
Proceeding Series of the Brazilian Society of Computational and Applied
Mathematics

Rotation-Based Multi-Particle Collision Algorithm with

Hooke Jeeves

Reynier Hernández Torres1

Haroldo F. de Campos Velho2

Instituto Nacional de Pesquisas Espaciais (INPE) São José dos Campos, SP

Abstract. A new variant of the hybrid metaheuristic MPCA-HJ (Multi-Particle Collision
Algorithm with Hooke-Jeeves method) is presented. Multi-Particle Collision Algorithm is a
metaheuristic algorithm that performing a traveling on the search space. The addition of the
Rotation-Based Learning mechanism to the exploration search enhances the possibility to
cover a larger area in the search space. The Hooke-Jeeves direct search method exploites the
best solution found by the MPCA, allowing to achieve better solutions. The performance of
all implementation are evaluated over twenty-two well known benchmark functions.

Keywords. Hybrid metaheuristic, rotation-based learning, opposition-based learning, multi-
particle collision algorithm

1 Introduction

Optimization refers to a large area of the Applied Mathematics that studies the the-
ory and methods for finding optimal values from all the possible values to minimize or
maximize some objective function, given constraints and defined domain. Optimization is
involved in many real problems of all fields of study.

Optimization techniques can be divided in two large areas: deterministic and stochas-
tic optimization (uses random processes). Metaheuristic algorithms belong to a class of
stochastic optimization. Metaheuristics have mechanisms for facilitating the exploration
of the search space, while an exploitation of the best solutions is made. Such schemes
have strategies to scape of a local optima, following the exploration of the search space.

A hybridization with the Multi-Particle Collision Algorithm, where the Rotation-Based
Learning (RBL) mechanism is applied, coupled with the Hooke-Jeeves (MPCA-HJ), will
be described in the next section.

2 Algorithms

2.1 Multi-Particle Collision Algorithm (MPCA)

MPCA is a populational optimization algorithm inspired in the physics of nuclear
particle collision reactions [1,2]. In a nuclear reactor, an incident particle could be scattered

1reynier.torres@inpe.br
2haroldo@lac.inpe.br



2

by a target nucleus, phenomenum called scattering, or the particle could be absorbed by
the target nucleus, kwown as absorption.

MPCA is an algorithm consisting in a set of particles (candidate solution) travelling
inside a nuclear reactor (search space). This particles are perturbed, and the resulting
particles could be absorbed (if its fitness is improved, they will substitute the old particles),
or scattered (if its fitness is worst, a new particle is created in another place of the space
search). Also, the particles behave cooperatively, i.e., after some iteration, the best particle
overall is over-copied for all particles in the set, through a blackboard strategy, and a new
interation is started.

The MPCA starts with a initial set of Np particles randomly created over the search
space. Then, the particles traveling process is started, involving three main functions:
Perturbation, Exploitation, and Scattering.

The Perturbation function performs a random variation of a particle within a defined
range. The d-th variable of each perturbated particle newP is calculated by the equation:

new − P
d

= P
d

+ ((UB
d
− P

d
) ·R)− ((P

d
− LB

d
) · (1−R)), (1)

where P is the particle to be perturbed, UB and LB are the upper and the lower bounds
in the search space, respectively, and R is a random number uniformly generated between
0 and 1.

If the new particle newP is better that the current particle P , then the Exploitation
function is activated. Else, if the new particle newP is worse than the current particle P ,
the Scattering function is activated.

The Exploitation function intensify the search on the solution found, by means of
NFEexploit small perturbations. This intensification process finds the dth variable of each
new exploited particles (exploitedP ) using the following equation:

exploitedP
d

= P
d

+ ((u
d
− P

d
) ·R)− ((P

d
− l

d
) · (1−R)), (2)

where u
d

= P
d
· rand(1,SL) and l

d
= P

d
· rand(IL, 1) are the upper and lower limits

computed from the current particle P , using the superior (SL) and inferior (IL) limits for
the random numbers generated. Each new exploited particle exploitedP is compared with
the original particle P , and will substitute it if is better.

The Scattering function is based on a Metropolis scheme: there are two options
selected with a defined probability: (i) the current particle P is replaced by a new random
solution P , or (ii) a series of small perturbations are performed on it (as in the Exploitation
function).

This principal loop will be stopped after a maximum number of function evaluations
(NFEmpca) defined by user.

The blackboard updating is applied at three times: (i) after the initial set of particles
is created, (ii) ending of each iteration –if a number of function evaluations (NFEbb)
was reached after the last blackboard updating, and (iii) just after the principal loop is
stopped.

The current version MPCA was implemented in C++.



3

2.2 Opposition-Based Learning (OBL)

The OBL concept was introduced in 2005 by Tizhoosh [3]. The idea of OBL is to
evaluate the candidate solution and its opposite solution, for getting the better solution
among them. Later, other variants, such as Quase-Opposition Based Learning, Quase-
Reflective Based Learning, Center-Based Sampling Learning, Rotation-Based Learning
have been appeared, giving more success in the exploration/exploitation of the search
space and improving the convergence [4].

OBL and their extensions have been applied to improve the performance of various
computational intelligence methods, such as artificial neural networks, fuzzy logic, me-
taheuristic algorithms, and miscellaneous applications [5].

Mathematically, the opposite number zo of a real number z ∈ [a, b] is defined by:

zo = a+ b− z . (3)

The opposite point Zo = (zo1 , zo2 , · · · , zoD) of a point Z = (z1 , z2 , · · · , zD), with D dimen-
sions, is completely defined by its coordinates as show in equation (4).

zod = a
d

+ b
d
− z

d
(4)

where z
d
∈ R, with a

d
≤ z

d
≤ b

d
∀d ∈ {1, 2, · · · , D}.

a zo c z b

zqo

Figura 1: Opposition-Based and Quasi-Opposition Based Learning.

Another mechanism, the Quasi-opposition learning (QOL) reflects a point to a random
point between the center of the domain and the opposite point.

Zqo(zqo1 , zqo2 , · · · , zqoD) | zqod = rand(c
d
, zod) . (5)

The concept of opposition number could be placed on a two-dimensional space as shown
in Figure 2: a circle of center c and radius (b − a)/2 can be drawn (dotted in Figure).
A line from z is drawn perpendicular to the x-axis and intersecting with the circle on
poinT l. Then, the point l is rotated π radians counterclockwise around the circle (that is
called reflection angle (β)), and a point m will be reached. The projection of m on x-axis
is the opposite number (zo).

Also, if the deflection angles β are carefully selected so that the rotation points are
localized between the opposition point Zo and the center C, the QOL is represented.

2.3 Rotated-Based Learning (RBL)

The RBL concept is an extension of the OBL and QOL mechanisms [4].



4

x

y

a bc z

l

m

zo θ

θ + π

Figura 2: Geometric interpretation of

the opposite number in 2D.

x

y

a bc z

l

zr

θ

θ + β

Figura 3: Geometric interpretation of

the rotation number in 2D.

Let Z = (z1 , z2 , · · · , xD) be a vector with D variables, A = (a1 , a2 , · · · , aD) is the lower
boundary, and B = (b1 , b2 , · · · , bD) is the upper boundary of the search space, respectively.
The center point of the search space in each dimension is denoted by C = (c1 , c2 , · · · , cD)
and ci = (ai + bi)/2.

The rotation point Zr = (zr1 , zr2 , · · · , zrD) can be calculated by

zri = ci + ui × cosβ − vi × sinβ , (6)

where ui is the quantity from the zi to the center (ui = zi − ci), and vi is the lenght of the
point to the corresponding intersection point li on the circle (vi =

√
(zi − ai) (bi − zi)).

The deflection angle β is a random value with Gaussian distribution of one mean and
δ as its standard devaition, and it is defined in the equation (7).

β = β0 · N (1, δ) . (7)

2.4 Hooke-Jeeves Direct Search Method

The Hooke-Jeeves direct search method [6] consists of the repeatedly application of
exploratory moves around a base point which, if successful, is followed by pattern moves.
In a D-dimensional problem, a candidate solution is denoted as a vector s of length D.

The exploratory movement consists adding (and substracting) the column vd of the
search directions matrix V , scaled by a step size h, to the solution s. This process is
repeated for all the dimensions of the problem. The new solution sn will be accepted if is
better than the previous s.

If the exploratory movement was successful, it will return an improved solution sn.
Later, a pattern move sn∗ is done adding a search direction to sn: sn∗ = sn + (sn − sc).
The solution sc will be replaced by sn∗ if the result of the pattern movement is better; if
not sn will become the new solution sc. If the exploratory movement was not successful,
the step size h is reduced in ρ times. If the step size reach a minimum value hmin, the
algorithm will stop. Another stopping criterium is to reach a maximum number of function
evaluations (NFEhj) defined.



5

3 Numerical Experimentation

3.1 Experimental configuration

Experiments were made in a personal computer with 8x Intel R© CoreTM i7-4790 CPU
@ 3.60GHz, with 8 GB of memory, operating with Ubuntu 14.04.3 LTS.

The number of experiments was set in 25. MPCA parameters were set in Np = 40,
NFEbb = 10000, NFEexploit = 500, IL = 0.7, and SL: 1.2. HJ parameters were set in
ρ = 0.8, and hmin = 1× 10−10. RBL parameters were set in β0 = 60, and δ = 0.25.

3.2 Benchmark Functions

Twenty-two benchmark functions with D = 30 and different characteristics were im-
plemented to evaluate the performance of the algorithms. Those functions are commonly
used in the literature, and are selected based on different properties of separability and
modality, representing a varied range of difficulty. In this selection, we have six Unimodal
Separable (Sphere (f1), Powell sum (f2), Sum squares (f3), Quartic with noise (f4), Schwe-
fel 2.21 (f5), Step (f6)), and four Non-separable (Schwefel 1.2 (f7), Dixon & Price (f8),
Schwefel 2.22 (f9), Rosenbrock (f10)); five Multi-modal Separable (Schwefel 2.26 (f11),
Michalewicz (f12), Rastrigin (f13), Alpine (f14), Levy (f15)), and seven Non-separable
(Exponential (f16), Rana (f17), Griewank (f18), Ackley (f19), Zakharov (f20), Salomon
(f21), Egg holder (f22)). More information on these benchmark function can be found on
the vast literature [7, 8].

All the algorithms are terminated when the number of function evaluation exceeds the
predetermined maximum number of 105 ×D.

3.3 Results of the experiments

The table 1 shows the statistics results for 25 trials for all the variants with and without
RBL and HJ (MPCA, RMPCA, MPCAHJ, RMPCAHJ) over 22 benchmark functions,
each one with different initial populations and random seeds. Functions f4, f11, f17 and
f22 could not be solved by none of the algorithms. Functions f5, f6f8−f10, f15 and f19 were
solved only by the variants with HJ. It is important to stand out that just the RMPCA-HJ
could solve the f13 and f14 problems.

4 Final remarks

In this study, the hybrid mataheuristic RMPCA-HJ was proposed as an alternative
for solving optimization problems. It takes advantages of the exploration mechanism
of the MPCA, with the complement of the Rotation-Based Learning, and the power of
intensification of the HJ method.

The performance of the algorithm was compared with the canonical MPCA, the hybrid
MPCA-HJ, and the RMPCA. The latter could solve problems that the others algorithms
fail, and obtained better results over some other problems.



6

Acknowledgements

The authors acknowledge the financial support from by the CNPq (Conselho Nacional
de Desenvolvimento Cient́ıfico e Tecnológico), a Brazilian agency for research support.

Referências

[1] W. F. Sacco and C. R. E. Oliveira. A new stochastic optimization algorithm based on
a particle collision metaheuristic. Proceedings of 6th WCSMO, 2005.

[2] E. F. P Luz, J. C. Becceneri, and H. F. Campos Velho. A new multi-particle collision
algorithm for optimization in a high performance environment. Journal of Computa-
tional Interdisciplinary Sciences, 1(1):3–10, 2008.

[3] H. R. Tizhoosh. Opposition-Based Learning: A New Scheme for Machine Intelligence.
In International Conference on Computational Intelligence for Modelling, Control and
Automation and International Conference on Intelligent Agents, Web Technologies and
Internet Commerce (CIMCA-IAWTIC’06), volume 1, pages 695–701. IEEE, 2005.

[4] Huichao Liu, Zhijian Wu, Huanzhe Li, Hui Wang, Shahryar Rahnamayan, and
Changshou Deng. PRICAI 2014: Trends in Artificial Intelligence: 13th Pacific Rim
International Conference on Artificial Intelligence, Gold Coast, QLD, Australia, De-
cember 1-5, 2014. Proceedings, chapter Rotation-Based Learning: A Novel Extension of
Opposition-Based Learning, pages 511–522. Springer International Publishing, Cham,
2014.

[5] Q. Xu, L. Wang, N. Wang, X. Hei, and L. Zhao. A review of opposition-based learning
from 2005 to 2012. Engineering Applications of Artificial Intelligence, 29:1–12, 2014.

[6] R. Hooke and T. A. Jeeves. “direct search” solution of numerical and statistical pro-
blems. Journal of the ACM (JACM), 8(2):212–229, 1961.

[7] Marcin Molga and Czes law Smutnicki. Test functions for optimization needs. Test
functions for optimization needs, 2005.

[8] Momin Jamil and Xin-She Yang. A literature survey of benchmark functions for
global optimisation problems. International Journal of Mathematical Modelling and
Numerical Optimisation, 4(2):150–194, 2013.



7

Tabela 1: Statistical for the number of function evaluations needed to reach the VTR. Best and

mean values are shown. Values between parenthesis represent the success rate. Asteriscs denote

that the functions could not reach the VTR before the maximum number of function evaluation

set (NFE). Bold values respresent the best values for each function

Function Statistic MPCA RMPCA MPCAHJ RMPCAHJ

f1
best 6036 5562 5110 6150
mean 8197 (1.00) 8781 (1.00) 7716 (1.00) 8664 (1.00)

f2
best 2915 2229 2595 1826
mean 3882 (1.00) 3928 (1.00) 3751 (1.00) 3721 (1.00)

f3
best 6205 5798 5383 5319
mean 8612 (1.00) 10622 (1.00) 8981 (1.00) 9977 (1.00)

f4
best * * * *
mean * (0.00) * (0.00) * (0.00) * (0.00)

f5
best * * 16147 21277
mean * (0.00) * (0.00) 209124 (1.00) 150134 (1.00)

f6
best * * 12596 24217
mean * (0.00) * (0.00) 126939 (1.00) 182692 (1.00)

f7
best 49985 * 10086 14290
mean 862397 (0.24) * (0.00) 95996 (1.00) 114785 (1.00)

f8
best * * 132843 175272
mean * (0.00) * (0.00) 788699 (0.44) 920488 (0.20)

f9
best * * 16205 17378
mean * (0.00) * (0.00) 158860 (1.00) 136105 (1.00)

f10
best * * 23382 52948
mean * (0.00) * (0.00) 190145 (1.00) 291331 (1.00)

f11
best * * * *
mean * (0.00) * (0.00) * (0.00) * (0.00)

f12
best 5978 7686 6226 6802
mean 8988 (1.00) 11656 (1.00) 9176 (1.00) 11828 (1.00)

f13
best * * * 20275
mean * (0.00) * (0.00) * (0.00) 922024 (0.08)

f14
best * * * 102039
mean * (0.00) * (0.00) * (0.00) 877135 (0.16)

f15
best * * 11148 17392
mean * (0.00) * (0.00) 124478 (1.00) 100087 (1.00)

f16
best 4203 3948 4224 4463
mean 6537 (1.00) 7576 (1.00) 6328 (1.00) 7573 (1.00)

f17
best * * * *
mean * (0.00) * (0.00) * (0.00) * (0.00)

f18
best 8976 11111 7556 10134
mean 13172 (1.00) 20266 (1.00) 12848 (1.00) 20800 (1.00)

f19
best * * 19115 51458
mean * (0.00) * (0.00) 123442 (1.00) 170829 (1.00)

f20
best 8062 15179 8083 12154
mean 14471 (1.00) 52799 (1.00) 14106 (1.00) 60998 (1.00)

f21
best 7744 4841 6191 4042
mean 21707 (1.00) 8132 (1.00) 33921 (1.00) 7991 (1.00)

f22
best * * * *
mean * (0.00) * (0.00) * (0.00) * (0.00)

View publication statsView publication stats


