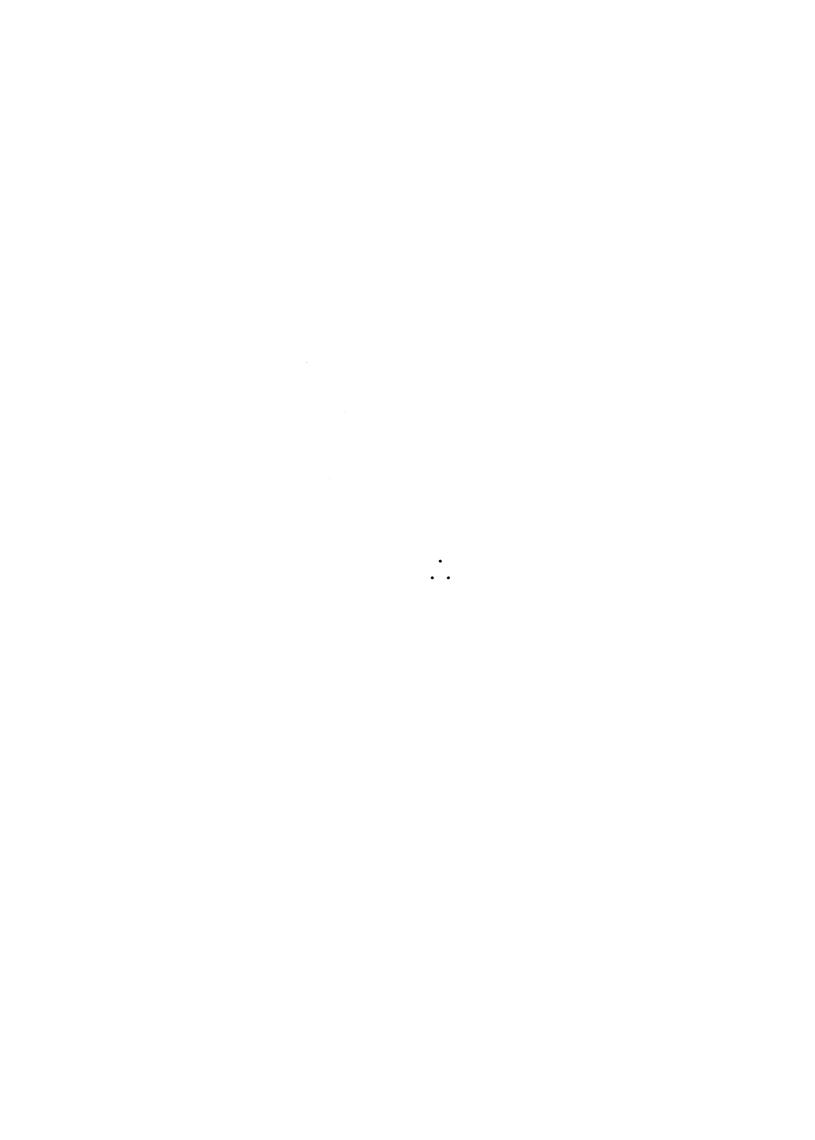

1. Publicação nº	2. Versão	3. Data	5. Distribuição	
INPE-3004-RTR/041		Fev., 1984	☐ Interna ☐ Externa	
4. Origem F	rograma		☑ Restrita	
DTL/DST	ETCOMS			
6. Palavras chaves - se OSCILADOR TELECOMUNICAÇÕES SINTETIZADOR	elecionadas peļ	o(s) autor(es)	
7. C.D.U.:				
8. Título	INPE-3	3004-RTR/041	10. Pāginas: <i>38</i>	
PRIMEIRO OSCILADOR	LOCAL DO TRANS TRENA SCPC-FM	MISSOR	11. Ūltima pāgina: 29	
DA BOIAÇÃO IL	IIIBWA DOLO-EN		12. Revisada por	
9. Autoria Paulo Adabo	uza Barretti		Wow	
Rubens Miss	ao Kogake		Naila H. Colla	
Luiz Antoni Maria Virgi	o F. Giglio nia Cellet		13. Autorizada por	
Assinatura responsave	11./	2/1.	Nelson de Jesus Parada Diretor Geral	
14. Resumo/Notas	The second second			
Este trabalho apresenta a descrição, as características e a realização prática do primeiro oscilador local do transmissor de uma es tação terrena SCPC-FM ("single channel per carrier" - canal único por portadora).				
15. Observações				


$\underline{ABSTRACT}$

This report presents the description, the characteristics and the practical realization of the first local oscillator of a transmitter of the SCPC-FM ("single channel per carrier") earth station.

SUMĀRIO

	Pāg.
LISTA DE FIGURAS	
1. INTRODUÇÃO	
2. ESPECIFICAÇÕES DO OSCILADOR LOCAL	
3. DESCRIÇÃO DOS CIRCUITOS	3
3.1 - Oscilador a cristal controlado por tensão (VCXO)	3
3.1.1 - Ajustes do VCXO	10
3.2 - Divisores, comparador de fase e filtro passa-baixas	11
3.2.1 - Divisor por 113	11
3.2.2 - Divisor por 12	13
3.2.3 - Comparador de fase e filtro de malha	13
3.3 - Multiplicador por 4 e amplificador	18
3.4 - Multiplicador por 3 e filtro de saída	25
4. <u>RESULTADOS</u>	27
REFERÊNCIAS BIBLIOGRÁFICAS	29


LISTA DE FIGURAS

			<u>Pāg</u> .
1	-	Diagrama de blocos simplificado da conversão de frequências utilizado no transmissor da Estação Terrena SCPC-FM	1
2	-	Diagrama de blocos do oscilador local em 1,13 GHz	2
3	-	Esquema elétrico do VCXO	4
4	-	Disposição dos componentes do VCXO na placa de circuito \underline{im} presso	8
5	-	Máscaras para a confecção do circuito impresso do VCXO	9
6	-	Circuito eletrico do divisor por 113, do divisor por 12, do comparador de fase e do filtro passa-baixas	12
7	-	Disposição dos componentes dos divisores, do comparador de <u>fa</u> se e do filtro passa-baixas na placa de circuito impresso	16
8	-	Mascaras para a confecção do circuito impresso dos divisores, do comparador de fase e do filtro passa-baixas	17
9	-	Circuito elétrico do multiplicador por 4 e amplificador	19
10	-	Disposição dos componentes do multiplicador por 4 e do ampl \underline{i} ficador na placa de circuito impresso	23
11	-	Mascaras para a confecção do circuito impresso do multiplica dor por 4 e do amplificador	24
12	_	Esquema elétrico do multiplicador	25
13	-	Máscara para o circuito do multiplicador por 3 e do filtro de saída e disposição dos componentes	27
14	_	Esquema para medida do desempenho do oscilador local	27

LISTA DE TABELAS

			<u>Pāg</u> .
1	_	Lista de componentes do VCXO	5
2	-	Lista de componentes dos divisores, do comparador de fase e do filtro passa-baixas	14
3	-	Lista de componentes do multiplicador por 4 e do amplificador	21
		Lista de componentes do multiplicador por 3 e do filtro de saída	

1. INTRODUÇÃO

No transmissor da Estação Terrena SCPC-FM o sinal de frequência intermediária (FI) centrado em 70 MHz $\tilde{\rm e}$ convertido através de dois batimentos para a faixa de frequências de microondas entre 5925 MHz e 6425 MHz. (Kono et alii, 1981). O diagrama de blocos simplificado $\tilde{\rm e}$ mostrado na Figura 1.

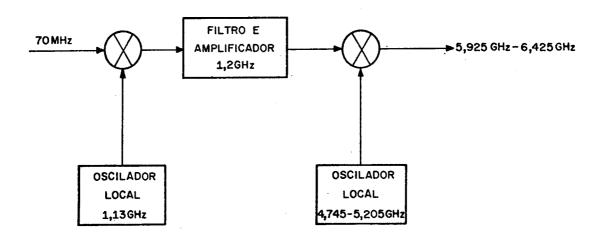


Fig. 1 - Diagrama de blocos simplificado da conversão de frequências utilizado no transmissor da Estação Terrena SCPC-FM.

Este trabalho descreve a montagem e os ajustes necess \underline{a} rios do primeiro oscilador local do transmissor da Estação Terrena SCPC-FM. Este oscilador \underline{e} fixo na frequência de 1,13 GHz e também sin cronizado com um sinal de referência em 10 MHz existente na estação. O diagrama de blocos do oscilador local \underline{e} mostrado na Figura 2.

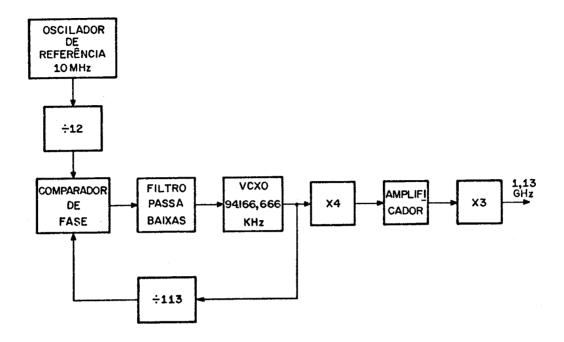


Fig. 2 - Diagrama de blocos do oscilador local em 1,13 GHz.

A saída de um VCXO (oscilador a cristal controlado por tensão) centrado em 94.166,666 kHz é dividido por 113 e em seguida com parada, através de um comparador de fase, com um sinal de referência em 833,333 kHz. O sinal na saída do comparador de fase é filtrado, ge rando um sinal de erro que corrige a frequência do VCXO sempre que hou ver variação na sua frequência de saída.

O sinal na frequência de 1,13 GHz é obtido da saída do VCXO, após uma multiplicação por 12. Assim é possível obter um sinal bastante estável em frequência e baixo ruído de fase.

2 - ESPECIFICAÇÕES DO OSCILADOR LOCAL

- Tensões de alimentação: + 12 v; + 5 v.
- Frequência central do VCXO: 94166,666 kHz.

- Tensão de controle do VCXO: 0 5 V.
- Nīvel de saīda do VCXO: 0 dBm.
- Variação de frequência do VCXO: ± 2 KHz.
- Frequência de saída: 1,13 GHz.
- Nivel de saida: 10 dBm.
- Rejeição de espurios: 60 dB.
- Rejeição de harmônicas: 40 dB,

3. DESCRIÇÃO DOS CIRCUITOS

3.1 - OSCILADOR A CRISTAL CONTROLADO POR TENSÃO (VCXO)

O esquema elétrico do VCXO é mostrado na Figura 3.

0 VCXO é basicamente um oscilador Colpitts a cristal on de a frequência de sintonia é determinada por um ressoador colocado em série com o cristal. A oscilação ocorre quando a base do transistor Q_1 é aterrada, ou seja, quando o circuito formado pelos indutor L_2 , os "varactores" CV_1 e CV_2 , o capacitor C_4 e o cristal estão em ressonância. O circuito formado por L_1 , C_1 , C_2 e C_3 realimenta o transitor Q_1 de maneira que a realimentação seja positiva (ganho de malha maior que 1 e defasagem nula).

Para uma certa tensão de controle ($V_C = V_O = 2,5V$) o ressoa dor formado por L_2 , os "varactores" e os capacitores C_3 e C_4 estão em ressonância, de maneira que o cristal não é carregado e o circuito oscila na frequência de ressonância série do cristal. Conforme a tensão de controle for variada acima ou abaixo de V_O , o cristal é carregado capacitiva ou indutivamente. Quando o cristal é carregado capacitivamente, o conjunto (cristal + ressoador) ressoa numa frequência acima da ressonância série do cristal. Quando o cristal é carregado indutivamente, o conjunto ressoa numa frequência abaixo da ressonância série do cristal.

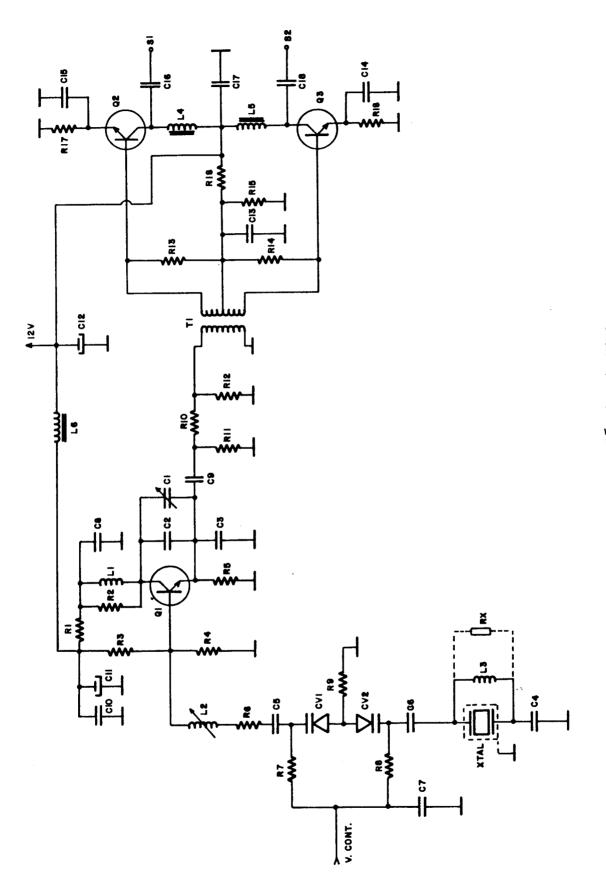


Fig. 3 - Esquema elétrico do VCXO.

O sinal \tilde{e} retirado do oscilador atrav \tilde{e} s de um divisor ca pacitivo formado por C_1 , C_2 e C_3 , num ponto de baixa imped \tilde{a} ncia.

O oscilador é isolado da carga através de um atenuador em π formado por R₁₀, R₁₁ e R₁₂ e de dois amplificadores construídos com os transistores Q₂ e Q₃.

A lista de componentes do VCXO é apresentada na Tabela 1. A disposição dos componentes na placa de circuito impresso é mostrada na Figura 4, e as duas faces da máscara do circuito impresso são mostr<u>a</u> das na Figura 5.

TABELA 1

LISTA DE COMPONENTES DO VCXO

CODIGO	DESCRIÇÃO	VALOR OU MODELO	FABRICANTE
R ₁	Resistor de carvão	1,5 ΚΩ/(1/8 ω)	Constanta
R ₂	Resistor de carvão	1,0 ΚΩ/(1/8 ω)	Constanta
R ₃	Resistor de carvão	33,0 ΚΩ/(1/8ω)	Constanta
R ₄	Resistor de carvão	24 ΚΩ/(1/8 ω)	Constanta
R ₅	Resistor de carvão	2,0 ΚΩ/(1/8 ω)	Constanta
R ₆	Resistor de carvão	130 Ω/(1/8 ω)	Constanta
R ₇	Resistor de carvão	91 ΚΩ/(1/8 ω)	Constanta
R ₈	Resistor de carvão	91 kΩ/(1/8 ω)	Constanta
R ₉	Resistor de carvão	91 kΩ/(1/8 ω)	Constanta
R ₁₀	Resistor de carvão	68 Ω/(1/8 ω)	Constanta
R ₁₁	Resistor de carvão	100 Ω/(1/8 ω)	Constanta

Tabela 1 - Continuação

CÕDIG0	DESCRIÇÃO	VALOR OU MODELO	FABRICANTE
R ₁₂	Resistor de carvão	100 Ω/(1/8 ω)	Constanta
R ₁₃	Resistor de carvão	1,0 ΚΩ/(1/8 ω)	Constanta
R ₁₄	Resistor de carvão	1,0 ΚΩ/(1/8 ω)	Constanta
R ₁₅	Resistor de carvão	1,0 ΚΩ/(1/8 ω)	Constanta
R ₁₆	Resistor de carvão	1,0 ΚΩ/(1/8 ω)	Constanta
R ₁₇	Resistor de carvão	300 Ω/(1/3 ω)	R. OHM
R ₁₈	Resistor de carvão	300 Ω/(1/3 ω)	R. OHM
R _X	Resistor de carvão	33 kΩ/(1/8 ω)	Constanta
Cı	Capacitor variavel (trimmer)	(0,8-8,0)pF	Johanson
C ₂	Capacitor cerâmico disco	12 pF/100 V	Thomson
Сз	Capacitor cerâmico disco	47 pF/100 V	Thomson
C 4	Capacitor cerâmico disco	6,8 pF/100 V	Thomson
C ₅	Capacitor cerâmico disco	1,0 kpF/100 V	Thomson
C 6	Capacitor cerâmico disco	1,0 kpF/100 V	Thomson
C 7	Capacitor cerâmico disco	1,0 kpF/100 V	Thomson
C ₈	Capacitor cerâmico disco	1,0 kpF/100 V	Thomson
C ₉	Capacitor cerâmico disco	1,0 kpF/100 V	Thomson
C ₁₀	Capacitor cerâmico disco	1,0 kpF/100 V	Thomson
C ₁₁	Capacitor de tântalo	1,0 μF/35 V	Siemens
C ₁₂	Capacitor de tântalo	1,0 μF/35 V	Siemens
C ₁₃	Capacitor cerâmico disco	10 KpF/100 V	Thomson
C ₁₄	Capacitor cerâmico disco	10 KpF/100 V	Thomson

Tabela 1 - Conclusão

CODIGO	DESCRIÇÃO	VALOR OU MODELO	FABRICANTE
C ₁₅	Capacitor cerâmico disco	10 KpF/100 V	Thomson
C ₁₆	Capacitor cerâmico disco	1,0 KpF/100 V	Thomson
C ₁₇	Capacitor cerâmico disco	1,0 KpF/100 V	Thomson
C ₁₈	Capacitor cerâmico disco	1,0 KpF/100 V	Thomson
Lı	Bobina - 6,5 espiras fio 21 AWG, ϕ = 5 mm		INPE
L ₂	Bobina - 8 espiras fio 21 AWG, φ = 6,3 mm, com núcleo ferrite N3F 6309 R28RS		INPE, SONTAG
L ₃	Bobina - 8 espiras fio 21 AWG, ϕ = 6 mm		INPE
L4	Choque de RF	2,2 μH	SONTAG
L ₅	Choque de RF	2,2 µH	SONTAG
L ₆	Choque de RF	4, 7 µH	SONTAG
CVı	Varactor	BB 105 A	Ibrape
CV2	Varactor	BB 105 A	Ibrape
Qı	Transistor NPN	2 N 918	Texas Inst.
Q ₂	Transistor NPN	BFY - 90	Ibrape
Qз	·Transistor NPN	BFY - 90	Ibrape
XTAL	Cristal - Ressonância sêrie	94166,666 KHz	RCB
T ₁	Transformador de RF	TMO 5-1T	Mini Circuits

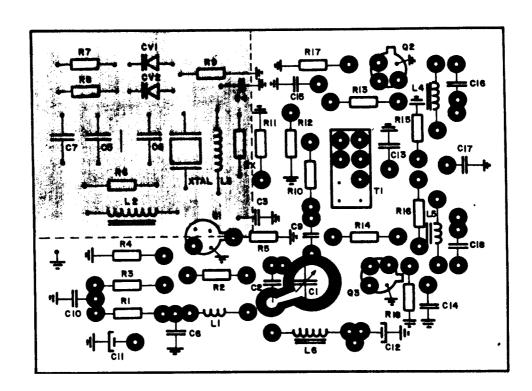
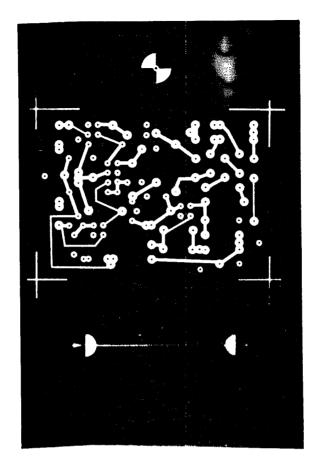



Fig. 4 - Disposição dos componentes do VCXO na placa de circuito $i\underline{m}$ presso.

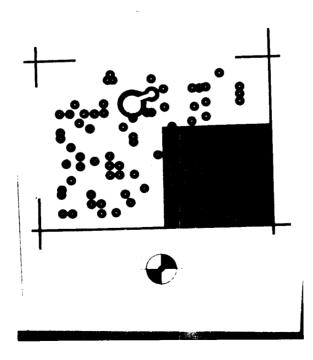


Fig. 5 - Máscaras para a confecção do circuito impresso do VCXO.

3.1.1 - AJUSTES DO VCXO

- 1) Liga-se o circuito com uma tensão de controle (V_c) de 2,5 V_c
- 2) Sintoniza-se o oscilador na frequência central do cristal $(f_0 = 94166,666 \text{ kHz})$ através do capacitor variável C_1 .
- 3) Variando a tensão de controle de OV a 5V verifica-se a excursão do VCXO; caso a excursão não esteja correta ($\Delta f = \pm 2 \text{ kHz}$), o seu ajuste deve ser feito através de L_2 e L_3 .
- 4) O ajuste do nivel do sinal é feito através do atenuador em π , composto pelos resistores R_{10} , R_{11} e R_{12} , que melhora o casa mento entre o oscilador e os estágios amplificadores, não saturando estes, tendo por conseguinte uma boa rejeição de harmônicos (>30 dB).

Este tipo de oscilador apresenta, geralmente, dois tipos de oscilações espúrias. Uma delas $\bar{\rm e}$ causada quando ha uma realimentação significativa devida ao transitor (y $_{\rm rb}$ \neq 0). Esta oscilação pode ser detectada através da observação de saltos na frequência do oscilador quando se esta ajustando a sua sintonia. Ela pode ser eliminada através do ajuste do resistor R $_{\rm 6}$ colocado em série com o circuito de controle de frequência.

O outro tipo de oscilação e devido às ressonâncias espúrias inerentes do circuito ressoador formado pelos indutores L_2 e L_3 , pelos "varactores" CV_1 e CV_2 e pelo cristal. Geralmente ela se manifes ta pela aparição de raias abaixo da frequência central (fo) do oscila dor. Isto pode ser corrigido introduzindo um resistor R_χ (aproximadamente 33 k Ω) em paralelo com o cristal. Neste oscilador, em particular, não houve necessidade de colocação deste resistor.

3.2 - DIVISORES, COMPARADOR DE FASE E FILTRO PASSA-BAIXAS

3.2.1 - DIVISOR POR 113

Como a frequência de saída do VCXO é superior à utiliza da em circuitos TTL, há necessidade da utilização de um pré-divisor de alta velocidade entre a saída do VCXO e os divisores TTL. Sendo o va lor da divisão igual a 113, recorre-se à utilização de um circuito pré-divisor com dois módulos de divisão, 10 e 11 (Adabo, 1983), antes dos divisores TTL. O circuito elétrico do divisor por 113 é mostrado na Fi gura 6.

O pré-divisor utilizado é o circuito integrado 95 H 90 (CI-1), que possui dois módulos de divisão, 10 e 11. Seu sinal de en trada deve estar em nível lógico ECL e em sua saída hã um conversor de nível lógico ECL para TTL, que é dado pelos resistores R_3 e R_4 e pelo transistor T_1 . Quando o sinal de controle do módulo de divisão, que é fornecido pelo circuito integrado CI-2, é igual a "0", ele divide por 11; quando é igual a "1", ele divide por 10. Os resistores R_5 e R_6 transformam um sinal em nível lógico TTL para ECL.

Portanto, para que a divisão por 113 seja efetuada, o CI-4, que é um contador programável (National, 1981), deve estar programado para dividir por 3 e o contador CI-3 deve estar programado para dividir por 11. Para cada conjunto de 11 pulsos na entrada do prédivisor CI-1, ambos os contadores CI-3 e CI-4 são decrementados de 1. O prédivisor fica dividindo por 11 até que o contador CI-4 chegue ao estado "zero". Quando isto acontecer, o prédivisor recebeu 33 pulsos e o estado do contador CI-3 será igual a 11-3=8. Neste instante o prédivisor muda então para o módulo de divisão 10 e permanece neste módulo até que o contador CI-4 receba 8 pulsos. Finalmente, quando isto é completado, o circuito recebeu 113 pulsos do VCXO e os contadores CI-3 e CI-4 são carregados com os valores programados e o ciclo se repete. O controle do modo de divisão do pré-divisor é feito pelo "flip-flop" CI-2.

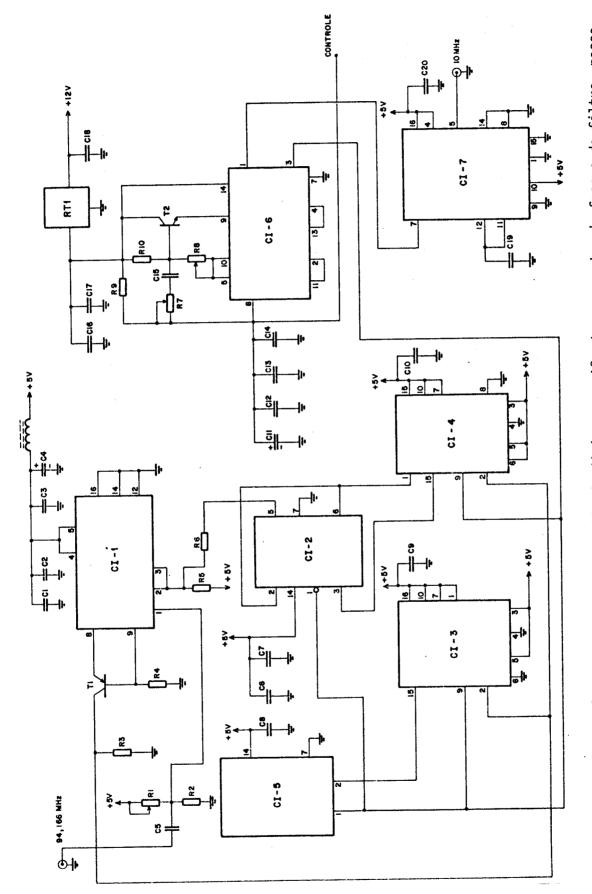


Fig. 6 - Circuito elétrico do divisor por 113, do divisor por 12, do comparador de fase e do filtro pass<u>a</u> -baixas.

O unico ajuste deste divisor e feito através do potenci $\underline{\hat{0}}$ metro R_1 . Este potenci $\overline{\hat{0}}$ metro R_1 . Este potenci $\overline{\hat{0}}$ metro faz com que o sinal do VCXO se torne com patível com o nível logico ECL que o pre-divisor exige em sua entrada. Portanto, para que o divisor entre em funcionamento deve-se variar o potenci $\overline{\hat{0}}$ metro R_1 até que um sinal em nível logico TTL apareça no coletor do transistor T_1 .

3.2.2 - DIVISOR POR 12

O circuito elétrico do divisor por 12 é mostrado na Figura 6 e é constituído pelo circuito integrado CI-7. Este circuito é um contador binário TTL programável, cujas entradas de programação foram fixadas para que divida por 12.

Ele é utilizado para obter o sinal de referência de 833,333 kHz para o contador de fase a partir de um oscilador de 10 MHz.

3.2.3 - COMPARADOR DE FASE E FILTRO DE MALHA

O comparador de fase utilizado é o circuito integrado MC 4044 (Motorola, 1973), que possui internamente, além do comparador de fase, um discriminador de frequências e um amplificador que foi utilizado na realização do filtro de malha do PLL (Gardner, 1979).

O circuito do comparador de fase e do filtro de malha são mostrados na Figura 6. O comparador de fase e o circuito integrado CI-6 e o filtro de malha utilizado e ativo e e formado pelos potenciômetros R_7 e R_8 , pelo capacitor C_{15} e pelo transistor T_2 .

0 ajuste do ruido de fase e da modulação do VCXO causada pelo sinal de referência em 833,333 kHz $\bar{\rm e}$ feito através dos potenci $\bar{\rm ome}$ tros R₇ e R₈.

A lista de componentes \tilde{e} apresentada na Tabela 2. Na $F\underline{i}$ gura 7 apresenta-se a disposiç \tilde{a} o dos componentes na placa de circuito impresso e na Figura 8 apresentam-se as duas faces da m \tilde{a} scara do circuito impresso.

TABELA 2

LISTA DE COMPONENTES DOS DIVISORES, DO COMPARADOR DE FASE

E DO FILTRO PASSA-BAIXAS

CÕDIGO	DESCRIÇÃO	VALOR OU MODELO	FABRICANTE
R ₁	Potenciômetro de precisão	100 Ω	Bourns
R ₂	Resistor de carvão	100 Ω/(1/8 ω)	Constanta
R ₃	Resistor de carvão	220 Ω/(1/8 ω)	Constanta
R ₄	Resistor de carvão	120 Ω/(1/8 ω)	Constanta
R ₅	Resistor de carvão	270 Ω/(1/8 ω)	Constanta
R ₆	Resistor de carvão	240 Ω/(1/8 ω)	Constanta
R ₇	Potenciômetro de precisão	500 ΚΩ	Bourns
R ₈	Potenciômetro de precisão	500 Ω	Bourns
R ₉	Resistor de carvão	1 ΚΩ/(1/8 ω)	Constanta
R ₁₀	Resistor de carvão	1 ΜΩ/(1/8 ω)	Constanta
C ₁ , C ₅	Capacitor disco de cerâmica	1 KpF/100 V	Thomson
C ₂ , C ₇	Capacitor disco de cerâmica	10 KpF/100 V	Thomson
C ₉ ,C ₁₀	Capacitor disco de cerâmica	10 KpF/100 V	Thomson
C ₁₅ ,C ₁₇ C ₂₀	Capacitor disco de cerâmica	10 KpF/100 V	Thomson

Tabela 2 - Conclusão

CÓDIGO	DESCRIÇÃO	VALOR OU MODELO	FABRICANTE
C ₃ , C ₁₂	Capacitor disco de cerâmica	100 KpF/100 V	Thomson
С.,	Capacitor eletrolítico de tâ <u>n</u> talo	10 μF/25 V	Siemens
C ₆	Capacitor eletrolitico	100 μF/25 V	Siemens
C ₁₁	Capacitor eletrolitico de tân talo	1 μF/35 V	Siemens
C ₁₃	Capacitor de poliester	100 KpF/250 V	Ibrape
C ₁₈	Capacitor de poliester	330 KpF/250 V	Ibrape
C ₁₉	Capacitor disco de cerâmica	68 pF/100 V	Thomson
Tı	Transistor PNP	2 N 5771	Motorola
T ₂	Transistor NPN	BF 180	Ibrape
RT ₁	Regulador de tensão	LM 7805	National
CIı	Circuito integrado	95 Н 90	Fairchild
CI2	Circuito integrado	74 LS 74	Texas
CI3, CI4	Circuito integrado	74 S 163	Texas
CI5	Circuito integrado	74 LS 04	Texas
CI6	Circuito integrado	MC 4044	Motorola
CI ₇	Circuito integrado	74 LS 193	Texas
CHı	Choque de RF	10 μH	INPE
	Forma para choque de RF	. !	Thornton

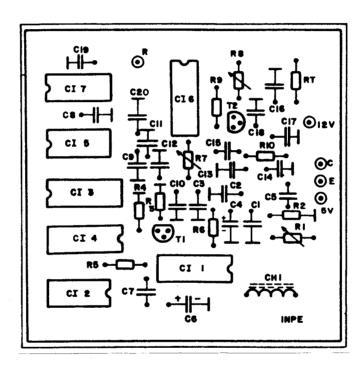


Fig. 7 - Disposição dos componentes dos divisores, do comparador de fase e do filtro passa-baixas na placa de circuito impresso.

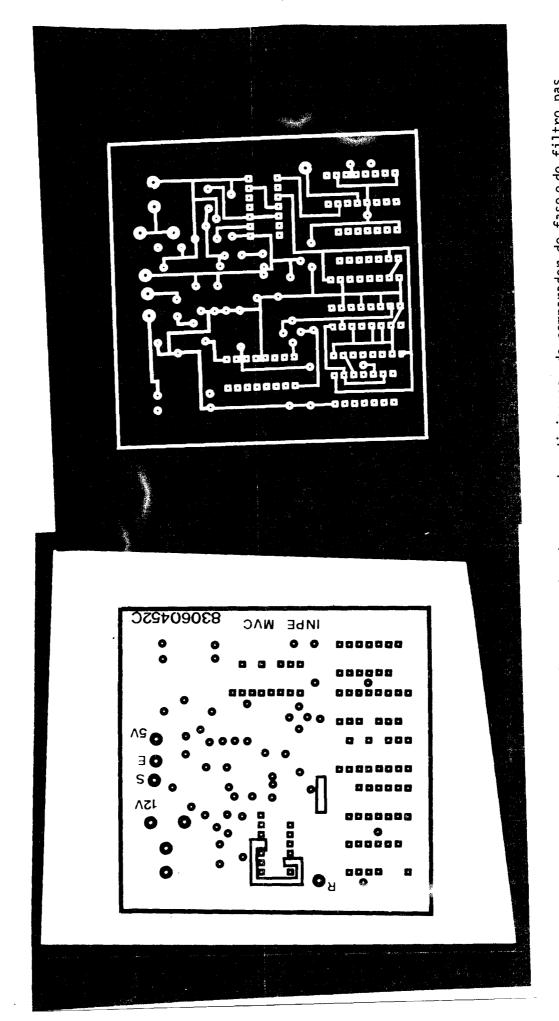


Fig. 8-Mãscaras para a confecção do circuito impresso dos divisores, do comparador de fase e do filtro pa<u>s</u> sa-baixas.

3.3 - MULTIPLICADOR POR 4 E AMPLIFICADOR

O circuito eletrico do multiplicador e amplificador $\bar{\text{e}}$ mostrado na Figura 9.

O multiplicador por 4 \tilde{e} formado por dois dobradores de frequência; o primeiro dobrador \tilde{e} formado pelos transistores TR_1 e TR_2 e o segundo, pelos transistores TR_3 e TR_4 .

O sinal vindo do VCXO \tilde{e} acoplado ao primeiro dobrador através do capacitor C_1 , indo excitar a base do transistor TR_1 e também a base do transistor TR_2 . A base de TR_2 \tilde{e} excitada através de um transformador com inversão de fase.

Como os transistores estão polarizados no corte, somente um deles conduzirá a cada semiciclo do sinal de entrada, o que permite que o sinal no coletor seja retificado em onda completa. Este sinal de ve ser simétrico para permitir uma boa rejeição nas harmônicas impares. Este ajuste deve ser efetuado no potenciômetro R_3 . O sinal de coletor é filtrado pelo circuito formado por L_2 , L_3 , C_6 e C_8 , o que faz com que aumente a rejeição das harmônicas pares.

O segundo dobrador é idêntico ao primeiro, com exceção dos capacitores C_4 e C_5 que foram utilizados para melhorar a sua estabilidade, e do capacitor C_{15} que é colocado apos C_{14} para melhorar a filtragem desse estagio.

Um atenuador formado por R_{14} , R_{15} e R_{16} é colocado na sa \underline{i} da do segundo dobrador para melhorar o casamento de impedância com o amplificador. O ajuste do multiplicador deve ser efetuado juntamente com o amplificador.

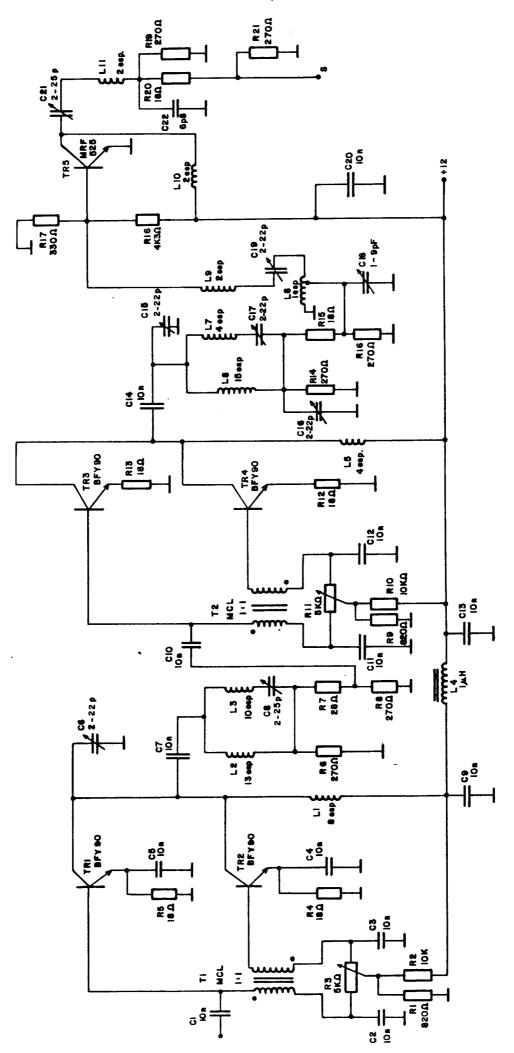


Fig. 9 - Circuito elétrico do multiplicador por 4 e amplificador.

0 amplificador \tilde{e} constitu \tilde{i} do pelo transistor TR_5 na montagem emissor comum e tem um ganho de 20 dB.

O sinal de saída do multiplicador \tilde{e} acoplado ao amplificador atraves da bobina L_8 com derivação e do "trimmer" C_{19} , que conjuntamente com L_9 e C_{18} permitem a sintonia e o casamento de impedância neste ponto.

Na saída do amplificador existem a bobina L_{11} e os capacitores C_{21} e C_{22} que permitem a sintonia e a filtragem do sinal de saída. O atenuador formado por R_{19} , R_{20} e R_{21} melhora o casamento de $i\underline{m}$ pedância na saída.

Os ajustes do multiplicador e amplificador devem ser primeiramente efetuados nos potenciômetros R_3 e R_{11} ajustando o ponto de polarização de TR_1 , TR_2 , TR_3 e TR_4 para o corte. Com isso consegue-se que a rejeição de harmônicas împares seja a maior possível.

Os ajustes restantes devem ser efetuados interativamente da saída para a entrada, iniciando-se pelos "trimmers" C_{20} e C_{22} até se conseguir a especificação desejada. Para um refinamento nos ajustes, as vezes se faz necessário ajustar as bobinas L_2 , L_3 , L_6 , L_7 , L_9 e L_{10} .

Os componentes utilizados na montagem do multiplicador por 4 e do amplificador são apresentados na Tabela 3. Na Figura 10 apresenta-se a disposição dos componentes na placa de circuito impresso e na Figura 11 apresentam-se as duas faces da máscara do circuito impresso.

TABELA 3

LISTA DE COMPONENTES DO MULTIPLICADOR POR 4 E DO AMPLIFICADOR

СФDIGO	DESCRIÇÃO	VALOR OU MODELO	FABRICANTE
C ₁ , C ₂ ,	Capacitor disco de cerâmica	10 KpF/100 V	Thomson
C4, C5,	Capacitor disco de cerâmica	10 KpF/100 V	Thomson
C ₆	Trimmer	2-22 pF	DAU
C ₈	Trimmer	2-25 pF	DAU
C ₉ , C ₁₀	Capacitor disco de cerâmica	10 KpF/100 V	Thomson
C ₁₂ ,C ₁₃ C ₁₄	Capacitor disco de cerâmica	10 KpF/100 V	Thomson
C ₁₅ ,C ₁₆ C ₁₇	Trimmer	2-22 pF	DAU
C ₁₈ ,C ₁₉	Trimmer	2-22 pF	DAU
C ₂₀	Capacitor disco de cerâmica	10 KpF/100 V	Thomson
C ₂₁	Trimmer	2-25 pF	DAU
C ₂₂	Capacitor disco de cerâmica	6,8 pF/100 V	Thomson
Rı	Resistor de carvão	820 Ω/(1/8 ω)	Constanta
R ₂	Resistor de carvão	10 ΚΩ/(1/8 ω)	Constanta
R ₃ , R ₁₁	Potenciômetro de precisão	5 ΚΩ	Spectrol
R ₄ , R ₅	Resistor de carvão	18 Ω/(1/8 ω)	Constanta
		}	1

Tabela 3 - Conclusão

CODIGO	DESCRIÇÃO	VALOR OU MODELO	FABRICANTE
R ₆ , R ₈	Resistor de carvão	270 Ω/(1/8 ω)	Constanta
R ₉	Resistor de carvão	820 Ω/(1/8 ω)	Constanta
R ₁₀	Resistor de carvão	10 ΚΩ/(1/8 ω)	Constanta
R ₁₂ ,R ₁₃ R ₁₅	Resistor de carvão	18 Ω/(1/8 ω)	Constanta
R ₁₄ ,R ₁₆ R ₁₉	Resistor de carvão	270 Ω/(1/8 ω)	Constanta
R ₁₇	Resistor de carvão	330 Ω/(1/8 ω)	Constanta
R ₁₈	Resistor de carvão	4,3 ΚΩ/(1/8 ω)	Constanta
R ₂₀	Resistor de carvão	18 Ω/(1/8 ω)	Constanta
R ₂₁	Resistor de carvão	270 Ω/(1/8 ω)	Constanta
L ₁	Bobina – 8 espiras fio 22 AWG, ϕ = 3,5 mm		INPE
L2, L4 L6	Bobina - 13 espiras fio 22 AWG, ϕ = 3,5 mm		INPE
L ₃	Bobina - 10 espiras fio 22 AWG, ϕ = 3,5 mm		INPE
L ₅ , L ₇	Bobina - 4 espiras fio 22 AWG, $\phi = 3,5$ mm		INPE
L ₈	Bobina - 1 espira fio 18 AWG, $\phi = 8$ mm		INPE
L ₉ , L ₁₀	Bobina - 1 espira fio 22 AWG, $\phi = 3,5$ mm		INPE
L ₁₁	Bobina - 13 espiras fio 22 AWG, $\phi = 3,5$ mm		INPE
TR ₁ ,TR ₂	Transistor NPN	BFY-90	Ibrape
TR ₃ ,TR ₄	Transistor NPN	BFY-90	Ibrape
TR₅	Transistor NPN	MRF 525	Motorola
T ₁ , T ₂	Transformador de RF	T1-1	Minicircuits

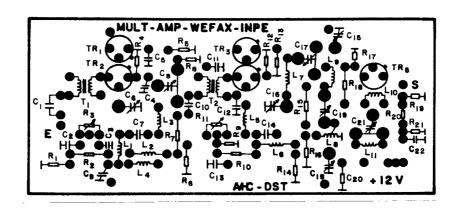


Fig. 10 - Disposição dos componentes do multiplicador por 4 e do ampl \underline{i} ficador na placa de circuito impresso.

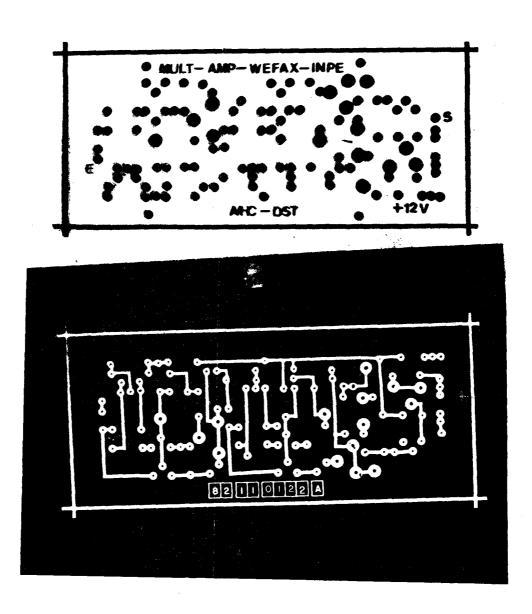


Fig. 11 - Mascaras para a confecção do circuito impresso do multiplica dor por 4 e do amplificador.

3.4 - MULTIPLICADOR POR 3 E FILTRO DE SATDA

O esquema elétrico do multiplicador é mostrado na Figura 12. Ele foi construído com um diodo de recuperação em degrau ("step recovery diode") e circuitos de casamento na entrada e saída.

0 circuito de casamento na entrada é do tipo passa-ba<u>i</u> xas e transforma a impedância de entrada de 50Ω para 10Ω , que é adequ<u>a</u> da ao funcionamento do diodo. É constituído de capacitores distribuídos e concentrados. O diodo é autopolarizado através do resistor R_1 .

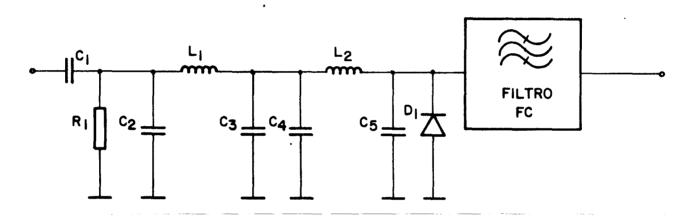


Fig. 12 - Esquema eletrico do multiplicador.

Para ter acesso ao plano de terra na face superior da placa de circuito impresso, utiliza-se o artifício de manter uma linha impressa na borda da face superior soldada através de uma fita de cobre com a face inferior. Isso se faz necessário pelo fato de ter de soldar os capacitores concentrados. O mesmo artifício é utilizado no filtro para curtocircuitar as extremidades dos ressoadores interdigitais.

O casamento de impedância entre a saída do multiplicador e o filtro é realizado através de um ressoador "hairpin" colocado na entrada do filtro. Este tipo de ressoador tem a vantagem adicional de não utilizar um capacitor de desacoplamento entre o diodo e o filtro.

O filtro e do tipo passa-faixa. E constituído de 8 res soadores de meia onda interdigitais e dois ressoadores "hairpin" para permitir casamento de impedâncias na entrada e saída. A montagem e fei ta em microlinha através de impressão fotolitográfica.

Os ajustes devem ser efetuados com o multiplicador e o filtro ligados em cascata. O casamento de impedância pode ser realiza do através de ajustes no comprimento dos ressoadores "hairpin" e também através da colocação de "pads" capacitivos no circuito impresso.

Os componentes utilizados na montagem do multiplicador por 3 e do filtro de saída são apresentados na Tabela 4. A Figura 13 mostra a máscara utilizada para a confecção do circuito de microlinhas e a disposição dos componentes.

TABELA 4

LISTA DE COMPONENTES DO MULTIPLICADOR POR 3 E DO FILTRO DE SAÍDA

CÕDIGO	DESCRIÇÃO	VALOR OU MODELO	FABRICANTE
Cı	Capacitor de cerâmica	360 pF	ATC
C ₂ ,C ₄	Capacitor distribuído impresso		
C ₃	Capacitor de cerâmica	3,3 pF	Vitramon
L ₁ ,L ₂	Bobina distribuida impressa		
R ₁	Resistor de carvão	47 ΚΩ/(1/8 ω)	Constanta
Dı	Diodo SRD	0180	НР
Fc	Filtro impresso		
	Placa dieletrica RT DUROID 6010, $\varepsilon_R = 10.5$ (1.27 mm x 25 mm x 87 mm)		Rogers

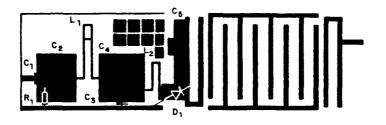


Fig. 13 - Mascara para o circuito do multiplicador por 3 e do filtro de saída e disposição dos componentes.

4. RESULTADOS

 $\,$ O esquema de medidas de desempenho do oscilador local $\,\tilde{\mathrm{e}}\,$ mostrado na Figura 14.

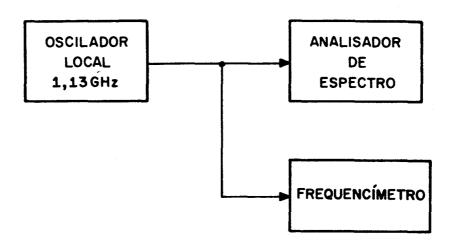
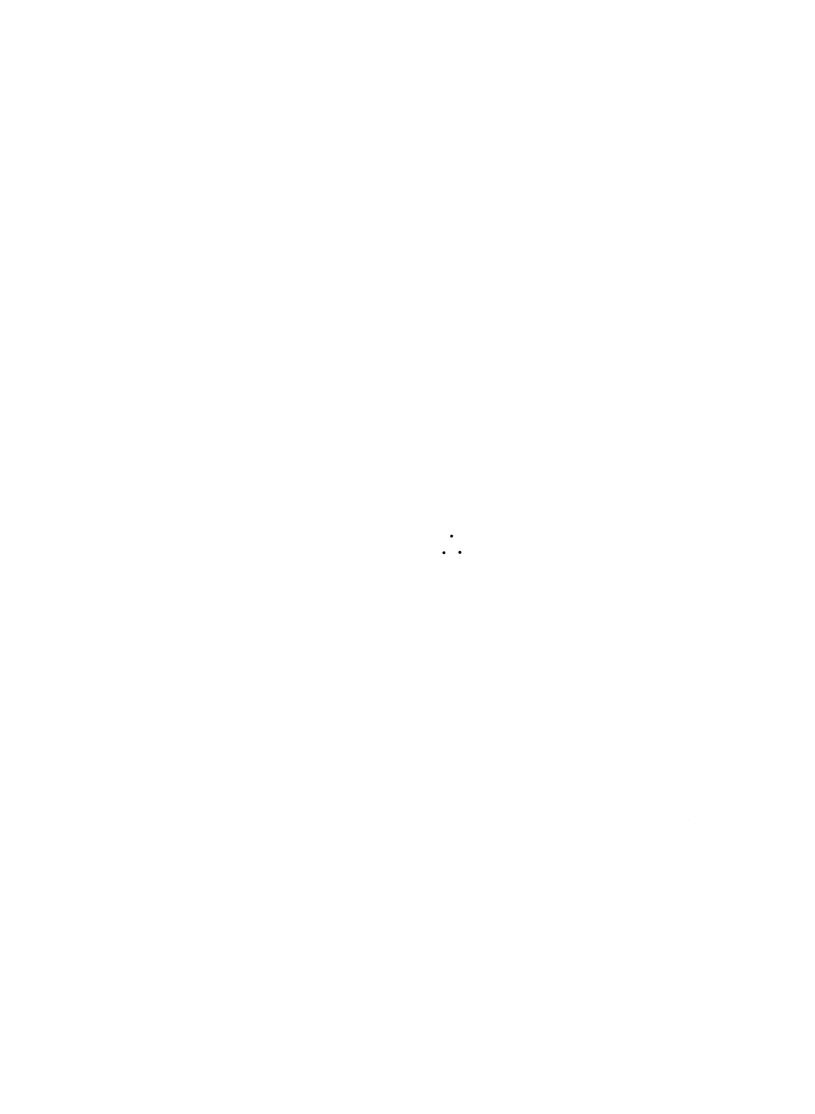



Fig. 14 - Esquema para medida do desempenho do oscilador local.

Os resultados obtidos são listados abaixo:

- Frequência de saída: 1.130,000,000 KHz
- Potência de saida: + 10 dBm
- Rejeição de espurios > 60 dB
- Rejeição de harmônicas > 40 dB.

REFERÊNCIAS BIBLIOGRÁFICAS

- ADABO, P. Divisores programaveis de frequências de alta velocidade do tipo "pulse swallowing". São José dos Campos, INPE, abr. 1983. (INPE-2695-PRE/292).
- GARDNER, F.M. Phaselock techniques. 2. ed. New York, John Wiley, 1979.
- KONO, J.; COLLA, N.H.; ARAKAKI, Y. Especificação de uma estação terre na SCPC FM de baixa capacidade para 6/4 GHz. São José dos Campos, INPE, out. 1981. (INPE-2254-NTE/176).
- MOTOROLA. Phase locked loop systems; data book. s.1., 1973.
- NATIONAL. Logic databook. California, 1981.