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ABSTRACT

This work presents an architecture for big Earth Observation
data analytics. It uses array databases to support storage and
management of large volumes of satellite image time series.
The analysis methods are developed in R and enable using
the full depth of satellite image time series with advanced
statistical learning algorithms. New kinds of web services
allow data access and remote data processing of time series.
The e-sensing architecture has been designed with a focus
on land use and land cover classification using SITS, an area
of Earth observation where much progress is required. This
architecture is fully implemented and has already allowed
innovative results in land use and land cover mapping. The
method works with big data sets with a minimal set of
assumptions to increase its generality. Our work promotes
reproducibility and reuse of the methods and results.

Index Terms— Earth observation, web services, satellite
image time series, array databases, science reproducibility,
open source.

1. INTRODUCTION

The data deluge resulting from the open access policies
for Earth observation (EO) data has brought about a major
challenge: How to design and build technologies that allow
the EO community to analyse big data sets?. Developing
such a solution is hard because current technologies for
big data management are quite different and incompatible.
Alternatives include using flat files [1], MapReduce-based
solutions such as Google Earth Engine [2], and distributed
multidimensional array databases such as Rasdaman [3] and
SciDB [4]. Each choice has its advantages and drawbacks,
and fits certain needs better than others.

The first option of an infrastructure for big EO data is to
store EO data as flat files and use file management systems.
This is the approach taken by the Australian Data Cube [1].
This choice makes it easy to preprocess images from different
sources so that they become geometrically and radiometrically
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compatible. Data merging and cross-calibration tasks are
simple to perform. Existing pixel-based image analysis
methods can be applied to big data sets. However, these
simple infrastructures have a high management cost. Data
analysis proceeds by searching all the relevant files. The
programs open each file, extract the relevant data and then
move onto the next file. When all the relevant data has been
gathered in memory, the program can begin its analysis.
Working with time series becomes specially burdensome
because of the number of files that must be opened for a single
time series to be retrieved. Managing 10,000 - 100,000 files
at once can lead to scalability and performance bottlenecks.

An alternative is to take a mainstream solution used for
other big data applications and adapt it to EO data. This is
the case of MapReduce-based solutions such as Google Earth
Engine [2]. The MapReduce model has been motivated by
highly parallel applications such as text queries and there are
open source implementations such as Spark. MapReduce
architectures are very efficient for problems where each
pixel is processed independently. They lack flexibility for big
EO analytics, since they use an excessive granularity when
breaking the data into parts. Region-based methods such as
image segmentation are not supported, nor large-scale time
series analysis are possible.

A third option is to use array databases such as Rasdaman
[3] and SciDB [4]. Array DBMS reduce the impedance
mismatch between the data model (raster), the storage model
(arrays) and analysis functions such as linear algebra and
image processing. These databases split large volumes of data
in distributed servers in a “shared nothing” way. Each server
controls its local data storage. Arrays are multidimensional
and uniform, as each array cell holds the same user-defined
number of attributes. Array databases allow organising EO
data to meet the needs of different applications. Comparative
studies show the SciDB architecture to be more efficient
and more flexible for processing remote sensing data than
MapReduce [5]. However, since array databases are designed
for scientific data management, there is much less experience
with them. Developers using SciDB have to spend significant
effort for system configuration and performance tuning.
Despite these problems, we consider array databases to be
the best choice for support innovative big EO data analytics.
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One of the areas where array DBMS allow advances on
big EO data analytics is when processing dense satellite
image time series (SITS). Using SITS is a leading research
trends in Remote Sensing [6], [7]. One of the more promising
applications of SITS is measuring land use change. Land
use change is important for Brazil, one of the world’s
largest agricultural producers with one of Earth’s richest
biodiversities. Many researchers have also pointed out the
need for improving future global land cover products [8],
[9]. Given this motivation, the e-sensing architecture has
been designed with a focus on land use and land cover
classification using SITS.

This work presents innovative methods for using the full
depth of satellite image time series for extracting information
from big Earth observation data. We have developed a full
open source architecture that allows efficient processing of
large-scale data sets, coupled with advanced data analytic
methods. Our focus is on extracting the most information
from dense time series of remote sensing satellites such as
MODIS, LANDSAT, and SENTINEL, or combinations of
those.

2. DESIGN DECISIONS

The e-sensing architecture has been designed with a dif-
ferent perspective than other proposals for Earth Observation
Data Cubes [1]. We believe the gains of using big EO data
will come from new analytical methods, and our design
reflects such aim. A key decision for big EO architectures is
the choice of programming environment. We chose R, which
has more than 11,000 packages for statistical computing
and graphics, including spatial analysis, time-series analysis,
classification, clustering, and machine learning. Using R,
it is easier for researchers to develop new methods and to
collaborate with their peers. SciDB has a streaming interface
that runs R scripts in parallel directly on each server (Figure
1). Combining array DBMS with R statistical computing is a
natural solution for EO applications, allowing a good balance
between massive parallel data processing and maximum
flexibility in algorithm design.

Scientists also need tools for small-scale testing and for
scaling up their work. We developed two web services to
support these tasks [10]. The Web Time Series Service
(WTSS) retrieves time series of Earth observation data for
specific locations. The Web Time Series Processing Service
(WTSPS) enables users to run R scripts on data cubes of
Earth Observation data. These Web Services enable scientists
to test their analysis methods first on their desktops and then
move them to big EO data cubes.

Based on these considerations, the e-sensing architecture
uses the following building blocks:

1) The SciDB open source array database [4] that allows
easy mapping of big EO data to its data structure.

-
USER = GuI SCIDBR
Jouf
<z 1

5
ScibB
Coordinator
<
(’ scios |7}
[-D\ Instance P of 1111
r_exec §|:~~4 4
- L -

SciDB SciDB
Instance Instance

r_exec r exec

»IE@

r_exec

Fig. 1: Remote execution of R scripts in SciDB

2) R as the tool for big data analytics, so that researchers
can thus scale up their methods, reuse previous work,
and collaborate with their peers.

3) The R packages SITS [11] and dtwSat [12], for big
EO analytics on satellite image time series.

4) Web services (WTSS and WTSPS) for big EO data,
adapted to the needs of satellite image time series [10].

5) The architecture is fully open source, being made
available online at https://github.com/e-sensing/.

3. MATCHING DATA INFRASTRUCTURES TO
ANALYTICAL NEEDS

Most studies on time series for land cover classification
in the literature use classical remote sensing methods [6].
For multiyear studies, researchers derive ‘’best-fit” yearly
composites and then classify each composite image separately.
The results from different periods are compared to detect
change. We denote these works as taking a space-first, time-
later approach.

Space-first, time-later methods do not use the full potential
of remote sensing time series. The benefits of SITS increase
when the temporal resolution of the big data set captures
the most important changes. In these cases, the temporal
autocorrelation of the data will be stronger than the spatial
autocorrelation. Given data with adequate repeatability, a
pixel is more related to its temporal neighbours than to its
spatial ones. In these cases, time-first, space-later methods
lead to better results than the space-first, time-later approach.

There has been much recent interest in the Earth ob-
servation community on using advanced statistical learning
methods such as support vector machines [13] and random
forests [14]. However, most researchers still use a space-first,
time-later approach in connection with these methods. The
dimensions of the decision space are limited to the number of
spectral bands or their transformations. These approaches do
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not use the power of advanced statistical learning techniques
to work on high-dimensional spaces and with big training
data sets [15].

The analytical methods of the e-sensing architecture
combine data from image time series with statistical learning,
using a time-first, space later approach. These methods
use the full depth of dense time series to train advanced
predictive models. These model include linear and quadratic
discrimination analysis, support vector machines, random
forests and neural networks. In a typical classification
problem, we use time series with known land cover labels to
derive measures that capture class attributes. Based on these
measures, referred as training data, we provide support to
select a predictive model that allows inferring classes of a
larger data set.

Our proposal uses the full depth of satellite image time
series to create large dimensional spaces. The method we
developed has a deceptive simplicity: use all the data
available in the time series samples. The idea is to have as
many temporal attributes as possible, increasing the dimension
of the classification space. Our experiments found out that
modern statistical models such as support vector machines,

used the MODIS MOD13Q1 product from 2001 to 2016,
provided every 16 days at 250-meter resolution, with 23
samples per year. By taking samples of labelled time series
with 4 bands, we feed the statistical inference model with
a 92-dimensional attribute space. For the analysis, we used
the Normalized Difference Vegetation Index (NDVI) and
the Enhanced Vegetation Index (EVI), and the near infrared
(NIR) and middle infrared (MIR) bands. We defined nine
classes (see Table 1 that include the most important crops and
production systems in Mato Grosso. Based on a 5-fold cross
validation, we estimate an overall accuracy of 94% and the
Kappa index was 0.92. Producer’s and user’s accuracies of all
classes were close to or better than 90%. This confirms the
applicability of the proposed method in classify agricultural
areas. In general, results show good discrimination between
different crops, which improves on previous work [16], [17],
[18].

Table 1: Confusion matrix of MODIS time series images,
obtained by 5-fold cross validation of classification of field
data, and values of producer’s accuracy (PA) and user’s
accuracy (UA) for each class.

and random forests perform better in high-dimensional spaces 1 2 3 4 5 6 7 8 9 UA
than in lower dimensional ones. 1 Cerrado 33 0 0 12 0 0 0 0 0 097
To illustrate the approach, Figure 2 shows the plot of 2 Fallow-Cotton 03 0 0 1 2 0 0 0 092
the NDVI values of 370 time series for land cover class 3 Forest 10 136 0 0 0 0 0 0 0%
”Pasture”, based on ground samples. Each thin line is one 4 Pasture 6 0 1 37 3 1 0 5 0 0%
time series. The darker lines are the median and first and 5 Soy-Corn 0 b1 1352 180026 4087
thirq q.uart%le ‘Values.. By visualizing the? d.ata, the challenge 3 :zz:g;tlf; 8 g 8 g 103 3;6 808 g g ?3(6)
of distinguishing noise from natural variation becomes clear. 8 Soy-Millet 0 0 0 0 25 2 0 19 2 o087
The data shows natural variability due to different climate 9Soy-Sunflower 0 0 O O 4 0 0 1 47 090
regimes and shows noise associated to cloud cover. To avoid PA 0.98 0.97 0.99 0.96 0.88 0.94 1.00 0.85 0.89

losing information, we use the raw data such as this one to
train a support vector machine, a classifier which is robust
to noisy data sets.

Samples (185) for class Pasture in band = ndvi

Fig. 2: Time series of 370 ground samples for land cover
class "Pasture” in the state pf Mato Grosso, Brazil (source:
authors).

As a case study, we developed a detailed land use change
map of the state of Mato Grosso, Brazil, an area of 900,000
km?, which has about 20 billion time series measures. We

4. COMPUTING PERFORMANCE

The architecture has been implemented operationally at
Brazil’s National Institute for Space Research. In terms of
hardware, our architecture uses 2 clusters. Each cluster has 5
servers with 2 CPUs with 6-cores each, operating at 2.4GHz
with a 15MB cache. Each server has 96 GB of RAM, and 16
TB of data storage. This gives 60 cores per cluster that can
work in parallel in a “’shared-nothing” data storage. The array
database SciDB includes the full set of MODIS MOD09Q]1
images at 250 meter resolution for South America, with
13,800 images associated to 317 billion data series. It also
include selected datasets of mixed LANDSAT-8 and MODIS
data sets, at 30 meter resolution.

In terms of performance, the classification scales up almost
linearly. The full processing of all time series to classify 16
years of data in Mato Grosso state (900,000 km?) takes about
6 hours using the R-SciDB interface. We also processed all
of the area of Brazil’s Cerrado biome (2,050,000 km?) in
about 13 hours. This shows that distributed processing with
a right degree of granularity can compensate for the slower
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performance of R scripts, compared with compiled languages.
By using R, researchers have much flexibility when designing
data analysis methods. Given these results, we argue that
using SciDB combined with R is an adequate solution for
big Earth Observation data analytics.

Table 2: Performance time for selected case studies

Case Study Area Data Measures  Proc time
(km?)  dimensions  (millions) (hours)

Mato Grosso 900,000 92 20,000 6

Cerrado 2,050,000 92 50,000 13

5. FINAL REMARKS

This paper discusses the design of an architecture that
allows using satellite image time series with advanced
statistical learning. Its results indicate that solutions based
on array DBMS, R algorithms, and dedicated web services
are well suited for satellite image time series analysis. This
knowledge platform expands what can be done with big EO
data, allowing scalability and reproducibility, without major
compromises in performance. In the long run, it shows that the
time-first, space later approach is an important complement
of more traditional image analysis methods.

Combining array databases with R statistical computing
is not an universal solution for big Earth observation data
analysis. Alternative designs such as the Australian Data Cube
(flat files) and Google Earth Engine (MapReduce) provide
support for important studies is cases where the analysis
methods are established and the novelty comes from applying
them to big data. In areas where the current methods are not
adequate and progress is required, such as global land cover,
it is important to design new architectures such as the one
proposed in the paper. We hope that our results encourage
further work on the use of satellite image time series for
land cover classification.
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