with community structure are sparse [7], there-
fore the number of edges participating in the positive cou-
pling are much less than the number of fictitious edges for
the negative one.

Using the Big O notation for a graph with n vertices, nec-
essarily applying the positive coupling to the network and
the negative coupling to its complement, the dynamics will
demand a computational complexity of O(n2), which is the
time complexity of Wu et al.’s approach, presented in Equa-
tion (2).

Considering that real networks, e.g. social networks
(Twitter, Facebook), normally are large, with millions of
nodes and that their topologies have, most of the time, the
presence of community structure and hubs, thus they are in-
deed sparse, i.e. the number of 1′s is less than of 0′s in the
adjacency matrix.

To make a better use of the computational process, in
Oliveira et al. 2015 [8], the authors represented the net-
work with two adjacency lists, one for hubs only (pseudo-
adjacency list), and the other as traditional. The dynamics
equation shown in Equation (2) can be rewritten as follows:

dθi
dt

= ωi+
Kp

N

∑
j∈L(i)

sin(θj − θi)+
Kn

N

∑
j∈P (i)

sin(θj − θi)

(3)

where L(i) represents the adjacency list of vertex i and,
whether i is considered a hub, P (i) represents the hub’s
pseudo-adjacency list of vertex i, otherwise P (i) is empty
and the second summation of Equation (3) is ignored. The
parameters Kp and Kn are the same as in Equation (2).

By Equation (3), suppose, for a network with n vertices,
that each vertex has degree 1, using adjacency list as the data
structure, then for the positive coupling, the time complexity
will be O(n〈k〉), where 〈k〉 is the average degree of the ver-
tices in the network, in this particular case, 〈k〉 = 1, therefore
O(n). For the negative coupling, the complexity reached will
be O(n(n − 〈k〉)), which yields O(n2). Nevertheless, ap-
plying the dynamics as in Equation (3) leads to a lower time
complexity, since hubs are not very frequent in real networks.
According to Oliveira et al. 2015 [8], the time complexity of
Equation 3 is O(n〈k〉) + O(h2), where h is the number of
hubs presented in the network.

In the next section, we present the proposed approach for
better choosing the vertices that will take part of the pseudo-
adjacency list P in Equation 3.

3. METHODS

A potential drawback on Oliveira et al.’s methodology
(Equation (3)) is the inexistence of an objective definition
of what is a hub. The constraint for a vertex to be considered
a hub is having an above average degree. In this context, it is
possible that relatively small communities will never be de-
tected, if the vertices separating them to the rest of network,
is not considered a hub.

Aiming to improve the quality of the detections, a new
approach for finding critical vertices, in real networks, is
proposed in this paper. We take advantage of Equation (3),
however we apply a new look on what was once considered
a hub, composing the pseudo-adjacency list P. The first step
is searching for articulation points, i.e. vertices that once re-
moved, provide a disconnected network. By the implementa-
tion encountered in the igraph library [9], the time complex-
ity to find articulation points is linear, which will not damage
the improvements in [8]. It is possible that no vertices have
this characteristic at first, nevertheless, removing, iteratively,
the most connected vertices, in decrescent order, will even-
tually provide a disconnected network and, by this means,
they will, altogether, compose the set of vertices for which
the negative coupling of Equation (3) will be applied.

In the next section, experiments on real networks are pre-
sented, the detection outcome is compared to the ones from
Wu et al. 2012 [5] and Oliveira et al. 2015 [8].

4. RESULTS

4.1. Zachary’s Karate Club Network

Our aim, in this section, is to compare the results acquired
using articulation points with those presented in Wu et al.
2012 [5] and Oliveira et al. 2015 [8]. Since we are deal-
ing with real networks, it is interesting having a qualitative
approach when analysing the results acquired, once different



methodologies may provide different results, which does not
mean that one of them is necessarily wrong.

Figures 1 and 2 shows the following networks: The
Zachary’s Karate Club [10] and The Protein Interaction Net-
work [11] with the colors representing the modules found
by applying Wu et al.’s methodology [5]. The difference be-
tween Wu et al.’s and Oliveira et al.’s outcomes is perceptible
in the first network. With the old fashioned hubs of Oliveira
et al.’s approach, it is impossible to detect the orange commu-
nity, since each and every vertex in that community is linked
to the vertex 1 of the community in red, which happens to be
a hub. This leads to a merged red-orange community.

The original history behind the construction of this net-
work [10] says that, in fact, we have two communities lead
by vertices 1 and 34. However, by no means we could say
that the Wu et al.’s outcome is wrong, they were simply able
to realize a small community completely linked to a larger
one.
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Figura 4. Resultado do processo de detecção de comunidades sobre a
rede de interação social entre indivı́duos pertencentes a um clube de Karate
[Zachary 1977]. c = 0, 1.

da proporção de inter-conexões zout/ <k>. Estes resultados foram gerados pela média de
200 execuções do modelo em redes randômicas clusterizadas com N = 128, M = 4 e
<k>= 16, geradas conforme descrito na Seção 1. A partir deste resultado pode ser cons-
tatado que o modelo apresenta bons resultados de detecção de comunidades para uma
ampla faixa de zout/ <k>, onde, na média, a precisão obtida para zout/ <k>= 0, 4 é
de aproximadamente 90%. Quando comparado a outros modelos encontrados na litetura,
como por exemplo o modelo (GN) proposto em [Girvan & Newman 2002], o modelo ba-
seado em correlação oscilatória apresenta uma precisão superior. Por exemplo, para a rede
randômica clusterizada descrita acima, quando zout/ <k>= 0, 4, o modelo GN apresenta
uma precisão de aproximadamente 80% [Girvan & Newman 2002, Danon et al. 2005]
contra aproximadamente 90% do modelo de correlação oscilatória. Resultados ainda su-
periores são obtidos quando zout/ <k>= 0, 5, neste caso, o modelo GN é capaz de obter
uma precisão de aproximadamente 40% enquanto o nosso modelo apresenta uma precisão
de 76 ± 10%.

Além disso, ao comparar os resultados obtidos com aqueles apresentados em
[Danon et al. 2005], pode-se constatar que o modelo aqui proposto se encontra entre
aqueles que apresentam melhor precisão de detecção.

A seguir, duas simulações utilizando redes reais são apresentadas. Na Figura
3(a), as séries temporais de cada um dos osciladores representando os vértices da rede
interação social entre indivı́duos do clube de Karate [Zachary 1977] são apresentadas.
Nesta figura pode ser observado que, após um certo número de ciclos, as comunidades
são formadas. Para auxiliar a visualização do processo de detecção de comunidades, na
Figura 3(b)-(d), as séries temporais para algumas faixas de t são apresentados em maior
resolução temporal. Na Figura 3(b), pode ser observado que, com exceção dos oscila-
dores número 9 e 10, o restante da rede se encontra divida em duas comunidades. Este
resultado é coerente com aquele obtido em [Newman 2004a]. Nas Figuras 3(c) e (d)
outros dois instantes da simulação são apresentados. No item (c), em especial, três co-
munidades são obtidas no qual os vértices numerados por 5, 6, 7, 11 e 17 são agrupados
em uma terceira comunidade (vértices em cor laranja). A Figura 4 apresenta o resul-
tado real desta divisão. Este resultado também foi observado no estudo apresentado em
[Girvan & Newman 2002, Newman 2004a].
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Figure 1 – Zachary’s Karate Club Network with its modules
detected as in Wu et al. 2012 [5].

With our new approach, the vertex 1 will be identified
as an articulation point which makes the orange community
separated to the rest of the network. Since the vertex 1 is the
only articulation point it is not possible to apply the negative
coupling between this vertex and any other. In this context,
we start to remove the vertices with the highest number of
incident edges, in decrescent order, in this case, vertices 34
and 33. When they are removed altogether, the network is
again disconnected. Thus, the vertex 1 will interact, by a
negative coupling, with vertices 33 and 34 (these two vertices
will also interact negatively, but since they belong to the same
community, the influence of other neighbours, by the positive
coupling, will compensate).

If the dynamics in Equation (3) is applied the outcome
will be the same as in [8], i.e, a merge between communities
will happen. However, we are already aware that the vertex
1 is an articulation point, so it is possible to keep the orange
community disconnected and apply the dynamics only to the

remaining larger connected component. With this methodol-
ogy, it is possible to provide two kinds of detections, satisfy-
ing both previous methodologies.

The results for the Zachary’s Karate Club network can be
summarized as follows:

• The vertices of the pseudo-adjacency list P, in Equation
(3), will be 1, 33 and 34, applying the negative coupling
between them with Kp = 100.0 and Kn = −300.0 (the
parameter values recommended by [8]) we could detect
two communities: blue and red-orange as in Oliveira et
al. 2015.

• If we consider that 1 is a natural articulation point and
putting apart the smaller connected component (the or-
ange community), by applying the dynamics of Equa-
tion 3 only on the larger component, we can detect the
blue and red communities, as well the orange one.

Therefore, with this new approach, considering articula-
tion points, we may provide outcomes satisfying both previ-
ous scenarios.

4.2. Protein Interaction Network
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Figure 2 – Protein Interaction network with its modules de-
tected as in Wu et al. 2012 [5].

For the protein interaction network, articulation points are
even more remarkable. The set of articulation points are 28,
5 and 4. We do not include articulation points that break the
network in only individual vertices or in a branch (set of con-
nected vertices with degree 1, which is the case of vertex 11).



In Figure 3, it is presented the three modules found by Wu et
al. 2012, colored as light green, orange and red. We high-
lighted a group of vertices, in dark green, in which the vertex
5 is a fundamental articulation point to guarantee the detec-
tion of the small community in red. Although in Oliveira et
al. 2015 the same division in communities were acquired,
they have considered 12 hub-vertices and with this new ap-
proach, the natural articulation points were sufficient to com-
pose the pseudo-adjacency list P of Equation (3). Therefore,
only 3 vertices were necessary to participate on the negative
coupling.

The parameters used on the experiments are the same as
in Oliveira et al. 2015, i.e. Kp = 150.0 and Kn = −300.0.

By this two examples, it is clear that articulation points
are more decisive than generic hubs, for making more effi-
cient the application of the negative coupling, in Equation
(3).

This new approach has almost make irrelevant the factor
O(h2) (see Section 2) in the time complexity of Equation
(3), which leads to an even closer linear complexity, since
the complexity to find articulation points is indeed linear, as
discussed in Section 3.

5. CONCLUSION

In this paper, we aimed to improve the methodology pre-
sented by Oliveira et al. 2015 [8] having a different view on
which vertices would participate on the negative coupling of
the dynamics in Equation (3). Instead of using generic hubs,
we took into account articulation points, eventually together
with a set of highly connected vertices, which, altogether,
provided the same critical effect (disconnecting the original
network).

With this new pseudo-adjacency list P , we not only heav-
ily diminished the number of vertices participating on the
negative coupling, but we also gave a deeper meaning of
what P stands for and, concomitant to it, we were able to
provide a more flexible output as for the Karate Club net-
work, where the orange community could be detected or not,
according on how the effects of the articulation point is ap-
plied in the algorithm.

We believe that the articulation points could be used to
cleverly separate the network, a priori, into components that
are easier to have their communities detected. This feature
could be well used in larger networks, then applying the Ku-
ramoto model (Equation (3)) as a refinement.

For future works, an important study would be analyse
when should be stopped the removal of most connected ver-
tices, in order to achieve an articulation point effect. In the
Karate Club network, it was easy due to its topology. In fact,
vertices 1 and 34 are behind its growth, however, for the pro-
tein interaction network, we could continue to remove ver-
tices of the orange community. For that network it was suffi-
cient to set as stoppage rule, that would not be considered
articulation points, vertices that, once removed, would frag-
ment the network into individual nodes or in a branch, nev-
ertheless it could be possible an otherwise situation.
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