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Abstract. The objective of the present work is to determine the equilibrium points and to perform an analysis of zero
velocity curves in the Modified Restricted Synchronous Three-Body Problem. To perform this task, it is necessary to
obtain the equations of motion, in a rotating reference frame, of a spacecraft with negligible mass that orbit around a
system constituted of two massive bodies. The two massive bodies are assumed to have irregular shaped bodies and were
modeled as a rotating mass dipole. The exact positions of the equilibrium points are obtained and also the values of the
Jacobi constant necessary to emerge each equilibrium point. We analyzed how the position of the collinear equilibrium
points vary when we modify the size and mass ratio of the two primary bodies.
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1. INTRODUCTION

It is notorious how much has grown the scientific interest in the exploration of asteroids in the last years (Pamela
and Misra, 2011). Asteroid exploration has brought information about the dynamics and formation of asteroids and has
entailed to a better understanding of the origin of the solar system (Pamela et al., 2013).

The Exploration of asteroids and comets is a task quite challenging, due the fact of each body has its own physical
characteristics of shape, density, rotation, mass distribuition, et al. Then, develop a mathematical modeling of gravitation
field close these bodies is a task quite complex and is necessary develop this equations encompassing the maximum of pa-
rameters possible, because several times the physical characteristics of asteroids are only discovered after an approaching
spacecraft (Scheeres et al., 2000).

The model adopted here assumes that the two asteroids of the binary system are modeled as a rotating mass dipole,
with the purpose of representing a natural elongated body (Zeng et al., 2016a). Initially, this mathematical approach in
an asteroid was introduced by Zeng et al. (2015). More current studies of Zeng et al. (2016b) have adopted an improved
dipole model, in which they assumed a flat dipole in an asteroid. In this study, Zeng et al. (2016b) found up to 13
libration points in the plane of motion. Ferrari et al. (2016) investigated a way to find models in the trajectories next to an
asteroid system using the dipole model of rotating mass. Santos et al. (2017) investigated the equilibrium points and their
respective zero velocity curves of an asteroid binary system, considering the restricted three-body synchronous problem,
in which one of the asteroids was considered as a point mass and the second asteroid was considered as a mass dipole in
rotation. In this work, we investigated the equations of motion in an asteroid binary system which the two asteroid are
modeled as dipole mass in rotation.

2. EQUATIONS OF MOTION

The Modified Restricted Synchronous Three-Body Problem has the objective of describing the dynamics of an in-
finitesimal mass particle (P ) that moves under the gravitational influence of two other massive bodies (M1 and M2) that
orbit around the center of mass of the system. The distance unit is normalized by the distance from the center of mass of
the body M1 to the center of mass of the body M2. The two primary bodies are modeled as a rotating mass dipole, i. e.,
each primary body is formed by two hypothetical bodies with masses m11 and m12 (for body M1) and m21 and m22 (for
body M2), as shown in Figure 1.

The mass ratio is given by

µ∗ =
m21

m11 +m12 +m21 +m22
. (1)
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Figure 1: Representative image of the geometric shape of the system under study (not in scale).

The primary bodies are located on the x-axis, whose coordinates are given by

x11 = −2µ∗ − d1/2, (2)

x12 = −2µ∗ + d1/2, (3)

x21 = −2µ∗ − d2/2 + 1, (4)

x22 = −2µ∗ + d2/2 + 1. (5)

Here d1 is the distance between the point of mass m11 and m12 (dimension of M1) and d2 is the distance from the point
of mass m21 to the point of mass m22 (dimension of M2). The equations of motion of the body of negligible mass, when
viewed from a rotating reference, are given by

ẍ− 2ẏ = Ωx, (6)

ÿ + 2ẋ = Ωy, (7)

where

Ω =
x2 + y2

2
+

1 − 2µ∗

2r11
+

1 − 2µ∗

2r12
+
µ∗

r21
+
µ∗

r22
, (8)

with

r11 = [(x− x11), y, 0]T , (9)

r12 = [(x− x12), y, 0]T , (10)

r21 = [(x− x21), y, 0]T , (11)

r22 = [(x− x22), y, 0]T , (12)

in that Ωx and Ωy are the partial derivatives of Ω with respect to x and y, respectively.
The known Jacobi’s Integral (Szebehely, 1967) is given by:

v2 = 2Ω − C. (13)

Note that the Equation 13 is dependent on the function Ω and an integration constant C, which is an integral of the
equations of motion. In the literature, C is known as Jacobi’s Constant (Dutt and Anilkumar, 2014; Ren and Shan, 2014).
In this work we are assuming that the spacecraft is moving in the plane xy. Then, the Equation 13 shows us that the
spacecraft velocity is a function of the position of the body in the plane, for a given numerical value of C (generated from
the initial conditions) (McCuskey, 1963). It is observed that in Equation 13 there is a relation between the square of the
velocity and the positions of the spacecraft in the rotating coordinate system (Molton, 1960).

In mathematical terms, the zero velocity curve (ZV C) is defined as 2Ω − C = 0 (McCuskey, 1963; Szebehely,
1967). The ZV C expressed in Cartesian coordinates is given by
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(a) Variation of collinear equilibrium points as a function
of the size of the most massive primary.

(b) Variation of the collinear equilibrium points as a
function of the size of the less massive primary.

Figure 2: Variation of the collinear equilibrium points taking in consideration the dimension of the primary bodies.

x2 + y2

1
+
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2µ∗

r22
= C. (14)

The regions in which the spacecraft movement is allowed are regions where 2U > C, otherwise, by Equation 13, we
see that the square of the velocity would become negative, which is a physical impossibility (Szebehely, 1967).

Note that it is not possible to obtain, through this analysis, any information about the specific trajectory of the particle
studied. Only the limits are determined (Szebehely, 1967). The contour curve of the equation 14 shows us the border
regions where motion is allowed (Dutt and Sharma, 2011; McCuskey, 1963).

3. RESULTS AND DISCUSSION

Figure 2a and 2b show the x coordinates of points L1, L2 and L3 for different values of d1 and d2, respectively. Note
that in Figure 2a (where we vary the dimension of M1) the effects slightly modify the positions of L3 and L1. L2 is far
from M1, so it remains practically constant. In Figure 2b the size of M2 was modified. Due to this fact, the points L1 and
L2 have larger influence (because they are closer to the M2) due to the new mass distribution of this body. Notice that L3

remains practically constant.
In Figure 3, it shows how the position of the collinear points vary when we increase the mass ratio of the system.
We can note from Figure 3 that as we grow the mass ratio µ∗, the mass of the M2 increase and the mass of M1

decrease. With this change of gravitational field of both the bodies, this causes a new configuration to be required to
establish the equilibrium points. Notice that as we increase the mass of M2, the equilibrium points that are closest to this
body move away, causing the equilibrium point L1 to move to the left and the equilibrium point L2 to move to the right
with respect to M2. The equilibrium point L3 is more distant from the primary, which makes it difficult to understand the
behavior of this body intuitively. Numerical evidence shows that as we increase the mass ratio, the point of equilibrium
L3 moves away from the primary bodies, causing a new relation between centriful force and gravitational force to be
necessary to annul generating a stationary point.

Some numerical tests were performed, where we consider µ∗ = 0.0049505, d1 = 0.736068 and d2 = 0.131440.
These numerical values are based on the Alpha − Gamma asteroid pair of the 2001SN263 asteroid system. Doing the
right side of Equations 6 and 7 equal the zero and solving numerically, we find five real roots, which three of them are
collinear (L1, L2 and L3) and the another two are in plane xy. The localization these equilibrium points are shown in
Table 1. In Figure 4 show the positions of the equilibrium points (red) with respect to the center of mass of each primary
body (black).

Some ZV C are shown in next. The color coded indicates the velocity that the spacecraft will have in each region. The
color column legend shows the square velocity needed to cross from one region to another. The red regions are forbidden
regions where the moviment is not possible. For a spacecraft reach the in red regions with the initial conditions generated,
it is necessary has velocity square negative, which is a physical impossibility.

In Figure 5 we can observe that the ZV C related the energy C1 = 3.716359670795 touches on a point called L1. The
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Figure 3: Positions µ∗ of collinear equilibrium points (L1, L2 and L3) for different values of µ∗.

Table 1: The positions of equilibrium points for the studied system
Equilibrium points

L1
x 0.8621142586696
y 0

L2
x 1.2000933511901
y 0

L3
x -1.122101868767
y 0

L4
x 0.0046508345280
y 0.9276535170573

L5
x 0.0046508345280
y -0.9276535170573

Figure 4: Positions of the equilibrium points for the system studied (red) and the positions of center of mass of primaries
bodies (green).

value C1 become possible the transfer of spacecraft between M1 and M2 through of L1 point. The Figure 5b show a
visual aproximation of figure 5a in M2 for a better visualization of ZV C close of the M2.
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(a) Zero velocity curves.
(b) Magnification of Figure 5a, showing the re-
gion around M2.

Figure 5: Zero velocity curves. The first point of contact occurs in C = 3.716359670795.

(a) Zero velocity curves.
(b) Magnification of Figure 6a, showing the re-
gion around M2.

Figure 6: Zero velocity curves. The second point of contact occurs in C = 3.34813335305.

It is important observe that the spacecraft coming from M1 initially and with energy C1, for example, just can reach
the body M2 only crossing by L1 point. We can note that, by figure Plau that the transfer between the regions close
M1-M2 and the infinite remains forbidden, but the transfer between M1 and M2 is possible.

Decreasing the value of C, the curves close toM1 andM2 (oval inner) becomes greater and the external curve become
smaller. When the value of C arrive in C2 = 3.34813335305, the inner oval and external oval get in touch so, we have a
second contact point. This contact point is called L2. It is possible note that for C = C2 become possible a comunication
between the regions close of M1 −M2 with the infinite. The Figure 6b is a visual aproximation of Figure 6a around of
body M2.

Decreasing even more the value of C util C3 = 3.2678562132, the prohibited region reduce (red region smaller than
in Figures 5 and 6) and the spacecraft has more regions for moviment, as shown the Figure 7. We can note that there is a
link between the region close to M1 and the infinite, but this time from left side. This contact point is called L3.

Figure 7: Zero velocity curves. The third point of contact occurs in C = 3.2678562132.
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Finaly, decreasing of the C3 to C4−5 = 2.85925963595, the forbidden region becomes smaller when compared to
previous cases. Note that, only the regions around of the L4 and L5 points remain as prohibit, as shown in Figure 8. The
notation C45 is a form abbreviated of write C4 and C5 because they have the same values.

Figure 8: Zero velocity curves. The four and five points of contact occurs in C = 2.85925963595.

4. CONCLUSIONS

In this work we investigate the influence that the dimension of the primary bodies and their respective masses has on
the generation of the equilibrium points. For the quantitative study we realized that as we increase the dimension of M2,
the equilibrium points L1 and L2 are more influenced (because they are closer to this body) and move away from M2.
On the other hand, the point of equilibrium L3 does not undergo a considerable change by being more distant. On the
other hand, when we vary the dimension of the M1, we note a considerable change in position of equilibrium point L3.
However, the positions of equilibrium points L1 and L2 practically not alter.

It was also analyzed the influence that the mass ratio µ∗ affects the positions of the equilibrium points. Numerical
evidence shows that as we increase the mass ratio (the mass of M2 becomes larger), all collinear equilibrium points move
away from M2. This is due to the fact that the gravitational field of M2 becomes greater (with the increase of µ∗) and
with that, a new configuration is necessary to establish the points of equilibrium.

The zeros velocity curves were obitained in order to find the regions in which the spacecraft movement in the xy plane
is allowed for different values of C. In this study, we verified that as we decrease the value of the Jacobi constant C, the
regions where movement is permitted becomes greater.
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