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1. Introduction  

Since the appearing of first work on He3 in 1972[1], several theoretical papers have been published using 

different methods: Monte Carlo [2, 3], specific functions [4] and hyperspherical coordinates [5]. Nevertheless, 

unfortunately, an analytic form of the PES simple enough to be used for all the purposes were missing. On a 

previous paper [6], we had fill out the above gap by furnishing a very simple and accurate analytical expression 

of the PES for the He3 and now we use it for all the rare gas series. In the literature we can find different 

approach to different systems, as Ne3 studied by variational approach, which uses atom pair coordinates and a 

distributed Gaussian function (DGF) basis set by Baccarelli et. al, [7]. 

 

2. Theoretical and Computational Details 

The coordinate system is made by three variable, the hyperradius ( > 0) and two hyperangles (0 ≤  ≤ /4) 

and 0 ≤  ≤ /3). The hyperangle  represents the area of the triangle and the hyperangle  is related with the 

shape of it, the hyperradius, , is the vector pointed out from the center-of-mass (CM) of the system, see Fig.1.  

 

Fig. 1 Definition of the hyperspherical coordinates (,,). The 

vector ri (xi; yi; zi) (i = 1; 2 and 3) representing the internuclear 

distances of the rare gas atoms,  is the vector with representing 

the distance between the center-of-mass of the molecule system. 

 

In this figure, the vectors ri (xi; yi; zi) (i = 1; 2 and 3) representing the interatomic distances in space. We have 

obtained the PES using the mass unscaled hyperspherical coordinates. Note that the ranges of  and  are 

lower than their standard values. Symmetry restrictions are, indeed, needed to account for the exchange of 

identical particles. The definition of the hyperradius and hyperangles can be find in our previous work [6]. 

Using the coordinates system, presented in Fig.1, the PES can be expanded into a series of angular 

functions multiplied by radial coefficients (expansion moments): 

 𝑉(𝜌, Θ, Φ) = ∑ 𝜐𝑚(𝜌)𝐹𝑚(Θ, Φ)𝑚        (1) 

where the 𝜐𝑚(𝜌) coefficients are the expansion moments depending on the  coordinate and 𝐹𝑚(Θ, Φ) are 

angular functions which can be written as the real Wigner D-functions [8] with the  angle equal to zero, where 

the D-function is given by: 𝐷𝑚,𝑛
𝑙 (Θ, Φ, 𝛾) = 𝑒−𝑖𝑚Θ𝑑𝑚,𝑛

𝑙 (Φ)𝑒−𝑖𝑚γ, and 𝑑𝑚,𝑛
𝑙 (Φ) is tabulated function. In that, 

way the term 𝐹𝑚(Θ, Φ) can be written as: 

𝐹𝑚,𝑛
𝑙 (Θ, Φ, 𝛾) = √

8𝜋2

2(2𝑙+1)
(𝐷𝑚,𝑛

𝑙 (Θ, Φ, 𝛾) + 𝜖𝐷−𝑚,−𝑛
𝑙 (Θ, Φ, 𝛾))    (2) 

Truncating equation (1) at m = 1, which is enough to represent a three-body system, we have: 

𝑉(ρ, Θ, Φ) = √2{𝜐0,0(𝜌)𝑑0,0
0 (4Φ) + 𝜐0,1(𝜌)[𝑑0,0

1 (4Φ) + 𝑑0,1
1 (4Φ)]                                              

+ 𝜐1,1(𝜌)cos (6Θ)[𝑑1,0
1 (4Φ) + 𝑑1,1

1 (4Φ)]}                                                         (3) 

This shows that three not dependent radial functions are needed for 𝑉(ρ, Θ, Φ), thus we considered three 

different arrangements (leading configurations) of the Rg3 complex: the linear disposition, the equilateral 

triangle and a scalene triangle. The expansion moments are, then, obtained by a linear combination of the 

potential profiles calculated for the leading configurations. The moments 𝜐𝑚,𝑛(𝜌) are related to the potentials 

of the leading configurations by: 

𝑉𝑒𝑞(𝜌) = √2 (𝜐0,0(𝜌) − 𝜐0,1(𝜌))         

𝑉𝑠𝑐(𝜌) = √2𝜐0,0(𝜌) +
1

2
(√3 − √2)𝜐0,1(𝜌)    (4) 

𝑉𝑙𝑖𝑛(𝜌) = √2 (𝜐0,0(𝜌) + 𝜐0,1(𝜌) + 𝜐1,1(𝜌)) 

Solving the above system of equations for 𝜐0,0(𝜌), 𝜐0,1(𝜌) and 𝜐1,1(𝜌), gives: 
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𝜐0,0(𝜌) = (√
3

2
− 1) ((√3 − √2)𝑉𝑒𝑞(𝜌) + 2√2𝑉𝑠𝑐(𝜌)) 

𝜐0,𝑞(𝜌) = −√2(√6 − 2) (𝑉𝑒𝑞(𝜌) + 𝑉𝑠𝑐(𝜌))     (5) 

𝜐1,1(𝜌) = (4√3 −
9√2

2
) 𝑉𝑒𝑞(𝜌) + 4(√2 − √3)𝑉𝑠𝑐(𝜌) +

√2

2
𝑉𝑙𝑖𝑛(𝜌) 

Therefore, by substituting eq. (5) into eq. (4), the full potential is obtained provided analytical expressions for 

𝑉𝑙𝑖𝑛(𝜌), 𝑉𝑒𝑞(𝜌) and 𝑉𝑠𝑐(𝜌) are available. To get U(𝜌), where 𝑈(𝜌) = 𝑉𝑠𝑐(𝜌), 𝑉𝑠𝑐(𝜌), 𝑉𝑠𝑐(𝜌); we have computed 

the energies of 151 points having different values of  for each of the three leading configurations, then we 

have fitted the energies vs  by means of a nonlinear least-square procedure, using a fifth degree generalized 

Rydberg potential as the fitting function. The complex energy is expressed as: 𝐸𝑖𝑛𝑡 = 𝐸𝑅𝑔3
− 3𝐸𝑅𝑔. 

 

3. Results and Discussions  

The ab initio calculations were carried out by using the Molpro2010 program. The CCSD(T)/aug-cc-

pVQZ for all Rg3 system, except for Xe3 where the basis set aug-cc-pvQZ-PP was used. First, a simple 

optimization and frequency calculation for all dimers and trimers were carried out to determine the equilibrium 

configuration. It will be used as a guide for the PES calculation. For all trimers, we have computed 151 energies 

to different values of distance, while for the dimers we calculated 101 energies. A nonlinear least-squares 

procedure was used to obtain the values of the adjustable parameters that minimize the differences between 

the analytical energies obtained with the fifth degree generalized Rydberg function.  

Fig.2 compared the PES for the dimers. The optimized data are, also, included in this figure, with the 

reference data. It is possible to observe that our optimized data are in good agreement with the reference data. 

The biggest error in the ab initio fitting is for the Xenon dimer, with a rms of 0.033252 cm-1. 

Fig.3 present the ab initio and the Rydberg fitting for leading configuration of each rare gas trimer. 

The smallest and biggest rms among all the fittings are 0.006707 and 0.158722 cm-1 for the scalene Xe3 and 

equilateral Kr3, respectively. 

 
Fig. 2: Dimers potential energy surface, [A] J. Chem. 

Phys. 1972, 56, 5801, [B] J. Chem. Phys. 1976, 65, 3242, 

[C] J. Mol. Spectr. 1973, 46, 454, [D] J. Chem. Phys. 

1974, 61, 3081, [E] J. Chem. Phys. 1974, 61, 4880 
 

Fig. 3 Rg3 leading configurations 
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