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Abstract

This paper presents the computational performance of some di-
rect and iterative methods for solving a sparse linear system generated
by the LTSy solver of the radiative transfer equation (RTE). A case
study was performed for a hydrologic optics problem, where the RTE
simulates the interaction of visible light in water, yielding radiation
intensity values (radiances) in different angles, for each level of depth.
The case study is related to a non-homogeneous medium with a high
degree of anisotropy, calculating the radiance at various depth levels,
resulting in a sparse system with 12000 unknowns (radiances). Execu-
tion times of two direct method (LU factorization) and two iterative
method (GMRES) were compared. These methods were implemented
as non-commercial and open source packages. The two direct meth-
ods were implemented using the LAPACK and MUMPS packages, de-
signed respectively for dense and sparse systems, were used. The two
iterative methods were implemented using libraries LIS and CUSP, de-
signed for CPU and GPU architectures, respectively. Computational
performance of the four methods is presented and discussed as well the
accuracy of the numerical solutions.

Keywords: radiative transfer equation, hydrologic optics, sparse linear
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1 Introduction

The radiative transfer equation (RTE) is a mathematical model for the study
of absorption, transmission, and scattering of photons in a medium. This
work employs the RTE in a hydrologic optics problem that involves the
determination of the radiance distribution in a body of water, given the
boundary conditions, source term, inherent optical properties, such as the
absorption a and scattering b coefficients, and the scattering phase function.
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A brief description of the RTE components is given in the beginning of
Section 2.

This work also employs bio-optical models that correlate coefficients a
and b to the chlorophyll-a concentration profile. The spatial domain is
discretized in a number of regions (R), being the chlorophyll-a concentration
assumed as constant in each region. The discrete chlorophyll-a profile is then
defined by (R + 1) points.

One method for solving the RTE is given by the discrete ordinates equa-
tions, or Sy equations. In such scheme, the RTE is decoupled in N azimuthal
modes, each one solved independently. Here, it is employed a version of Sy
method, the LTSy method [4, 8], which applies the Laplace transform to
the Sy ordinates. The LTSy method emerged in the early 1990s as a result
of research on transport of neutrons, and was further extended to radiative
transfer problems.

In a medium with high degree of anisotropy like a natural body of water,
there is a big number of possible scattering directions that require radiance
calculations. In the case of a non-homogeneous medium containing many
regions with different optical properties according to the depth, such cal-
culation of radiances is replicated to all discrete depth levels of the vertical
domain. In such a scenario, the LTSy formulation yields a sparse matrix sys-
tem, in which the radiances are calculated in different directions, for each
depth level. Details of the discrete ordinate formulation, and how LSTy
method solves it, is presented in Subsection 2.1 and in Subsection 2.2.

The chosen case study refers to a hydrologic optics problem with 150
azimuthal directions and 80 depths, which requires the solving of a sparse
linear system with 12,000 unknowns. Such a large system requires th euse
of a proper numerical library in order to optimize the computational per-
formance of the LTSy method. In this scope, two direct and two iterative
methods were evaluated.

Originally, computer codes for the LTSy method include solvers for
dense matrices such as the one of the LAPACK (Linear Algebra Package)
library. The performance of such solver, taken as reference, is compared to
the following solvers that are specific for sparse systems: i) the direct method
implemented in the MUMPS (MUltifrontal MassivelyParallel sparse direct
Solver) package; ii) the iterative GMRES (Generalized Minimal Residual)
method implemented in LIS (Library of Iterative Solvers); and iii) the it-
erative GMRES method implemented in CUSP library, intended for GPU
(general purpose Graphic Processing Unit) based architecture.

A decrease of two orders of magnitude of the processing time was ob-
tained by MUMPS, in comparison to the LTSy implementation that uses



the LAPACK solver. In addition, the solution of the MUMPS method con-
verged. However, due to the ill-conditioning of the system matrix, the so-
lutions of the iterative methods did not converge and processing times were
high. The discussion about processing times and convergence attaioned by
the different solvers is shown in Section 3.

The performance optimization of the LTSy method is focused in this
work since it is employed for solving hydrologic optics inverse problems in
an implicit way, which demands hundreds or thousands of executions of the
LTSy method itself.

2 Radiative Transfer Equation

The Radiative Transfer Equation (RTE) for radiances L is given by
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where 7 is the optical depth, u € [—1,1] and ¢ € [0,27] are the cosine of
the incident polar angle 6 and the incident azimuthal angle, respectively.
w( is the constant single scattering albedo. The scattering phase function
B, ; 1’ @), gives the scattering beam angular distribution and the source
term is S(7, p, ).

2.1 The discrete ordinates method

In a non-homogeneous medium with N, degrees of anisotropy, the scattering
angle is then discretized into (Ny + 1) azimuthal modes, with /N polar an-
gles, while the domain is splitted into R homogeneous regions. The radiate
transfer equation is then expressed as the discrete ordinate equations, also



known as Sy equations, given by
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The boundary conditions are

LT(0,p5) =0 j=1,2,...,n (3a)

LR(rr.—p) =0 j=n+Ln+2... N (30)

2.2 The LTSy approach

The LTSy method [4, 8] applies the Laplace transform on the radiative
transfer discrete ordinates equations, given by (2) and (3). This yields a
system of symbolic algebraic equations on s:
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where f;j;(s) = I LT.(7)e™*T dr. The matrix form of equation (4) be-
comes
- m

My, (s)L,"(s) = L*(0) + Q" (s). ()

where the N-order matrix H&n (), called the LTS matrix, is given by

M;ZT(S) =sI4+ A" (6)



and I is the N-order identity matrix, while the A™ matrix is given by
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and vectors f,,m(s), L™(0) and @, (s) are defined as
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In order to solve the matrix equation (5), it must be multiplied by the
inverse matrix of M ;\? +(s), as follows

L(s) = [My.(s)] ' L) + My, (s)] (8a)
L"(s) = B, (s)L7"(0) + B, ()@, (s)- (8b)

Applying the Laplace inverse transform
Ly*(r) = B,*(T)L;*(0) + H;"(7) (9)

where

BMM(t) =L [B](s) (10)

HM (1) = B (7) * @ (7) (11)

where the convolution is denoted by .

The implementation of the LTSy method solves each mth azimuthal-
mode system of order R x N shown in Equation (9), for m =0,1,2,..., N,
R regions and Nth-order of quadrature.

and



Applying in Equation (9), the boundary conditions and a criterion of
continuity between adjacent regions, i.e., L;"(7) = L ,(0), yields to the
systems given by the Equation (12)
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For instance, Figure 1 shows the sparse structure of the linear system
matrix given by the Equation (12), for a non-homogeneous medium with 10
regions and 50 polar directions. This yields to a matrix with 500 rows and
columns, containing 47500 nonzero elements (nnz=47500).

3 Results

The computational performance of the original implementation of the LTSN
method, which employs the LAPACK solver was taken as reference [3],which
was developed for dense matrices. The considered case study refers to a non-
homogeneous medium, with 80 depth regions and 150 polar directions. The
resulting sparse linear system has 12000 unknown radiances, and its linear
system matrix has 3577000 nonzero elements (nnz = 3577500). Figure 2
shows the matrix of this case study.

The other direct solver tested for the case study problem is the one of the
MUMPS library (MUItifrontal Massively Parallel sparse direct solver) [1, 2],
which is specific for sparse matrices. The iterative solvers tested here were
the GMRES method implemented in the LIS library [7], specific for multi-
core CPUs, and the CUSP package [5], developed for GPU-based architec-
tures.

Computational performance tests were performed in a cluster node that
includes two octacore Intel Xeon E5-2660 (Sandy Bridge, 2.2GHz) processors



Matrix of LTSn. 50 directions and 10 regions (500 x 500)
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Figure 1: Sparse structure of the linear system matrix, considering a non-
homogeneous medium with 10 regions and 50 polar directions
Size=500 and nnz=47500

and a GPU NVIDIA Tesla K20m. Main memory is 64 GB and GPU memory,
5GB. The performance of the different methods is shown in Table 1.

Direct methods were successfull in finding the system solution, but the
execution time of the MUMPS package solver was about 100 times lower
than the reference solver of the LAPACK library. This improved perfor-
mance was indeed expected, since MUMPS is a specific solver for sparse
systems.

On the contrary, although the iterative GMRES methods from LIS (CPU)
and CUSP (GPU) packages demanded execution times similar the MUMPS
solver, they were not able to achieve the system solution. In fact, both
failed to converge to the solution, even after 200 iterations. This behavior
can be attributed to the ill-conditioning of the linear system matrix. The
stop criterion adopted was the relative residual 2-norm lower than 1079, i.e.,
tolerance = ||22|| < 1079, or number of iterations up to 200.



Matrix of LTSn. 150 directions and 80 regions (12000 x 12000)
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Figure 2: Sparse structure of the linear system matrix, considering a non-
homogeneous medium with 80 regions and 150 polar directions.
Size=12000 and nnz=3577500

Solver Time(s) Iterations Relative residual 2-norm
LAPAPACK/DGETRF 56.34 - -

MUMPS 0.52 - -
LIS/GMRES 1.02 200 9.96E-001
CUSP/GMRES 0.40 200 3.83E-001

Table 1: Execution time of direct and iterative methods

4 Final Remarks

This work aimed at the optimization performance of the LTSy method by
chosing a solver more suited for sparse linear systems. This goal was achieved
using the direct method implemented in MUMPS package, that obtained
for the case study problem a decrease of about two orders of magnitude
in comparison to the LAPACK solver originally implemented in the LTSy
method.

However, the two iterative methods tested here, intended for multicore
and GPU architectures, failed to achieve the solution for the case study
problem, mainly due to the ill-conditioning of the LTSy linear system ma-



trix. A further study will exploit the use of suitable preconditioners for these
methods.

The improvement of the computational performance is critical in the
case of inverse problems that estimate optical properties of the medium,
since they are solved implicitly by formulating the inverse problem as an
optimization one. In an iterative process, each candidate solution composed
of guessed values is evaluated by the radiative transfer equation (RTE) yield-
ing a light field that is compared to the measurements by the corresponding
quadratic difference. A stochastic optimizer is used to generate the candi-
date solution for the next iteration [9, 6, 12]

It is worth to note that hundreds or even more of iterations of the inverse
solver for complex cases may demand processing times that may be unfea-
sible, especially for problems that involve anisotropic and non-homogeneous
medium with very vertical levels [10, 11], as shown here, justifying the re-
search for a better performance of the LTSy method by improving its linear
system solver.
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