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In this paper, we present a combined h-p-adaptive strategy
for accurately modeling the Navier Stokes equations of compressible
fluid flow in two dimensions. The strategy used in the adaptive h-p
procedure is similar to the one used for adaptive h-refinement
procedures. First, the mesh is refined in an h-fashiop up to a maximum
level. After an optimal h-mesh has been gbtained, the principle of
equidistribution of error is used to locally increase the degree of
poiynomial. In the present study, an upwinded-diffusion Petrov
Galerkin scheme is used to produce a relaxed (or regularized) model of
the compressible Navier Stokes equations for two dimensional domains.

We shall be concerned with the nymerical analysis of high
speed, viscous, compressible flow in arbitrary two-dimensional
domains., An acceptable mathematical model for such flow phenomena is
embodied in the Navier Stokes equations, which can be written in the

compact conservation form as:

B+ divE = 0¥t e 0 x (0,t) (1)
with appropriate initial conditions and where the boundary are an
appropriate combination of Dirichlet conditions (supersonic inflow),
Neumann conditions (no-flow condition) and nonlinear constraints {no-
s1ip condition). f = the flow domain, (D.tF) = a3 time interval of

interest and Y = vector of conservation variables = [p, pu, pv, pe]T.
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The above equations will be approximated by a version of the

SUPG algorithm developed by the authors, The implementation of SUPG
follows closely earlier work by Mallet [4]. Concisely, the SUPG
approximation can be reduced to a Galerkin approximaticn of the

following set of relaxed equations:

_ CFLpy 1
div F ~ [Axeﬁ W div F]x (2)

_ CFLAx 1 .
2 AxeB*W div F y ¢
+ appropriate boundary conditions

sihere A and B are the tangent matrices to x and y components of the
flux tensor F, CFL,, is an upwind parameter (spatial CFL-number} and
8xe, 1s & measure of the element size, JK_LW—' is the matrix whose
inverse square is A? + B2,

The numerical viscosity terms in 2 (those involving the
parameter CFI.AK): provide an indication of the local approximation
error, These terms, which are similar to a truncation error in the
Petrov Galerkin approximation, provide a conveniently calculated local
error indicator and are used as a basis for mesh refinement in this
study. The undertying idea 1is, that as the mesh size is decreased,
the magnitude of this viscous term will also decrease. Roughly, this
gives- an estimate of second derivatives at the nodes.

Two graphs, representing pressure contours in the domain
are shown to demonstrate the resolution that can be obtained and the
type of problems that can be resolved by the method described above.
The first graph shows pressure contours of a supersonic flow
impinging on a flat plate. The inflow mach number is 3, while on the
plate a no-slip condition is imposed. The second graph shows pressure

contours of a supersonic flow around a spherical object. The
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inflow mach number is 6. A gqurved bow shock can be clearly

distinguished.

[y

HNumerical Simulation of Carter's Flat Plate Problem
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