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Abstract of " Phase transitions in two-dimensional superconducting arrays in a transverse 

magnetie field " by Enzo Granato, Ph.D., Brown University, May 1986. 

In the last few years, a number of research groups have used artificially-structured 

superconductors in the form of large two-dimensional ordered arrays of superconducting 

grains in order to study the phase transitions in two-dimensional superconductors in its 

lattice version. In the presence of a perpendicular magnetic field, completely new behavior 

has been observed. Measuremen ts by several groups reported a periodic variation of the 

resistance of the array as a function of the magnetic field with resistance minima at each 

integer value of the number of flux quanta per unit cell as well as secondary minima at 

half-integer values of this number. 

We review the general properties of an ordered superconducting array, set up the model 

and discuss the approximations involved. The resistiv e behavior of the array at zero field 

is shown to be determined by the vortex-unbinding transition in the pure XY model. Some 

recent approaches to the finite-field case are also presented. 

The criticai behavior of an array with a half flux quanta per unit cell is analysed in detail 

using a coupled XY model representation based on a Landau-Ginszburg free energy. This 

representation also describes others systems, and the analysis is extended to these systems 

as well. The model is transformed into an equivalent electrodynamic representation and 

recursion relations for small vortex fugacities and Migdal recursion relations are derived. A 

semi-qualitativ e analysis involving vortices and strings is used to argue on the possibilit y 

of a first order phase transition. The analysis is extended to different models like the fully 

frustrated XY model with unequal ferrornagnetic and antiferromagnetic bonds and an XY 

model with competing periodicities. 

A simplifieci model of a superconducting array with weak disorder is presented. The 



model is mapped into a Coulomb-gas of fra,ctional charges perturbed by a quenched distri-

bution of ra,ndom charges or dipoles for the two kinds of disorder considered. Recursion 

relations using the replica trick and the implications of the results for the experimental 

systems is discussed. 

The Josephson-junction arrays studied by Voss and Webb (1982) is analysed in some 

detail. We propose an interpretation of the variation of the resistance rninima observed by 

these authors by including the presence of two incommensurate fundamental amas and the 

effects of weak positional disorder in the model. 
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Chapter 1 

INTRODUCTION 

In response to the theoretical work by Kosterlitz and Thouless (1973) and Berezinskii 

(1970) on the vortex-unbinding mechanism in phase transitions in two-dimensional systems, 

a lane arnount of experimental and theoretical work has been devoted to the application 

of this theory to a variety of different physical systems ranging from two-dimensional su-

perfluids to adsorb ed systems. A useful review of these and other topics can be found in 

Kosterlitz and Thouless (1978) and Nelson (1984). 

The common feature of the Hamiltonian for these systems is the existence of a contin-

uous symmetry of the order parameter which allows "vortices" and "anti-vortices" as the 

topological elementary excitations. Despite rigorous proofs by Mermin and Wagner (1966) 

for the absence of long-range order, a phase transition at a finite temperature is possible, 

below which thermally excited vortex pairs appear only as bound vortex-antivortex pairs 

and above which single vortices and anti-vortices are present in thermodynamic equilibrium. 

Such a transition is only possible if the interaction energy between the vortices depends log-

arithmically on the dista,nce. Because of this logarithmic dependence on the distance, the 

system of vortex excitations can also be viewed as a two-dimensional neutral Coulomb gas. 

A renorma,lization-group approach has been developed by Kosterlitz (1974) in order to 

account for the effects of small vortex pairs on the interaction energy between vortex pairs 

with larger separations. When applied to two-dimensional neutral superfiuids, Nelson and 

Kosterlitz (1977) have established a universal relation between the transition temperature 

and the superfluid density. Experiments have been reported that apparently confirm this 

prediction (Bishop and Reppy, 1978). 
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As first shown by Pearl (1965), in thin superconducting films, a vortex pair interacts 

logarithmically only up to a characteristic distance of order of the transv erse penetration 

depth AT for perpendicular magnetic fields. For larger separations the interaction energy 

falis off as the inverse of the separation distance. The finite range of the logarithmic inter-

action in the superconducting fim would then destroy the transition. 

However, as pointed out by Beasley, Mooij and Orlando (1979), in thin-film dirty su-

perconductors with appreciable normal-state resistance, the transverse penetration depth 

AT can be cornparable with the sample size. So, for practical systems, thermally excited 

vortex pairs interact logarithmically 

Because of this, most experimental and theoretical work has been on high-resista,nce or 

granular superconductor fiirns. These systems, however, are far from ideal and randomness 

and inhomogeneities make the detailed comparison of theory and experiment a difficult 

task. It is also not yet cie& what effect microscopic randomness or inhomogeneity has ou 

the vortex-unbinding transition. 

In the last few years, a number of workers have turned their attention to artificially-

structured superconductors. In particular, several research groups have constructed large 

two-dimensional arrays of superconducting weak links to study the two-dimensional super-

conductor problem in its lattice version. Lobb et ai (1983) have worked out formulas relating 

uniform fim quantities to array quantities. Voas and Webb (1982) have made use of ar-

rays of Josephson-junctions which were constructed as a result of the IBM effort to produce 

identical junctions for use in a. superconducting computer. It is clear that such arrays offer a 

useful experimental system for understanding the phase transition in two-dimensional super-

conductors since the effects of randonmess can be minimized. In addition, it is also possible 

to study the effects of artificially introducing inhomogeneities. For example, Davidson and 

Tsuei (1981) have studied the effects of introducing inhomogeneities on a two-dimensional 

Josephson tunnel junction array using a laser to cut a number of connections between the 

superconducting grains. 

2 
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Figure 1.1 Resistive behavior of the IBM Josephson-junction arrays. Here 
4)/4), denotes the number of flux quanta 4) 0  contained in the magnetic flux 

threading a unit cell of the array. a) Resistiv e behavior at low fields; b) 
resistiv e behavior at larger fields and at various temperatures (Webb et ai, 
1983). 

In the presence of a transverse magnetic field, completely new behavior has been ob-

served. Early measurements by Voss and Webb (1982) reported a periodic variation of the 

resistance of the array as a function of the magnetic field, with a resistance minima at each 

integer value of the flux quanta per unit cell. Subsequently, Webb et ai (1983) (Figure 1.1), 

Tinkham et ai (1983) and Kimhi et ai (1984) (Figure 1.2) have observed secondary rninima 

at half-flux quantum per unit cell. Monte Carlo simulations by Teitel and Jayaprakash 

(1983a) of phase transitions in uniformly frustrated XY models, which are used to model 

these systems, are consistent with these observations and also indicate the existence of 

subsidiary minima at others rational values of the number of flux quanta. 
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Figure 1.2 Resistiv e behavior of an array of weak-coupled grains. The 
array consists of Pb square grains arranged ou a square lattice (Kimhi et 
ai, 1984). 

An immediate question that arises is the nature of the phase transitions at the various 

rational values of the number of flux quanta per unit cell and the existence or not of a phase 

transition at irrational values of this ratio. This has been the subject of intense work by 

several authors recently. 

This thesis is the result of an investigation on the nature of the phase transition at 

sirnple rational values of the number of flux quanta per unit cell and on the effects of 

disorder ou the resistir e behavior of the array. 

The thesis is organized as follows. In the following chapter, we review the general 

properties of an ordered superconducting array. We set up the model and discuss the 

approximations involved. Next the resistiv e behavior of the array at zero field is shown to 

be determined by the vortex-unbinding transition in the pure XY model. We then present 

the experimental results at finite field and briefly review some recent approaches to this 

problem. Finally we discuss in detail the role of the excitations in the fully frustrated case 

which corresponds to a half flux quantum per unit cell. This provides the motivation for 

the analysis of the subsequent chapter. 
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In Chapter 3, we analyse in detail the critical behavior of an array with a half flux quan-

tum per plaquette using a coupled XY model representation based on a Landau-Ginzburg 

free energy. This representation also describes others systems, and we extend the analysis 

to these systems as well. The model is transformed into an equivalent electrodynamic repre-

sentation and recursion relations for small vortex fugacities and Migdal recursion relations 

are derived. A semi-quantitativ e analysis involving vortices and strings is used to argue on 

the possibility of a weak first order transition. The analysis is extended to different models 

like the fully frustrated XY model with unequal ferromagnetic and antiferromagnetic bonds 

and an XY model with competing periodicities. 

In Chapter 4, we present a simplified model of a superconducting array with weak 

disorder. The model is mapped into a Coulomb-gas of fractional charges perturbed by a 

quenched distribution of random charges or dipoles for the two kinds of disorder considered. 

Recursion relations using the replica trick are derived and the impfications of the results 

for the experimental system is discussed. 

In Chapter 5, we propose an interpretation of the variation of the resista.nce minima 

observed by Webb et ai (1983) by modifying the simple model considered in Chapter 2 

to include the presence of two incommensurate fundamental areas. We them combine the 

results of this analysis with the results of Chapter 4 to expiam their experimental results. 

Finally, Appendices A, B and C provide some of the details that were left out in the 

previous Chapters. 
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Chapter 2 

TWO-DEMENSIONAL SUPERCONDUCTING ARRAYS 

2.1 Introduction 

Inhomogenous superconductors have attracted much attention in recent years; a useful 

review can be found in Gubser et ai (1980) and Goldman and Wolf (1984). Typically, these 

materiais are composed of two constituents, one is a superconductor while the other is a 

normal metal, an insulator or another superconductor with a lower transition temperature. 

Recent advances in microfabrication techniques, have made it possible to construct large 

arrays of superconducting grains (order of 1CP ) in the form of ordered, two dimensional 

structures. The grains can be of various shapes (disks, asterisks, crosses and squares) with 

dimensions of order of m. These arrays thus open the possibilit y of studying the properties 

of inhomogeneous superconductors in a controllable way. 

Our main concern here is with two-dimensional arrays of superconducting grains em-

bedded in a non-superconducting host and coupled together by Josephson tunneling, in the 

case of insulator, or proximity effect in the case of a normal metal host. 

Superconducting wire networks ais° form an interesting system with similar properties 

to the arrays. Like the arrays, they can be prepared in a variety of forms by photolitho-

graphic techniques and other methods. 

In this chapter we review the general properties of an ordered superconducting array 

with and without an externai magnetic field present and briefiy discuss some of the recent 

approaches to the problem. We also include a detailed analysis of the elementary excitations 

for the fully frustrated case which corresponds to a square or trangular array with a half 
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flux quanta per plaquette. 

2.2 The model 

A bulk superconductor is characterized by a complex order parameter IP = 14111 e where 

the magnitude ixlil is in general temperature dependent and proportional to the Bardeen-

Cooper-Shrieffer (BCS) energy gap of the superconductor. 

When two superconductors are in dose proximity, there is a term in the free energy 

which depends on the phase difference between them, i.e., (see for example Tinkham, 1975) 

E = — .112  cos(01 — 02 ) 	 (2.1) 

The coupling energy is related to the maximum, or criticai current / 12  that can flow between 

the two superconductors by 

J12 =-1-12 2e 
h 	

(2.2) 

where h and e are the fundamental constants. 

For a weakly coupled array of superconducting grains the superconducting transition 

can occur in two stages. Around the transition temperature no  of the grain, each separate 

grain will exhibit a smeared transition (due to finite-size effects) to a state where the 

modulus of the order parameter 141 builds up a non-zero value. Provided the Ginzburg-

Landau coherence length eCL of the bulk material comprising the grains is of the order of 

the grain size, the order parameter in each grain does not vary appreciably. If in addition, 

the effective coherence length of the array is of the order of the intergrain spacing, the grains 

will fluctuate independently. At a lower temperature Tc  , the phases of the superconducting 

order parameter in the grains will lock due to the coupling and the system will become 

superconducting. This phase locking transition at zero magnetic field is isomorphic to the 

XY model phase transition (see Section 2.2 ). 

Therefore, for temperatures below the bulk superconducting transition temperature and 

for weakly coupled grains, the Hamiltonian describing a two-dimensional superconducting 
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array can be generalized from (2.1) to 

H --= — J E cos(Or  — 0,.,) 	 (2.3) 
< rr i> 

_. 
where O,. are the phases of the order parameter of the grains located at the site r of a lattice. 

In general J will be a function of temperature or the magnetic field (see Section 2.4), but 

we will assume it consta.nt from now on. 

Equation (2.3) makes the oversimplified assumption of "point grains". It also ignores 

the charging energy which arise from finite intergrain capa,cita,nce. This term should be 

added to (2.3) and it is of the form 

€2  H = — N" - a ` ( 	f  

r 
(2.4) 

When (2.4) is added to the Hamiltonian (2.3) the problem is quite difficult and it 

is a matter not yet fully resolv ed (see for example José, 1984). In general, large charge 

energies , i.e., small capacitances tend to suppress phase coherence (Doniach, 1981). Charge 

energy is roughly associated with small grain sizes. We therefore assume here that the 

superconducting arrays to which (2.3) applies consist of grains that are simultaneously 

large enough so that charging effects can be ignored and sufficiently small so that the field 

dependence of the effective coupling is negligible (see Section 2.4). 

In the presence of a perpendicular magnetic field, the phase difference in (2.1) is replaced 
, -. 	- 

by a "gauge-invariant" phase difference 0,. — 9,.s — ,ir  Lr A • dl, where the extra term is just 

the line integral of the vector potential and (1),, = e . In consequence (2.3) is replaced by 

H = —J E cos (O,. - 0,., - A „, ) 	 (2.5) 
<ri.'> 

where 
, 

2ir fArt., = --(-1):  , A - dl 	 (2.6) 

_. 	_. 	... 
Since B = V x A, we must require the constraint 

E A„, = 27rf 	 (2.7) 
R 
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i.e., the directed sum of the A rr, (indicated here by the symbol E R ) around each plaquette 

with center at R, is a constant, which is proportional to the magnetic field threading the 

plaquette in units of the magnetic flux quantum 

27r HS 
27rf = 	 

111, 

where S is the area of the plaquette. 

Throughout the following Sections we will assume that the Ai are quenched in by the 

externai field. This corresponds to taking the limit of very large London penetration depth 

for the array. In this limit the magnetic field penetrates the array homogeneously and there 

is no Meissner effect in the grains. 

Ali equilibrium properties can be obtained from the knowledge of the partition function 

z.[Hf 2".  der  I e- 1141'  
o 

(2.9) 

and the corresponding free energy F = — kB  T In Z. 

h is easy to show that the FIamiltonian (2.5) is periodic in f with period 1, has a 

reflection symmetry about f = 1/2 in the interval [O, 1] and is aLso invariant under the 

interchange f — f. 

In experiments, however, the observed periodicity in f is seen to be modulated by an 

envelope function (see Figures 1.1 and 1.2). Teitel and Jayaprakash (1983a), have suggested 

that this effect can be a.ccounted for within the model (2.5) by including an H dependence 

for the coupling J. This dependence is easy to undertand for proximity-coupled junctions. 

For junctions with an effective area < S, one expects J(H) to have periodicity HS1 /4)„, 

corresponding to every time an additional flux quantum threads the gap. Note however 

that for the kind of array used by Webb et à (1983), this effect is quite small since in this 

case the junction lies paralell to the field (see Chapter V). 

The model defined by (2.5) belongs to a class of "uniformly frustrated XY models" 

where f is the frustration variable. Varying the externai field then corresponds to varying 

the frustration in these models. 

(2.8) 
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It might appear at first sight that Z and therefore the quantities calculated from it 

depend on the A rr, configurations since one only requires the constraint (2.7). Note however 

that under the gauge transformation A rr i—+ Airr, A,, — A,,, if we also perform a change 

of variables O,. —› O, — A, the partition function (2.9) is now a function of Art.  Therefore 

the partition function can only depend on gauge-invariant quantities such as (2.7). This 

implies that the models with the same f are equivalent. 

The meaning of the frustration can perhaps be better understood by considering the 

so-called fully frustrated model, i.e., f = 1/2. Consider a square lattice array in a particular 

gauge in which A = HzP (Landau gauge), then (2.6) can be written as 

= 271-f 	 (yr. 
2 	— yr') 	 (2.10) 

Direct substitution in (2.5) with f = 1/2 gives 

	

H = — E J,.,., cos(Or  — O r,) 	 (2.11) 
< 

where J, = J for horizontal bonda and Jrr, = — J for alternating vertical bonds. The 

model defined by (2.11) has been studied by Villain (1975) in the context of the spin glass 

problem. 

Note that because the product of the bond signs around a given plaquette is negative, 

the spins cannot simultaneously satisfy the ground state configuration (Figure 2.1). Figure 

2.1b shows a non-frustrated plaquette. Note that the presence of negative bonds is not a 

sufficient condition for the frustration effect. 

For the general case of (2.5), we look at the quantity d > R A rr i  = e271-fi which is the 

analogue of the product of the bond signs in the previous example. If f is an integer the 

plaquette is not frustrated. 

2.3 Zero-field behavior 

We must pause now to briefly review the behavior of the superconducting array when no 

field is applied. This will provide the motivation and the background necessary for the 

discussion that follows. 

10 



O.) 	 b) 

Figure 2.1 Frustation effect in a 2D XY model. Thick fines corresp onds 
to antiferromagnetic bonds and thin lines to ferromagnetic bonds. a) frus-
trated plaquette; h) non-frustrated plaquette. 

2.3.1 Vortex unbinding in the 2D XY model 

Consider for the moment a generalized classical spin model given by the Hamiltonian 

- - 
H = — J E s, • s„, 

<773 > 

where Sr  are n component spins defined at the sites r of a d-dimensional lattice. If n = 1, 

we have the Ising model, n = 2 the planar (or XY) model and n = 3 the classical Heisenberg 

model. As mentioned before, the superconducting array defined by (2.3) is isomorphic to 
-* 

the XY model in d = 2 dimensions since when we parametrize the S,. by an angle O,. as 
Y 

S,. = cosOr i+ sinO,. p we obtain directly (2.3). 

In the study of the phase transitions associated with (2.12), it is crucial to distinguish 

the dimensionality of the spin n and the dimensionality d of the space. The existence of a 

conventional second-order phase transition in which an "order parameter" (for example the 

magnetization), develops below some criticai temperature depends strongly is both rt and d. 

For n = 1, there is a transition for d = 2, but not for d =1. So the lower critica! dimension 

is d = 1 for n = 1. For n > 1 the question is more complicated. The difference here is 

(2.12) 
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that for n> 1, the model has a continuous rotational symmetry. It has been established by 

Mermin and Wagner (1966) that the global spin rotation syrnmetry of the ferromagnetic 

model (2.12), with n > 2 in two dimensions, can not be spontaneously broken at finite 

temperatures. This means that there is no possibility of conventional long-range order at 

nonzero temperature. The absence of long-range order however does not imply that there 

is no phase transition and a transition does in fact occur for d = 2, n = 2 although of 

peculiar type, in the sence that the magnetic susceptibility is infinity below T„ but the 

average magnetization is zero (Kosterlitz and Thouless, 1973). 

We shall concentrate now in the study of the phase transition for n = 2 and d = 2. 

Since we are interested in the low temperature behavior we expand the cosine in (2.12) as 

H = -1 	- 	+ constant 	 (2.13) 
2 

For fiuctuations of wave length much larger then the lattice spacing, we can replace 

(2.13) by a continuum approximation 

H
2 
f (DO, )2  rf 	 (2.14) 

If finally we neglect the O —> O + 27rn periodicity in O and extend the integration from —ao 

to oo , correlation functions can be calculated by a straighfoward gaussian integration. One 

then obtain 

< eitur —00 ) > = 1;1" 
	

(2.15) 

kE T where • This implies that there is no true long-range order but only a quasi-long-znJ 

range order. 

This is a rather unexpected behavior. Since there is no long-range order one should 

expect naively that the correlation (2.15) should decay like Cri(  with finite e as in a 

conventional pararnag-netic phase. Here however we have a power-law behavior. On the 

other hand, power-law behavior is a characteristic of a critical point . In this case PI is 

usually a universal value for a particular class of models. So we can view (2.15) as a line 
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of fixed points, one for each temperature. Eventually, at some higher temperature this 

power-law behavior must turn into a exponential behavior and the fine of fixed points must 

terrninate at some finite temperature. 

The nature of the phase transition for the XY model was explained by Kosterlitz and 

Thouless (1973) who introduced vortex and antivortex as the ;missing excitations that were 

neglected in the spin wave appoximation (2.13). The inclusion of these excitations cause a 

phase transition at finite T.  O,. is a multivalued function, a contour integral of 

the type 

j.  V O dl = 2rrn 
	

(2.16) 

has in general n O. In this case any countour must enclose at least one singularity, known 

as a vortex (see Figure 2.2). 

r 	 1111tt 	1 	t 

1 	1 

c) 

Figure 2.2 Vortex and antivortex excitations. a) vortex; h) antivortex and 
c) vortex-antivortex pair. 

The energy of such a vortex is 

E fl..... 7rJ1n —

L 

a, 
(2.17) 

where L is the dimension of the system and a, is a lower cutoff. So a single vortex costs an 

infinite amount of energy. However a vortex pair of opposite vorticities (Figure 2.2) ha.s a 
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finite energy 

Erair  = 27rJ ln( I ri 	r21 ) 	 (2.18) 
ao 

At low temperatures vortices are therefore bound in pairs. However at sufficiently high 

temperatures isolated vortices will appear due to the resulting gain in entropy. The entropy 

of a single vortex is 

S = 2kB ln — 	 (2.19) 
a, 

So the free energy is F = (7r J - 2kB  T) ln-L and it is zero at ao 

7r J 
1c5

„,  
B 	 (2.20) 

2 

This indicates that there is a finite temperature Tc  above which isolated vortices are fa-

vorable. Although the system does not have as ordered phase below T , topological order 

exists. The topological order is lost as soon as vortices axe energetically favorable. 

ln order to obtain a tractable theory, Kosterlitz and Thouless assume spin-wave excita-

tions superimposed on vortex configurations. The neglect of spin-wave vortex interactions 

can be shown to be exazt in the Villain's approximation (see Appendix C). The Hamilto-

nian thus breaks up into independent spin-wave and vortex parts. The vortex part of the 

Hamiltonia,n gives 

I/ 	 , I R - ri -- =KE ME ME, r In 	 -I- irty E /4 	 (2.21) 
kB  T 	 ao  

LR' 	 R 

- 
where MR = ±1 is the winding number of a vortex with center at R, K = JIkB T and 

y = Ec I k B T  where E, is a core energy. The vorticities satisfy the neutrality condition 

E MR = 0 
	

(2.22) 
R 

Expression (2.21) corresponds to a coulomb gas Harniltonian with charges g = .V7r—K M . 

The number of charges is not conserved so y is the equivalent of the fugacity in a grand-

canonical ensemble. 
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Renormalization-group methods were first used by Kosterlitz (1974) and applied di-

rectly to the Coulomb gas representation (2.21). Later, several authors have also obtained 

the same end result via other methods (see for example José et ai, 1977; Young, 1978; 

Kogut, 1979). In Appendix C we discuss the derivation of renormalization-group equations 

for a more general problem involving different kinds of charges. The recursion relations for 

the Hamiltonian (2.21) are given by 

dK-1  (1) .= 4.32 (1) 
dl 
dy(l) ..._ 

(2 — 7r K(1))y(l) 
dl 

where distances are scaled by a factor of e . 

(2. 23) 

Figure 2.3 Renormalization-group trajectories. The shaded region is a 
domain of attraction of the line y(/) =.- O. Dotted line represents a locus of 
initial conditions. 

The analysis of these recursion relations provides the behavior of Moo), the renor-

malized value of the coupling, and the critical exponents. The Hamiltonian trajectories 

generated by (2.23) in the (Ir', y) plane are shown in Figure 2.3, together with the locus 

of initial conditions y = e- EcikET . Hamiltonians to the left of the incoming separatrix 

renormalize into a line of fixed points at y = O, which describes the low temperature phase 
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where vortices are irrelevant. At higher temperatures, y(1) eventually becomes large, indi-

cating that vortices are important even at long wavelengths. In this phase the correlation 

function decays exponentially as 

< ei(61 r -'° )  >= e- rIC+ 	 (2.24) 

where the correlation length e f  is related to the density of free vortices by 

	

(T) 	(T) 	 (2.25) 

The renormalized value of K approaches the universal value 2/7r as 

	

K(oo) = ± 	T 	 (2.26) 

where t = TT is the reduced temperature and v = 1/2. The behavior of the correlation 

length above Tc  can be evaluated from the recursion relations and turns out to be 

e+ (T) eFE 
	

(2.27) 

where tl is a non-universal constant. 

The critical temperature itself is found by the intersection of the initial conditions 

(dotted line in Figure 2.3) and the separatrix of the renormalization-group flows. To first 

order in the fugacity, it is found to be 

./ 
kB 
	,,,, 	1= 27r e-E°  / kE) T 	 (2.28) 

2.3.2 Resistiv e behavior of the array 

Using the current-phase relationship for a superconductor with uniform order parameter 

n, he 	2e"'„ 
is  = —(yt,  — — A )  

he 
(2.29) 
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where n„ = I q/1 2  , we see (A = O in the present case) that a vortex on the phases of the 

XY model (2.3) corresponds to a vortex of supercurrent in the superconductor array with 

tangential component 

ns he 1 fz  
= 

rirt 	r 
(2.30) 

The resistiv e behavior of the array is connected with the presence of free vortices. 

A current flowing through the superconductor in the presence of free vortices, creates a 

dissipativ e mechanism which cause a resistiv e behavior. The origin of this dissipation is the 

Lorentz force acting on a vortex when a current flows (see for example Tinkham, 1975) 

F=-Jx ■Dlc 
	

(2.31) 

where (1,  is the magnetic flux enclosed by the vortex. This arises because of the induced 

rnagnetic field due to the vortex current so the force is basically given by F = x B. Due 

to this force vortices tend to move transverse to the flowing current. Suppose they move 

with drift velocity v, then they induce an electric field of magnitude 

E = B x —
c 	

(2.32) 

which is paralell to J. This act like a resistive voltage and power is dissipated. 

When a net flux of vortices exists, a voltage drop is developed between the ends of the 

superconductor. This voltage drop can be obtained by using the Josephson relation 

d 
AV =_h9 (2.33) 

where A V is the voltage drop. AO is the phase difference between the ends of the sample. 

So if a phase difference proportional to t exists a constant voltage drop will be generated. 

Now a phase slip of 27r occurs whenever a vortex crosses the width of the sample. This can 

be understood by Figure 2.4. Consider points A and B at the ends of the sample. If a vortex 

is ali the way to the right, the phase difference 0A OB = O and it goes to 0A - 05 = 27r 

when the vortex is finally at the left side. 
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Figure 2.4 Phase slip due to a vortex. When a vortex cross the width of 
the sample from right to left it causes a cha.nge of phase of 27r between 
points A and B at the ends of the sample. 

Now if we have nf  free vortices with drift velocity vo  then 

dliO 
LnflvDi —

dt = 27r 
(2.34) 

where L is the length of the system. ivr.f comes from the different directions of the vortices 

of opposite signs. Since the drift velocity is proportional to the Lorentz force due to the 

viscous damping (neglect pinning) we have 

vp = AF a id 	 (2.35) 

Combining these equations, we obtain 

dA0 „ 
— oc kni  mi 	 (2.36) 

dt 

and the resistance per square is therefore given by 

R a ftinf 	 (2.37) 

i.e., it is proportional to the mobility and density of free vortices. 
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Using this result together with (2.25) and (2.27) we get 

1 
– 02— 

	

I? = age 	el 2 	 (2.38) 

Thus we expect that at H = O and above Tc. the resistance has a exponential behavior. 

Below T since vortices are bound in neutral pairs, there is no phase slip process and 

R = O. Actually, below T„ R is not exactly zero due to finite current and finite size effects 

(Nelson and Halperin, 1978). Figure 2.5 summarizes the behavior described in this Section. 
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Figure 2.5 Resistiv e behavior of the array. a) Schematic diagram of the 
successive transitions; b) Schematic behavior of the resistance as a function 
of temperature for a two-dimensional superconducting array. 

2.4 Finite-field effects 

In the presence of an externai field the vortex unibinding mechanism described in Section 

2.3 is certainly more complicated. 

If we consider a continuous version of the array problem, i.e., a two-dimensional su-

perconducting fim, magnetic flux can only penetrate in form of quantized vortices. As 

described in Section 2.3, under the influence of the Lorentz force from a driving current, 

the vortex motion gives rise to a non-zero resistance. At zero externai field, vortices can 
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only appear as a result of thermal excitation. At low temperatures and zero magnetic 

field, vortices can appear only in bound pairs with total vorticity zero and so the resistance 

of the array is zero. A magnetic field induces vortices of one polaxity in addition to any 

thermally excited ones. In the absence of thermal excitations or substrate potential, the 

mutual repulsion of the vortices would lead to a regular triangular lattice, with spacing 

determined only by the externai magnetic field. It is not clear if this pieture can also be 

applied to the arrays that have been studied experimentally, but one can already realize 

that this natural periodicity imposed by the externai field will compete with the period of 

the underlying substrate potential of the array. Thus it is natural to suggest that this may 

lead to commensurate-incommensurate transitions effects when the external field is varied. 

2.4.1 Mean-field t,heory results 

Mean field theory provides a rough way to approach this problem for general f. Mean field 

theory however is well known to be inadequate to understanding two-dimensional systems 

and may even lead to misleading results. The application of this approximation to the 

superconducting arrays hos been pursued by Rammal et ai (1983) and Shih and Stroud 

(1983). Figure 2.6 shows the mean-field transition temperatures for the triangular and 

honeycomb lattices. They are not very illuminating. The most striking feature however is 

their irregularit y. 

If the mea.n-field equations are linearized about the transition tenperatures, it is found 

(Shih and Stroud, 1985) 

rir 2kB  T 
r  	.1e-Á,' Th, = 0 	 (2.39) 

Ti 

where 	=< 	> is the mean-field order parameter. Equation (2.39) is precisely the 

Shroedinger equation in the tight-binding representation for an "electronn of charge 2e 

in a magnetic field B and moving in a lattice. The order parameter th. is the analog of 
— 

the complex wave function at site r, J is the hopping integral and i3 = 	is the energy kB T 

eigenvalues. Te  is the highest value of T for which the mean field equations have a non-trivial 

20 



Is 

1/3 	

- 

. 	• = kmr  

•-• 
I 

' - 
• f= 

1 

• • 

. , 
00 	 nI n 	 Ir 

b) 

Figure 2.6 Mean-field transition temperatures and ground-state energies. 
a) honeycomb and b) triangular lattice (Shih and Stroud, 1985). 

solution, i.e., it maps directly onto the band edge of the tight-binding electron problem. 

These band edges have been worked out by Hofstaxiter (1976) for the square lattice and by 

Claro and Wannier (1979) for a triangular lattice. 

Figure 2.6 also shows certain characteristic differences between the lattices. The tri-

angular lattice for example, as well as the square lattice, shows a secondary minimum at 

f = 1/2 which is very weak or non-existent for the honeycomb lattice. Evidence of this 

lattice dependence has been seen experimentally (Resnick et ai, 1984). 

2.4.2 Coulomb-gas representation 

Familiarity with the coulomb ga,s representation for the XY model discussed in Section 2.3 

would suggest that rnuch insight into the problem can be obtained by isolating from (2.5) 

the vortex interaction terms. This can be acomplished by a very systematic procedure for 

handling problems like this, introduced by José et ai (1977). 

To preserve the periodicity of the cosine term in (2.5), first expand into a Fourier series 
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as 
00 

eK cos(9,. — O rt — Arr , ) = E 	(K) eiSr ri (19 	e r t  A "') 	(2.40) 

" 

The Fourier components are just Bessel functions of order s . In the limit of large coupling 

this reduces to 

(K) 

srri  2 
eK 
	e—  2K 1 	 (2.41) 
(27rK)2 

When (2.40) is substituted in the partition function (2.9), the integrations in the O 

variables induce the constraint 

116, 
Prrs. 0 

	 (2.42) 

were Err, is a sum over ali nearest neighbors r' and srr, — This constraint can be 

automatically satisfied if we define new integer variables on the sites R of the dual lattice,i.e., 

the lattice formed by the centers of the plaquettes, by 

E 8„e = MR 
	

(2.43) 

where ER  indicates a directed sum over the bonds surrounding the plaquette 'with dual site 
- 
R. Using the constraint (2.43), the partition function in terms of these new variables is 

1 
— E (MR  — MR, — 2rfiE MR  

z  [rir] e  21( <RRI>  
R 	 (2.44) 

R MR 

When f = O the above expression is the partition function of the discrete gaussian model of 

Chui and Weeks (1976) used in the study of crystal growth. If f # 0 the discrete gaussian 

model is subject to an imaginary field. The above expression can also be viewed as a 

correlation function of the discrete gaus,sian model (with f = 0) (Fradkin et ai, 1979). 

One would like to replace the integer valued field Mi?  by an ordinary scalar field 0. The 

necessary manipulation is provided by the Poisson sunrunation formula 

00 	 00 j, 00 

E g (in  = 	 (2.45) 
M= 	 - 

where g is an arbitrary function. 
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Applying this identity to (2.44) and performing the resulting gaussian integral gives 

—A-K E (MR - f)G(R - )(Mv 1) 
Z = Z,„ kl E e 	R.Rt 	 (2.46) 

R Mn 

where Z. results from the gaussian integration and can be identified as the spin wave 

contribution whereas MR  can be identified as the vortex winding number. The large distance 

behavior of G(R— R') is given by (Appendix B) 

G(R — R,) =In 
 

(2.47) 

	

a 	-r  2 

and the MR  satisfy the neutrality condition 

	

E MR  =0 	 (2.48) 

So the model (2.5) hos been mapped into a coulomb gas of integer charges MR  interact-

ing with a background of frozen in fractional charges f. For f = O we recover the XY model. 

As mentioned before in this approximation spin waves and vortices decouple. Since the spin 

waves alone do not drive the phase transition, we need only to consider the coulomb gas 

contribution. 

2.4.3 Ground states for rational f. 

In the ground state the lowest possible MR consists of MR = O and MR = 1, arranged in 

such a way that E R  (MR f) = O. Therefore we need f vortices of charge MR = 1 and 

(1 — vortices of charge MR = 0. 

Teitel and Jayaprakash (1983a) have performed computer simulations in the charge 

model (2.46) for rational values of f = p/ q, assurning the ground state has periodicity qx q. 

For several f, the qx q assumption was checked by calculating on nq x nq lattices. Figure 

2.7 shows the results of this calculation. 

Figure 2.8 also shows the calculated criticai current of the array as a function of f, using 

Monte Carlo sirnulations. Note the large variations of i, (f) as a function of f. Working out 
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Figure 2.7 Ground state configurations in the charge model. A plus de-
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denotes a charge —f (Teitel and Jayaprakash, 1983a). 
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Figure 2.8 Critical temperatures and ground state energies. a) Ground 
state energies for several rational f; b) Zero-temperature critical currents 
(solid circles) and zero-current critical temperatures T (open circles) (Tei-
tel and Jayaprakash, 1983a). 

the mathematical expression for i. , they were also able to establish a bound for the value 
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of the criticai current 

(2.49) 

where E, (f) is the ground state energy. So i (f) exhibits a dramatic discontinuity variation 

as a function of f.  From energetic grounds and at i O but finite T one would expect 

h . 
kB  Tc  (f) 	(Te )tc (f) (2.50) 

since when T is large enough to produce a,n average current fiuctuation in the array of order 

vortices of current will appear an be able to move, and a resistiv e transition will occur. 

Noting that the values calculated by Monte Cano simulation satisfy this relation, equa-

tion (2.49) and (2.50) can be combined to give a bound on T, (f)  as 

kB  Tc  (pl q) 	-Fqr  I 	(f)1 	 (2.51) 

Note the dependence in q, it is crucial. For irrational f,  q 	oo and Tc  (f) = 0. Let us 	- 

now consider the implications of these relations for the array resistance R(T,f). Consicler 

a given .1; = p 0 /q0 , for plq sufficiently dose to fo  , ali rational numbers satisfy q>> q, and 

so using (2.51) T (f) < T (fo ). Now consider a temperature T such that T(f) < T < T(f). 

Then R(T , fo ) = O and R(T,f) > O. Since for f f o  we can regard the ground state of f 

as that of fo  with a superlattice of defects or domain walls to ensure charge neutralit y (see 

Figure 2.9), the number of these defects is proportional to 1f — fo i , then around f f, we 

can assume they density is a li —  

Now for T < Te  (f) these defects can not move since they are pinned and therefore 

R(f) —4 0, so we can assume that for T > T (f) they unpin and this motion like the free 

vortex motion causes the nonzero R. Since resistance is proportional to number of free 

defects we find for f fo  that 

R(T,f)oc if — fo i 
	

(2.52) 

So a cusp in the resistance curve is predicted. A plot of R x H is sketched in Figure 2.10. 

Note that as T is lowered more and more structure appears besides the dip at f = 112. 
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Figure 2.9 A ground state with defects. Ground state for f = 3/8 con-
structed from the ground state of f = 1/2 with a superlattice of vacancies. 
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Figure 2.10 Resistance as a function of temperature. Schematic plot of 
resistance as a function of magnetic field for a sequence of temperatures 
7'4 < T,(1/ 3) < T3 < n(1/2) < T0  < T1  (Teitel and Jayaprakash, 1983a). 

These clips at other rational values have not clearly been observed in arrays although some 

evidence was observed in wire networks (Pannetier et ai, 1983). 

If we look at the ground states obtained by numerical simulations in the range < f < 
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it is apparent that they could be generated from the f = 1/2 ground state by introducing 

domain walls (see Figure 2.11 for an example). Note that this structure of domains is a 

quasi-onedimensional structure. Halsey (1985a) has pursued this matter further and with 

the a,ssumption of one-dimensionalit y he found exact results for the ground state energy. 
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x EU x 
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E E 

Eli x ia x 
x NE x IIIIII 
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Figure 2.11 Ground state of f = 1/3. This ground state can be constructed 
from the 1/2 case by introducing a structure of domain walls. 

2.4.4 Landau-Ginzburg-Wilson free energy. 

A useful approach to study the system at higher temperatures and the universality class of 

the transitions at various values of f is to construct Landau-Ginzburg-Wilson (LGW) free 

energies. Choi and Doniach (1985) have constructed LGW free energies using a Hubbard-

Stratonovich transformation (Hubbard, 1959; Stratonovich, 1957) for simple values of f and 

for triangular and square lattices. 

First rewrite equation (2.5) in the form 

H 	1 ‘--. 

	

= —2 L' ur Prrt Urt  - KN 	
(2.53) 

rr t  

where 

	

P„, = K„, e" . " rr' + 45„: E Krr , 	 (2.54) 
rr , 
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and ti,. = eor . Here K„, = K for nearest neighbors and O otherwise. The second term in 

(2.54) has been introduced to make the Pr,. positive definite. The Hubbard-Stratonovich 

transform makes use of the gaussian identity 

1 	 1 	 1 P 1 
[11 dzi dz] e -2 2;* 	zri + —2 (Ur  zr  ur  4)  = V21r detP,.„ e2u;  19"1  ur i 	(2.55) 

Applying this transformation to (2.9) we obtain, omiting overall constants 

1 
- -

2  Z = [
z: Pr-

r
; .z,1 +E iniocizri) 

(2.56) c/ZI d.4] e 

where lo  is the Bessel function. The standard procedure now is to expand the Bessel 

function and keep only the relevant terms 

1 	1 4 	
(2.57) 

Note that due to the form of the matrix in (2.54), the exponent is not diagonalized 

by a simple Fourier transform. However a LGW free energy can be obtained directly by 

diagonalizing the resulting Fourier transformed matrix Pqq, and expanding about the modes 

corresponding to the maximum eigenvalues of this matrix. For example, for f = 1/2 on a 

square lattice it is found (Choi and Doniach, 1985) 

Z = [ 	f (Kir  f dc13,.] e-r(11.4' ) 	 (2.58) 

where 

F 	= f f clxclyR(Ikl, 1 2  + 141 2  + 	+ IV (11 2  

+ _!ti w i2 + 1412)2 +1114,1212 	 (2.59) 
4' 

I cie cos 2(0 - 

and r 	{ 	). e, ti.> O and v < O are constants which can be calculated directly from 

the matrices that diagonalize PQ 4, • Here 	= I ‘1, 1 	and (1) = 14)1e measure fiuctuations 

about the modes Ql.  and Q2 corresponding to the two degenerate maxima of Pg .  qi • 

However, some care should be taken with this procedure because it can lead to mislead-

ing results. For f = 1/4, for example, ou a triangular lattice, Choi and Doniach found the 
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same expression as (2.59). This could imply that these two different cases have the same 

criticai behavior. The numerical results of Shih and Stroud (1985), however, shows that 

this is not the case. 

For f = 1/2 on a triangular lattice they found an expression similar to (2.59), but the 

coupling between the phases now occuring in the sixth order term of the expansion which 

gives cos 3(0— 4)) instead of the last term appearing in (2.59). This is in disagreemen t with 

Yosefin and Domany (1985) who derived LGW free energies using syrnmetry arguments. 

These authors obtained similar expressions as (2.59) for square and triangular lattices but 

with ti > 0. The sign of tí is cruciai here. In two dimensions one assumes that the 

phase transiton occurs well below the mean-field criticai temeprature due to fluctuations. 

Amplitudes fluctuations in and 4) are irrelevant near two dimensions (see for example, 

Nelson, 1983), so 1‘1,1 2  and 141 2  are well approximated by their mean-field values. If we 

minimize (2.59) we find that if ti > O either 1 = O or 141 = O. In this case Yosefin and 

Domany have shown that higher other terms are irrelevant. On the other hand, if ti < O 

then the minimum of the free energy occurs for 41 -,- (I) with 

1 4,12 	
2(u + v— ti) 
	 (2.60) 

In this case, a lattice version of (2.59) can be written as 

A = a E kos(0, — Or , ) + cos(ck, 	+ hE cos2(0, Or ) 	(2.61) 

<rr i > 

where a is proportional to1T1 2  given by (2.60). When ti > O, one arrive at the same result 

after performing a change of variables 41— 4)-- 	and 4) + 	4). 

2.5 The fally frastrated XY rnodel 

Of course, the detailed nature of the phase transitons at the several non-integer values 

of f is a complicated problem. However, one would expect to be able to understand the 

behavior for simple values of f. In particular, the fully frustrated case, i.e., f = 1/2 is a 
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very interesting one because it is connected with different problems (Villain, 1977; Halsey, 

1985b). 

Teitel and Jayaprakash (1983b) have performed numerical simulations for the f = 1/2 

case ou a square lattice. Results for the helicity modulus and specific heat are shown ia 

Figures 2.12 and 2.13 respectively. 

Figure 2.12 Helicity modulus for f = 1/2. Helicity modulus Y (T) as a 
function of temperature of the unfrustrated case (f = 0) and fully frustrated 
case (f = 1/2) on a square lattice. The line of slope 2//r indicates the 
universal jump predicition for the KT transition (Teitel and Jayaprakash, 
1983b). 

The helicity modulus Y (T) measures the stiffness of the system when a long-wavelength 

twist is applied to the phases. It is directly related to the renormalized value of the coupling 

constant KR in the unfrustrated case. In this case due to the behavior of KR as the transition 

is aproached from below described by equation (2.26), a universal jump of this quantity has 

been predicted by Nelson and Kosterlitz (1977). In terms of the helicity modulus one 

expects 

fim Y (T)/k5  T = —
2 

(2.62) 
ir 

The line of slope 2/ir ia Figure 2.12, indicates the universal jump prediction for the 
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Figure 2.13 Specific heat for f = 1/2.(Teitel and Jayaprakash, 1983b). 

Kosterlitz-Thouless transition. Finite size effects have broadened the discontinous jump 

but from its position the transition temperature for the unfrustrated case is estimated to 

be kT,..::-'- 0.95J. For the fully frustrated case Figure 2.12 shows a clear evidence for a 

phase transition at a finite temperature k11  Tc  :-_-. 0.45J but it goes more steeply than in the 

unfrustrated case and is inconsistent with the universal jump prediction, having a jump 

larger that the Nelson-Kosterlitz result. 

In marked contrast with the unfrustrated case in which the peak of the specific heat 

saturates at a finite value about 1.5k B  , the specific heat peak diverges linearly with the size 

of the system in the frustrated case. This implies a logarithmic singularit y as ia the Ising 

model. It also occurs roughly at the same temperature in which Y —) O. Similar results 

have been found by Shih and Stroud (1985) for the triangular lattice. For the honeycomb 

lattice however no specific heat divergence is observ ed. Instead for this case the ground 

state configuration is multiply degenerate. 

To understand the numerical results we have to look at the excitations above the ground 

state and study the mechanism by which a phase transition could occur. 

The doubly degenerate ground state of the fully frustrated XY model on a square lattice 
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(Figure 2.1) has a bond phase difference of ±r/4 and a ground state energy of Na/ per site. 

We recai! that in the coulomb gas representation the ground state hos a chessboard structure 

Nr2;  
consisting of charges q =  2  J (Figure 2.14). In this representation the ground state is 

clearly doubly degenerate since one can replace q — q leaving the total energy unchanged. 

If we identify the + and — charges as "up" and "down" spins, respectively, the model maps 

into a long-range Ising antiferromagnet with conserved magnetization. Unfortunately one 

can not do too much with this. There are two types of excitations in the ground state: 

domam walls and vortex pairs. A vortex pair result from interchanging + and — in a given 

pair with separation r and must have an energy proportional to ln r. Domam walls are Ising 

type excitations and come from the double degeneracy of the ground state. 

a ) 

Figure 2.14 Ground state excitations. Two types of excitations for the 
f 1/2. a) vortex pair; b) closed domain wall. 

Consider small phase deviations above the g-round state, then from (2.5) we obtain 

J 
H = -- 	cos(er  — 	 (2.63) 

v 

which gives an XY-like transition about 
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For an infinite straight domain wall, the excitation energy can be calculated in a 

straightforward way in the coulomb gas representation (Appendix A). Halsey (1985b) has 

obtained numericaly similar results in the phase model. We obtain 

Ew  = 0.27J 	 (2.64) 

It also follows from the same calculation that the interaction between two paraIlel infinite 

domairi walls separated by a distance R is given by 

Eint = 2? e-4 	 (2.65) 

If we disregard the effects of the corners of a closed domain wall, the energy of the do-

main should be proportional to the perimeter. Using a Peierls energy-entropy argument to 

estimate the temperature in which the free energy of a closed domahi is zero, one finds 

kB  T„ = E„, I ln 3 (2.66) 

Since TA < T„ this suggests that two phase transitions can occur with increasing temper-

ature, leaving an intermediate phase with Ising-like disorder and XY-like order. However, 

as pointed out by Halsey (1985b), the corners of a dose domam wall behave as fractional 

charges. If we define an average charge in each vertice by the average of four neighboring 

plaquettes, the sides of the domain average to zero, but the comer average to 71- q . From 

the geometry of a domain we can see that if the domain is neutral, the sum of the comer 

charges is zero otherwise it is not zero. A simple estimate of the criticai temperature for 

the unbinding of comer charges is a neutral large domain gives Ti r 	T„. Comparing 
4 

the estimates we have T1 < T, < 7',,. Thus when the free energy of a domain wall goes 

to zero free comer charges are available which presumably unbind immediatly the integer 

vortices. The important point here is that the Ising transition will corresp ond not merely 

to a proliferation of domain walls but to a proliferation of domain walls carrying free comer 

charges, and these may cause a direct transition to a disordered XY-like phase. 
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One can already see that in order to study the phase transition in more detail one then 

needs an effective Harniltonian which contains vortices and domain walls explicitly. The 

two coupled XY models obtained in (2.58) provides a convenient representation to carry 

out such an analysis. 
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Chapter 3 

CRITICAL BEHAVIOR OF COUPLED XY MODELS 

3.1 Introduction 

In this section we analyse the criticai behavior of an array with a half flux quantum per 

plaquette. As discussed in Section 2.5, in a triangular or square lattice, this corresp onds to a 

class of XV models where the ground state exllibit both continuous and discrete degenerazy 

simultaneously. Other models such as the antiferromagnetic XY model on a triangular 

lattice (Lee et ai, 1986), the double-layer XY model (Parga and Himbergen, 1980) and the 

helical XY model (Carel and Doniach, 1980) are also included. 

As shown in Section 2.4, the LGW free energy for the fully frustrated case leads to a 

coupled XY problem. The other models mentioned above can also be described by the same 

free energy. We therefore consider a coupled XV model described by the action 

A = — 

H

=a E cos(Or  — ) ft E cos(0,. — 0,3) + h E c. p(0, — O f.) 	(3.1) 

where p is an integer and O,., O, are phases defined at the sites r of a square lattice with 

lattice spacing a. 

We study the phase transition in coupled XY models using renormalization-group ar-

guments (Granato and Kosterlitz, 1986a). We analyse this model for p = 2 and p = 3 

which seerns to be the relevant cases with respect to the superconducting array problem. 

The model is transformed into an equivalent eletrodynamic representation and recursion 

relations for small vortex fuga,cities are derived. Migdal recursion relations are used to 

study the limit h oo. A serni-qualitativ e analysis involving vortices and strings, using 
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a representation in which domain walls appear expficitly, is used to study the phase tran-

sitions. In particular, these arguments give some indication that the tran.sition along the 

a = fine could be first arder. 

Figure 3.1 shows the resulting phase diagram. The line APB corresp onds to an Ising 

(p = 2) or a 3-state Potts (p = 3) transition. If the initial points of the Hamiltonia.n are 

along the line a = /3 a single transition occurs separating a locked phase with XY and Ising 

(p = 2) arder from a high-temperature XY and Ising disordered phase. The transition is 

a complicated point which can be denoted as tetracritical but in an as yet undetermined 

universality cla,ss. There are however some indications from the numerical work of Teitel 

and Jayaprakash (1983b), Lee et ai (1986) and Berge et ai (1986) that this point may have 

sirnultaneous Ising and XY-like behavior (p = 2). This problem has been studied by many 

authors with mixed success. It remains however an outstanding problem. 

A 
ira 

PHASE 
A ) A 

LOCKED PHASE 	
B  

2 

P 

I H1GH TEMP\ 
PHASE 	 PHASE B 

1 	2 	 77-0 

Figure 3.1 Topological features of the phase diagram. The rnanner the 
limes merge at P is not deterrnined. Two possibilities are indicated in the 
insets A and B. Phases A and B are partial ordered phases. 

The models mentioned before are represented by (3.1) with initial couplings a = 13. 

It ca,n be shown that the a A p fine represents a frustrated XY magnet on a square 

lattice in which the strength of the antiferromagnetic and ferromagnetic bonds are unequal 
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(Granato and Kosterlitz, 1986b). This latter model has been studied recently by Berge 

et ai (1986) using Monte Carlo simulations. The frustration in each plaquette was made 

vary by changing the negativ e bond strength. From a ground state analysis they found 

that below a criticai value of the ratio of 1/3 between the negative and positive bonds, 

the ground state is paramagnetic, while for ratios greater than 1/3 it is doubly degenerate 

with canted spin configurations. The phase diagram obtained by Monte Carlo simulations 

is shown in Figure 3.2. The low transition temperature corresp onds to Ising type and the 

high transition temperature corresp onds to the XY type when the bonds are of different 

strengths. In the fully frustrated case, when the bonds have the same strength, the two 

transitions merge into a single one of dominant Ising character. 

ri 

Figure 3.2 Phase diagram for the frustrated XY model. r i  is the ratio 
between the antiferromagnetic and ferromagnetic bonds. The nature of 
the phase transition at P is not determined (Berge et ai, 1986). 

Unfortunately our analyses cannot determine the behavior of the system on the a = fit 

fine except for arguments which are fairly conclusiv e that there is a single transition directly 

from a locked to disordered phase with no intervening phase with partial order as is the case 

for p > 4. Also, it cannot unambiguously determine whether the transition from the locked 

to disordered phase for a # is a single transition or a double transition with an intervening 
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unlocked phase with algebraic order in one of the phase and disorder in the other. We incline 

to the view that there is such an unlocked phase in a region of the (a, /3) plane except for a 

multicritical point on the a = ,3 fine. Thus we predict that such systems as the Josephson 

junction array ou a square and triangular lattice with half a flux quantum per plaquette, 

the triangular XY antiferromagnet in zero magnetic field and the fully frustrated XY model 

ou a square lattice, ali have a single transition from the completely ordered to completely 

disordered phase. 

Another model with similar properties is an XY model with interactions of different 

but commensurate periodicities 

A = a E cos(0„ — ) +9 E cos p(0, — 0,/ ) 	 (3.2) 
< ria > 

where the second term has periodicity O 	O + 27r/p. This model can be shown to be 

described by a similar model to that discussed in (3.1), with a slight modification in the 

coupling term 

A =a E coo, - 0')+/9 >2  cos(0,. — O,/ ) -1- h E cos(p0, 	) 	(3.3) 
<ri. ,> 	 <ri. 1 > 

The model defined by (3.2) has also been studied recently by Lee and Grinstein (1985) 

using a different analysis. In contrast to the fully frustrated case this model is not double 

degenerate. For a < 4,8 each bond however hos a metastable minimum at 0„ — 7r in 

addition to the absolute minimum at O,. — O r f = O. In addition to vortex excitations, the 

ground state also have excitations which consist of one-dimensional strings of antiparallel 

spins that terminate in half-integer vortices and antivortkes (Figure 3.3). The phase  di-

agram shown in Figure 3.4 consists of three phase separated by fines of conventional XY 

transitions and fines of Ising transitions. This model ais° has an interesting phase diagram 

when /3 < O. However the action (3.3) is not appropriate to describe the behavior in this 

region of the phase diagram. 

This model is not realized by a superconducting array, but it can be related to fluid 

layers of fiquid crystal where the molecules make a constant angle O, cf) relative to the normal 
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Figure 3.3 A half-integer vortex-antivortex pair connected by a string. 
The center of the half-integer vortices are represented by the circles with 
the plus and minus sign, and the string is represented by a dotted line (Lee 
and Grinstein, 1985). 

7r a 

2 

3 

Figure 3.4 Schematic phase diagram for an XY model with competing 
periodicities. Phase A is a locked phase and phase B is a partial ordered 
unlocked phase. 

to the plane. Then the local director is given by 74. = (sinOcose„ 8iti48in0,. , cosei)). When 

the angle q5 = ir/2 the molecules lie in the plane and the periodicity O —4 O + ir must be 

observed. When they are not in the plane, O and O ± ir are no longer equivalent and a 
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possible action describing this is 

A = - KE E k  n - 14, tz,8.,12 	 (3.4) 
<rrt> 

When the local director n.„ is expressed in terms of angles O,. and 4) we obtain (3.3) with 

= 4Ksin2  Ocos2  çb and 13 = Ksin4  /), which has the correct limit when (k =7r/2 and describes 

a nematic. Depending on the tilt angle 0, the transition smectic isotropic will take place 

either directly via an XY transition or through an intermediate nematic (unlocked) phase 

with an XY followed by an Ising transition as the temperature is lowered. This ignores 

the possibility of crystallization which may preempt one or both transitions. Unfortunately 

there is no experimental realization of a two-dimensional nematic because of rupturing of 

the filrn. 

3.2 Electiodynamic representation for coupled XY models 

In order to proceed with the investigation of the critical behavior in the model (3.1), we 

need to treat vortex excitations explicitly. This can be achieved by transforming the model 

to an equivalent electrodynamic representation (Kadanoff, 1976). In this representation 

problems of two-dimensional statistical mechanics can be formulated in terms of two sets 
- 

of integer variables ME and S, which reside on sites R of the dual lattice and sites r of the 

original lattice. Interaction between charges of the same kind (the M's for example) at large 

separations is proportional to the logarithm of the distance between them. The interaction 

between ME and S„ on the other hand, are proportional to the angle between the vector 

R - r and some fixed reference direction in the plane. The interaction between ME and 

is similar to charges and magnetic rnonopoles. An interesting property of the coulomb gas 

representation is that duality transformations for the original model corresp ond to a simple 

interchange of charges of the type ME and S,.. 

The main motivation to rewrite the model in a coulomb gas representation is that recur-

sion relations can be obtained by a procedure that is now considered standard (Kosterlitz, 

40 



1974; Nelson and Halperin, 1980). In addition to this, the coulomb gas representation uni-

fies various models. The difference between the models are refiected only in changes in the 

parameters of the interactions between the charges. 

First we write the symmetry breaking term as 

e  h cos p (O,. 	) = 	e  ipS,( '  - 	) iny„ 	 (3.5) 

If y, 	0, only the terms S O and S = ±1 contribute and the left and right-hand side of 

(3.5) are equal provided y -= h/2. When y, 	1, O. - O,. is forced to take the values 

, 

	

- op, = — 7„ 	•,. = 0, 1, 2 ...,p - 1 	 (3.6) 

The equivalent electrodynamic representation of (3.1) is found to be (Appendix B) 

z [HE] 
[ 1-1 e A(ti.N.$) 	 (3.7) 

r Sr 1-  R MR NR 

where 

A(M , N, S) = ira E MR G(R — R' )MR , + ir /3 E Ni, G(R - R' )NR, 

R.Rg 

2ir g E MR G(R — )N R, + piEE Sr  0(r- R)[MR - NR1 
R.R g 	 r R 

+ ir 'I E G(r - 	 (3.8) 
r,rt 

and 

p2  (ce + 8  + 2g) 
= 

421.2 (/3 — g2) 	
(3.9) 

The primes on the summation over the three integer fields indicate that they are subject to 

the neutrality condition 

	

EMR  =ENR  =ESr =0 	 (3.10) 
R 

The large-distance behavior of the Green's functions G(R - R') and e(r - R) are 

	

G(R — R
,
) = In

t R — 	ir 

	

a 
	 + 

2 	 (3.11) 

e, = tan-1  (y/x) 
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where r = 	y). Correlations functions can be treated similarly. The various phases in 

Figure 3.1 can be distinguished by the large-distance behavior of the correlation functions. 

The correlation functions < pi > and < etlIg5P -°sei > , which describe the XY order 

in each variable, and the cross correlation function < e" °'° p' > can be written in the 

Coulomb-gas representation as 

/ 
111 - 4 2 ,0 12iff(Z 0 - 02 ) 2-1  11E , 	 El eA(M•N.S) 

r Sr R MR NR 

exp [igE MR[e(P R) — e(p s  — R)] 
R 

(3.12) 41) (16 1-  g) 	sr [G(r — p) G(r — d)]] 27t (aP - g2)-• 

I 

< e*Q14)P —i'rd > = IP -  Pi i -g2a/2" Iti '6-g2) ' 	EM 	EleA(M.N.51  
Sr  R MR NR 

exp [iq > NR [0(p - R) - 0(p' - R)] 
R 

gP(°1  + g)  2_, Sr  IG(r- p) - G(r - 	 (3.13) + 
27r (cxj3 — g2 ) 

< eidep-s6p11 	..._ I 	il-q2  gl 27r(a 13-6,2 ) eq2 la +0+20/8[a 0-92 ) 
IP P 

ÉZ 1  [fl 111 E E } eA(M,N,S) 

r Sr  R MR NR 

exp {iqE MRe(p - R) — NRe(Pt  - R) 
R 

-I- 	(IP 	(3.14) 

for integer values of q. The correlation functions (3.12) and (3.13) are not convenient to 

describe the XY-like behavior of the model in the different regions of the phase diagram. 
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An appropriate one is 
< ei g i(op+4,,,)-(op,-For, )1 > 	lp 	p/i—q2 (a -1-13-20/21t(ce P—g 2 ) 

r 
2-1  [flE] E E I e"  ") 

r S 	R M(R) N(R) 

exp [ iq 	(MR  NR  )[8(p — R) — e(p' R)1 

P (fi  -  a)  E 
2( 	92 )

S, [G(r — p)— G(r— 	(3.15) 
ir aft —  

To describe the long-range order in the locked phase we use the correlation function 

< 	 -.p1)1  > = p 	pi q2  (e,  +0 +20/ 2rr ( ct - (12  

	

1 	1 

„aar „nrriemm.N.s, 

, Sr  R MR NR 

exp[igERMR  — N R )0(p — R) 
ft 

— (M R  NR )O(p' — R)} 

qp(a +j3 ± 2g)  
(fi 	) 

[G(r — p) — G(r — P')1 (3 - 16) 2.7ra — 92   

3.3 Recursion relations in the weak-coupling Ihnit 

In order to remove the short-ranged interaztions from the representation (3.8), we need to 

use an extension of the renormahzation-group method for the XY model (Kosterlitz, 1974). 

The IR — R'l= a and Ir — = a terms in (3.8) generate the followings terms 

E m,2, yyn +E 14 in y„ + ES ln y, 	 (3.17) 
R 	 R 

where 
= exp(-7r 2 ck/2) 

y„ = exp(-7r 2 N2) 	 (3.18) 

y, = (h/2) exp(-71 -2 i12) 
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are the fugacities for their respective charges. 

There is an additional term 7r 2  g E R  MR  NR that can provide a fugacity associated to 

hybrid vortices, i.e., configurations in which M vortex and N vortex reside at the same site. 

The resulting recursion relations are discussed in the Appendix C. For the region of the 

phase diagram which we discuss next they are irrelevant. 

In order to restrict the charges to talçe only the values O and ± 1 we consider only small 

values of the fugacities. The effect of small y, is to unlock the variables O, and O,. in the 

action (3.1) and corresponds to h small. 

Recursion relations can be derived by a straighforward generalization of the Kosterlitz 

method (1984) (Appendix C). The fugacity recursion relations can be easily obtained from 

its scaling behavior when the lattice spacing is increased. We find 

dy„, 
= (2— ra)y„, 

dl 
dg„ 

= (2 — ir0)Yn dl 
dy, 

= ,Ç2  

(3.19)) 

where lengths have been scaled by a factor e. The coefficient a is renormalized by con-

sidering ali contributions from the reescaling of the lattice spacing a a + da which are 

proportional to MGM. Although the detailed calculation of these contributions is com-

plicated, one can obtain the final result in a easy way by considering ali contributions 

proportional to MGM which arise when we contract any neutral pair of the charges. These 

contributions are (2ra) 2  M GMM G M, (2ar g)2  M GN N G M and (—ip)2  m esse m. For the 

others coefficients the procedure is the same. The corresponding recursion relations are 

da 	4.7r3 et2 y.27. 	47r 3 92 y2.  + wy2 yo2 

dg _ 42,3 agy2,n  _ 47r3 ogy2.  _ rp2 y,z 

(3.20) 

= — 47r 3  )52  — 471-3 	wp2  y 92  

+ p2 y2 	2.1 irp  

Using Equations (3.9), (3.19) and (3.20) one finds that the recursion relation for -/ is consis-

tent with the other three and therefore the relation (3.9) is preserved under renorrnalization. 
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By considering the region of the (a, g, ,3) parameter space for which 7r,8 > 2 and using 

Equation (3.19) it is apparent that the fugacity y„ is irrelevant in this region. This irrele-

vance allows us to consider N(R) = O in (3.8). A numerical iteration of (3.19) and (3.20) 

shows that there is in fact a region M which y,, is irrelevant. The action is consequently 

simplified to 

A (M, S) = 7ra E MR G(R 	)VIRt piEE S,.€3(r — R )MB  
R . 	 r  

(3.21) 
47r(£20 	92  ) 	r  

It is now possible to exploit the dual symmetry of this a,ction under the transformation 

M 4-4 S. As was shown by Kadanoff (1976), duality transformation in the original model 

corresponds to the interchange of S by M in the Coulomb gas representation. Usually the 

phase transition occurs at values of the parameters that make the Action self dual. 

For the action in consideration (3.21), provided one chooses y„, = y,, there is a self-dual 

surface in the (a, g, ,3) parameter space given by 

47r2 a (a/3 — g2 ) = p2 (a + + 2g) 	 (3.22) 

for p = 2 and p = 3 this must represent the boundary between two low-temperature phases. 

The renormalization-group recursion relations (3.19) and (3.20) on the self-dual surface 

y„, = = y now reads 
dy 
71/  = (2— 7ra)y 

da 
4  ? (P2  I 4  - 	) 

dg 	
(3.23) 

71/  = 42rY2  (P2 / 4  + 2 cU) 

dig 

= 47r Y2 (P2 /4 7r2 g2 ) 

It is clear from these equations that ira will decrease from an initial value greater than p/2. 

It must eventually flow to a fine of attractive fixed points somewhere eIse in the self-dual 

surface. Assuming that Equations (3.23) are qualitatively true for ali values of y, it can 

be speculated that these fixed points occur for ira = p/2 and 7rg = —p/2 with y 1, 
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indepencient of /3. Therefore the renormalized action must be characterised by a surface 

in the (a, g, /3) parameter space, intersecting the self-dual surface along the line ira = p/2, 

71.  g = –p/2 with ym. = 1. 

From Equations (3.23), with y,, = O, it is found that 

7-ll (a + g) = 4rs  a(a + g)y,2 	 (3.24) 

This suggests that this surface is given by a + g = O with y„, = y, 	1, in the vicinity of 

the fixed points. 

Using a +g = O in (3.9) we have ir = p2 /47ra and the action (3.8) with NR  = O reduces 

to 

A (M, S) = ara E MR  G(R – )MR, + piE sr e(r  - R)m,,, 
R.R' 	 r 	R 

+ P-2— E Sr  G(r – )S,. ■ 
47ra 

ri 

(3.25) 

which is the same action one obtains for a p-state clock model (Elitzur et ai, 1979). This 

indicates that the phase transition is governed by a line of fixed points of Ising character 

(p = 2) or 3-state Potts character (p = 3). The same analysis can be performed for the 

region of the parameter space ira > 2. By symmetry we then obtain another line of fixed 

points at /3 = p72 and y„ = y, 1. 

In addition to those limes of fixed points we also expect two lines of fixed points along 

the axis for a = O, 7r,3 > 2, and # = O, ira > 2 corresponding to the usual XY line of 

fixed points for a single XY model. In the limit /3 oo, (3.1) reduces to an XY model 

with symmetry breaking field (José et ai, 1977), one then expects an Ising-like and a 3- 

state-Potts-like transition for p = 2 and p = 3, respectively. For a neaz zero, the M 

vortices are highly relevant and can be integrated out. This procedure leads to an effective 

= ,3 – 92 /a and the 5 variables bound together by strings with a linear interaction and 

therefore irrelevant (see the discussion in Section 3.5). So the transition temperature at 

finite g should be decreased. The expected pattern of renorrnalization-group trajectories is 

indicated in Figure 3.5 
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LOCKED PHASE 

Figure 3.5 Schernatic renormalization-group trajectories. 

A numerical interation of Equations (3.19) and (3.20) performed until the fugacities are 

of order 1, confirms Figure 3.5 and gives the phase diagram of Figure 3.1. A distinct point 

P along the line of initial points a = /3 separates the low- and the high-temperature phases. 

The locked phase corresponds to a power-law decay of correlations for O, and O,. fields, and 

in this region, fluctuations in 19,. are tied to fiuctuations in O,. Phase 13 corresponds to 

Ising-like (p=2) or 3-state-P otts-lik e (p=3) disorder and XY-fik e order in the field O,. and 

it is separated from the locked phase by an Ising (p=2) line PB. Phase A corresponds to 

the analogous behavior for the field 61,.. Both phases in turn are separated from the high-

temperature phase corresponding to Ising disorder and XY disorder by the line CPD. We 

are unable to determine in which precise form the two lines meet at the point P, although 

the flows are consistent with the topology indicated in the inserts A and B of Figure 3.1. 

The difference between our model and the p-state clock model transition along the fine 

APB lies in the behaviour of the correlation functions. If c H- g = O and N(R) = O the 

expression (3.12) reduces to 

< e" 1°P -9p' ]  > = p p' I -42"  Fpg 	 (3.26) 

Here Flq, (p— p') is the corresponding correlation function for the p-state clock model (Elitzur 
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where h,. is the new integer field introduced by the Poisson formula. 

Integrating freely over 475, and using the identity E Cr; G7.1 = 8,. rn we obtain (up to r, 	fr 

constant factors) 

_ A2Bc 

[ II 	
A E e., _ 	h, Gr;r1, 	(Ah, I- C h p, 

7r-y 	 2T-1 
r hr 

where we made use of the large distance behavior of Grrl (Equation B.7). By definition 

E h,. 	= E (h, — hr ,  
r.ri  

We can then recognize the second term in (D.3) as a particular correlation function of the 

roughening model discussed in Section 2.4.2 (Equation 2.44 with f = O). For the region 

of the phase diagram ira > 2, rf3 > 2, we have 7n.  << 1. This corresponds to a low 

temperature for the roughening model. Since at low temperatures one expects a long range 

order the second factor in (D.3) approaches a constant when I p — 1;11 —,  oo and (D.5) reduces 

to a pure power law behavior. When this result is substituted in Equations 3.12 - 3.16, we 

obtain for 1p — ¡dl oo 

< eql'P-end > = — di - g2 " 

< etqlop-opd > 	i p  _ ,5,1-q2 n 	 (3.33) 

< ei0P-4)1» > =1p — p1 1 -72 " 

and 

< ei gU °P -1-1) P )-9P' +4 s ) I > = iP 	Pir4q2" 	 (3.33a) 

< éql (eP -#0)-19p' -4'p' )1  > 	const 	 (3.330 

with ri = 2? (a +2g) 

Therefore in this region the correlation functions (3.32) and (3.33a) decay algebraically 

and are characterized by the saine renormalized constant while long range order is reflected 

in the correlation function (3.33b). The corresponding phase is locked. Although this 

analysis was performed for the region rot > 2 and ir > 2, the Migdal renormalization-

group analysis to be discussed later, suggests that the low-temperature side of the line APB 
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et ai, 1979) with F,!' = 1 and 

for the field (k r  we similarly find 

1 
= 	 27r($ - a) 

(3.27) 

< 	> = 1 0  _ pil—q2rk 	 (3.28) 

Near the line PB the correlation function (p- p' ) approaches a constant or decays 

exponentially to zero as ip - p'l -> ao if we are above or below this line, respectively. It 

follows that for phase A 

< eifop -opt > = p pirrIA 

(3.29) 

	

< e'14'P -4.011  > = lp - 	4.°)  C IP-1/1/E  

where e is the correlation length of the p-state clock model. Similarly, for phase B 

< eild'o — Opd > 

 

=1p— pil —np(or .9.0) 

(3.30) 
< eilop — opt] > = IP — pi l —n B •g.0) e"HP — Pi lle 

Note that for q = p, ali correlation functions are algebraic in ali ordered phases. In the 

high temperature phase ali correlation functions decay exponentially. 

In the region where ree > 2 and lr[i > 2, we can take M (R), N (R) = 0. In this 

region S(r) is relevant. Nevertheless, one can transform Equations 3.12 - 3.16 to another 

representation with the corresponding integer fields dilute in that region using the Poisson 

summation formula (2.45). With MR = NR = 0, the term involving summations in S,. in 

equations 3.12 - 3.16 can be written as 

i= [1-1 E exp [ - 	E Sr  Gr ,/ Sr? + 27rA E Sr  (BG„ CGrpti 	(3.31) 

	

T 	 ,.r i  

where G,, is the lattice Green's function defined in Equation (B.6). 

Using (2.45) the above expression can be written as 

r„co 
/= 	2„ 	dor  exp - 27r3 1E O, G r r t O re + 27r E (ABG„ 	- 

L  r h=-co 

(3.32) 
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is ali locked and the behavior described by (3.32) and (3.33) extends thoroughout the region. 

In the unlocked phases A and B standard arguments imply that O < riA , B  < , the upper 

value being reached on the phase boundaries between the partially ordered and completely 

disordered phases. 

Because of the form of the fourth term in the action (3.8), one would be inclined to 

perform a cha.nge of variable such as MR - NR --> LR and Mi?  —5 KR, in which case one 

obtains 

A(K, L, S) = ira2  E KR G(R — R' 	)KRI + 	E LR  G(R — 
R. Ri  

+ 271- g2  E KR G(R — R' )L R, + piE E sr ê(r — R)LR 

	

mV'2 E G(r — 	 (3.34) 
r.ri 

where a2  = a + 13 + 2g; 	= fi and g2  = 	— g are the initial values of the coupling 

parameters. -y2  ca be written in terms of a2 )32  and 92  as '12 = 42 P
2

02 
k202 _4 1  . Performing 

the same analyses as before, we find that a fixed point occur along the a = # line when 

g; = O. This is a very interesting result since it implies that the XY transition (represented 

by the M vortices) and the Ising transition (due to the M, S vortices) happen independently. 

This possibility is suggested by the numerical work of Lee et ai (1986) on the antiferromag-

netic XY model on a triangular lattice. They found that that the numerical simulation is 

consistent with a simultaneous XY and Ising transition. 

We show in Appendix C, however, that when hybrid vortices made up of a K and L of 

opposite signs are included, g2  does not renormalize to zero and the K and L charges do 

not decouple. In fact, if we identify K as a hybrid vortex of M and N in (3.8) and L as the 

N vortices, then the hybrid made up of L and K is the M vortex is (3.8). When hybrid 

vortices are included in the recursion relations derived from (3.34) we obtain the recursion 

relations obtained from the action (3.8). This is not surprising since, after ali, (3.34) was 

obtained by a simple change of variables. 
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3.4 Strong-coupling lin* and the Migdal reension relatians 

The analysis of the preceding sections shows that in the locked phase L. is relevant; this 

corresponds to h co in (3.1). In this limit 9. - O, assumes the values given by (3.6). For 

p = 2 one can define the Ising variables S (r) = 2r (r) - 1 and obtain 

	

A = E cos(or - oro +a E St  Sr, cos(Or - 	 (3.35) 
<rti> 	 <rr i> 

This action will describe the criticai behavior associated to the field Or . We can investi-

gate the phase diagram of this model by using an approximate position-space renormaliza-

tion group transformation introduced by Migdal (1975). Here we apply this transformation 

in a form due to Kadanoff (1976). 

First we need to consider a more general form of the action (3.35): 

A =- E V (O, - ri) -I- E Sr Sri F (O, - 	+ L E S,. Sri 	(3.36) 
<rrt>  

where V (0) and F() are periodic functions with period 2r. The original expression (3.35) 

is recovered upon setting V (0) = fl cosçi, F(4) = a co 80 , and L = O. The additional term 

has to be included since the form (3.35) is not preserved under renormalization. To apply 

the Migdal transformation one first moves bonds on the lattice such that the sites to be 

integrated out at each stage are linked to their neighbors only in one spacial direction. 

This bond moving allow us to perform a one-dimensional decimation to obtain an effective 

interaction between the remaining degrees of freedom. 

ev (0) - v (o) z  = eF(0)+L and f(0) 	er(4, 	o) In terms of u(0) = 	 the parameters 

(primed) of the new Hamiltonian are therefore given by the recursion relations 

z12 	24  Ai (0) + Z-4  Ag (0) 
A2 (0) + A3 (0) 

[A 2  (0) 1- A3 (0)][z4  Al (0) + Z-4  A4 (0)} 
I 	[A2 (0) + A3 (0)1[Z4 	(0) + Z-4  A4 (0)] 	

(3.37) 

LL‘ 

	

	[A2  (0) -I- A3  (0)1[24  Ai (95) +  Z-4  Ag (0)] 
124  Ai (0) + r-4  A4 (0)] [A2 (0) + A3 (0)] 
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Figure 3.6 Bond moving for a two dimensional square lattice. New ver-
tical and horizontal bonds are obtained by moving any other vertical and 
horizontal bond on top of a remaining bond. New bonds are then obtained 
by integrating out the isolated vertices. 

where 

Al (0) = 
f27r 

0 

A2 (4)) = 
f0 27r 

27r 

A3(4) = J a   

A4(0) =J 0 

 

d9.2(9)2 — 
OV2  (o)f (9—  0) 

0)f-2  (9 )12  — 

sbV2  (9 )r2  — 

g5 V-2  (9 ).r 2 (e —  sb) 

 

(3.38) 

da 
u2 (9)u2  — 

 

A numerical iteration of Equations (3.37) gives a phase diagram similar to Figure 3.1. 

The line APB separates the low-temperature region where L oo (Ising order) from the 

regions B and A where L -4 O (Ising disorder). In this Figure the axial parameters are now 

defined by at e°  . =-- lnf (7r) and flec, = — ln u(r). They reduce to a and p, respectively, 

for the initial values u(0) = esc° 0-0  and RO = ee°60-a . Actually, one should observe 

the evolution of the functions u(ck) and AO) in the whole interval O < çS < 27r, but the 
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above defined parameters provide a convenient way of following the renormalization fiows. 

Above and below the line PB, after a few iterations, 1 and u(0) relaxes to a Villain 

potential (Villain, 1975). Unfortunately the Migdal transform.ation does not actually lead 

to a fixed line and a srnall drift toward higher temperatures is always present (Jose et ai, 

1977). Therefore the line CD separating the disordered high-temperature phase from the 

fixed Ene # > #D  cannot be precisely determined. 

The line APB corresponds to Ising-like transition. In fact for # > ce, AO) and u(0) 

renormalize to f' (0) = 1 and ti (0) =ti (0). Using the recursion relations (3.37) we find 

SL' = L where SE and SL are the deviations from the fixed point and À = 0.74. This is 

the same result one finds for the two-dimensional Ising model using the same approximation. 

Near the point P, however, we cannot estimate the criticai exponents due to the drift to 

high temperatures in the Migdal approximation. Again we cannot determine the way the 

two Enes join or the kind of transition at that particular point. It is apparently consistent 

with a single transition but if two successiv e transitions do in fact occur the Migdal ap-

proximation then indicates they are very dose together with an XY transition followed by 

an Ising transition as temperature is increased. In particular we find that the region above 

the Ising Ene PB is a locked phase with power-law decay of correlations. Although we have 

studied the limit h —+ o° for the case p = 2, we also expect similar results for p = 3, where 

instead of an Ising we would have a 3-state Potts transition (Choi and Donia.ch, 1985). 

3.5 Linear and logarithmic interacting vortkes 

In the model (3.1) , vortex excitations can appear as a result of the continuous symmetry 

of the action in both Or  and 0,. fields. Not ali the ground states can be connected by a 

continuous transformation and the ground state has a discrete degeneracy. A domain wall 

excitation therefore separates a ground-state configuration corresp onding to O, — 4), = O 

from another nonequivalent ground state O, — 4), = 27r/p. 

The energy of an isolated vortex is proportional to ln L, where L is the linear dimen- 
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sion of the system. Therefore one expects logarithmic interacting vortex pairs of opposite 

vorticities at low temperatures. Since the entropy of such a pair is also proportional to ln L, 

they can unbind at some higher temperature. 

On the other hand, since there is a change of phase of 27r/p when crossing a domain 

wall, one can also produce a vortex by joining to the same point the ends of p domain walls 

(Einhorn et ai, 1980). The energy of such a vortex is proportional to the linear dimension 

of the system because a domain wall has a finite energy per unit length. Therefore, at low 

temperatures one expects they are connected by strings (domam n walls) in pairs of opposite 

vorticities. This linear interaction suppresses an XY-like unibinding. 

In the locked phase y, is strongly relevant. one can now transform (3.8) into another 

representation where the corresponding integer fields are dilute in that regime using (2.45). 

The necessary manipulations are described in Heinekamp and Pelcovits (1985). Dropping 

a.n overall constant factor, we get 

r  

[HEE] eA(M.N1 	 (3.39) 
R MR NR 

where 

eA l m• N)  = exp [ir (a 	P2  ) E MRG(R — R' )MR , 4r2 1, Rd?,  

+ 	) 	Np G(R — )NR , 
47r2 -y 

2ir (g + 47-75--P2 	MR  G ( R - /11  )NR, 
R.1?' 

x [ HE ] exp [ —E [h.„. — — pE t1 „, (R)(m, - NR )12 ] (3.40) 
r i  > 	 R 

%ri (R) is the operator introduced by José et ai (1977), it is +1 if r lies just to the right 

and ri just to the left of an arbitrary path going from R to oo in the positive z direction, 

—1 if r and ri are reversed, and O otherwise. 
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The first three terms in (3.40) represent logarithmic interacting vortices now corrected 

by a term p2  /47r2 -1 due to domain walls. The last term corresponds to the partition function 

for a set of domam walls of strengh p running from R to R' in the roughening model 

(Swendsen, 1978). Thus this term represents vortex pairs interacting linearly and connected 

by p domain walls of unit strengh. The interaction energy for a vortex pair has therefore 

two contributions: a logarithmic and a linear distance dependence. II' the strings have 

not melted these vortex pairs interact linearly for large distance separations and an XY-

unbinding transition is suppressed. However when the strings melt these vortices interact 

logarithmically, as can be seen by repla.cing the sum of the integers h,. by an integral over a 

continuous field. The corresponding phase now depends on the behavior of these vortices. 

The M vortices would unbind for ira < 2 and the N for ir fl < 2. If the melting of the domain 

walls occurs inside these regions the relevant vortex pair will unbind at that temperature 

and disorder the corresponding field. 

From (3.40) we can identify the free energy per unit length (divided by kB  T ) of a 

domain wall as -1- when T —> 0. Using a Peierls argument to determine when the free energy 

of a domain wall goes to zero we obtain that the string melting occurs at temperatures given 

by -I = . This gives melting curves similar to APB in Figure 3.1 When g = 0, this curve 

intersects the region where ira < 2 and 7r6 < 2 only for p = 2. 

However, the effect of a renormalized g < O is to move these fines further inside that 

region. In particular, for g = —a along the line a = #, the p = 3 melting curve also 

intersects this region but p = 4 curve does not. Thus we expect that that for p ,----- 2 and 

p = 3 there is no intermediate phase with XY order and p-state clock disorder (p=2,3) and 

we are left with the two possibilities indicated in Figure 3.1. 

On the a = # line, which is, of course, the most interesting from an experimental 

point of view, the weak coupling recursion relations do not say very much because one can 

construct a large number of relevant operators. In particular the M, N and S charges are 

all relevant with increasing fugacities. Also, the hybrid vortices with M R  = NR on the same 
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site are highly relevant, while the hybrid vortices with MR = - NR are irrelevant and will be 

ignored now on. Now at large a the M, N and H vortices are irrelevant but y„ is strongly 

relevant which when integrated out gives the string picture. When the temperature is 

increased (a decreased) although the recursion relations (3.19) seem to indicate that the M 

and N vortices are relevant they are still bound together by strings. The hybrid vortices are 

not bound by strings as can bç verified by Equations (3.40). So the important configurations 

are: (i) a pair of M(N) vortices of opposite signs bound by strings well separated from any 

other N(M) vortices; (ii) one M and one N vortex of the same sign dose together bound by 

string which can be regarded as a hybrid (H) vortex with a core size of the order of their 

separation. 

These extended objects interact logarithmically with each other on length scales large 

compared to their size. The separation of the M and N of the same sign can be interpreted 

as the core size of a hybrid vortex. For p = 2 and 3, simple estimates for the sequence of 

transitions temperatures give Tm  < T. < TR where Tm is the unbinding temperature of 

M or N vortices, Ts  is the string melting temperature, an TH  is the hybrid vortex unbinding 

temperature. The M vortices are bound by p strings so the transition in the absence of 

hybrid vortices would be in the p-state universality class by the string melting. However, 

the hybrid vortices are screened at T > Ts  by the M and N vortices so that they must 

unbind when the M and N do. Below Ts  the M and N vortices are bound for separations 

less than , the correlation length of the p-state model, which can be interpreted as the 

core size of a hybrid vortex. Thus, in the presence of hybrid vortices, the XY order is lost 

by the divergence of the hybrid vortex core size which leads one to expect a first-order 

transition. Note that this picture is fairly dose to that by Halsey (1985b) as discussed in 

Section 2.5. Furthermore, this picture gives an explanation of the mixed p state and XY 

chara,cter of the system as one approaches the transition provided it is rather weakly first 

order. 

These arguments can be applied to the same model with p = 1 which is the Villain 
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representation of the double-layer XY model (Parga and Hirnbergen, 1980). However the 

sequence of transition temperatures is Tm  < TH < T5. So this scenario means that the 

M and N vortices remam bound by strings and the transition is controlled entirely by the 

hybrid vortices leading to the expected XY tra,nsition. 

Unfortunately, there is no evidence for such a first-order transition from the extensiv e 

Monte Carlo simulations performed on this and related models (Teitel and Jayaprakash, 

1983b; Lee et ai, 1986; Berge et ai, 1986) in 80 x 80 systems which indicate a transition of 

mixed Ising and XY character. However, because the unit cell in the triangular antiferro-

magnet is eo = aa and in the frustrated XY model on the square lattice 2a, the largest 

correlation length is about 30 unit cells long. So there is no sign of a frist-order transition 

up to e/e, 30 and so the transition is at best weakly first order. 

3.6 Competing periodicities 

We turn now to a brief a.nalysis of the XY model with competing periodicities described by 

(3.2) in the coupled XY model representation (3.3). This representation can be obtained by 

a Hubbard-Stratonovich transforrnation as we show next. A related model was discussed 

by Lee and Grinstein (1985). 

First we rewrite the partition function associated with (3.2) as 

27r 	 1 

	

Z = [ 111 dOr l exp [-1 	Prr, eri + -
2 
E e-"P'r c r i eiPt3 r i 	(3.41) 

	

2 	, O 

Where Prr• = a r ,. + Ifp 45,,, and 	 + 445,,, with art., = a, 	= k3 when r and 

rs are nearest neighbors and zero otherwise. Here, Kp and KQ  are appropriate constants 

introduced to make the matrices positive definite. Applying the identity (2.55) separately 

to the two terms of (3.41), we obtain 

1 
= 	f dx, f d;] exp [ — 	— —z * Vi zr  o — 	.1-4,,z,.)] 

2 1.  " r 	2 	rr 	
(3.42) 

r 	r 	r  

where 

1 	 1 

	

[f de exp[- 	+ eie  ) —
2

(4 e-  'Pe  z: eiP°  )11 	(3.43) 
o 
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We can compute from (3.43) the first few low order terms contributing to the free 

energy. For example, for p = 2 we find 

H ( 	) = ( I xr 1 2  + 1 	) — u(I zr 1 2  +I 4. 1 2 )2—  vl 12  41 2  — WlI2I z I c os (29 —)+ (6) ( 3  . 44) 

In the last term, O and are the phases associated with ; and Zr respectively. The quadratic 

forms in (3.42) can be diagonalized using Fourier transforms. In a square lattice we have 

P (q) = 2a (coa q2, a + cos q,, a), Q(q) = 2,8 (cos qx  a cos q,, a) which reach a maximum at 

q = O. Expanding about q = O, the second order terrns in (3.42) can be approximated by a 

continuum form 

- )1 xq 1 2  = 	+ eq2  )1;12  

=f ‘12  r (71 41 2 -I-  eR 4)2) 	 (3.45) 

and sirnilarly for the Iz,1 2  terms. As discussed in Section 2.4, in two dimensions the phase 

transition occurs well below the mean field transition temperatures where fiuctuations in the 

amplitude are irrelev ant. Considering fixed amplitudes, from (3.42) and (3.45) we obtain 

the representation (3.3) where a and /3 in this expression are proportional to I x,. 1 2  and 1;1 2  

respectively. 

The electrodynamic representation of the action is found, by the methods of Section 

3.2 to be 

A (M, N S) = ra E MR G(R — R' )M R, + E NR  G(R  
RJ?' 	 Rd?' 

271-  g E MR G(R R' ) NRI iE s, e(r R)ipmR - Ni?] 
R,R 1 	 r R 

	

-Fr^lE Sr  G(r — 	 (3.46) 

where 

(a  + p2  +  2p g) 

	

= 	 (3.47) 
47r2  (afi 

The analysis is almost identical and we find a self-dual surface when the N vortices are 

irrelevant given by a = which corresponds to a g-state transition. The renormalization-

group equations ou this surface seem to fiow to the fixed point at ra = p/ 2  and 7rg = — 1/2 
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independent of 	Identical argumerxts to Section 3.5 show that this is a string melting 

transition between the fully and partially ordered phases of Figure 3.4. The other self-dual 

line at small values of does not correspond to a phase transition since it is the XY model in 

a magnetic field. The representation in terms of vortices and strings is similar to (3.40). The 

N vortices however are now connected by a single domains wall. These are the equivalent of 

the half-integer vortices discussed in connection with the model (3.2). The phase diagram 

is sketched in Figure 3.4 in which phase A is a locked phase and phase B is a partially 

ordered unlocked phase. The nature of the multicritical point P cannot be determined 

by these methods although applying the arguments of the previous Sections indicate that 

there is a first-order segment on the line CP in the neighborhood of P. Note that this p-state 

transition is not a consequence of an extra Z t, syrnmetry in the Hamiltonian, but simply 

due to extra minima in the action for a < 

59 



Chapter 4 

QUENCHED DISORDER IN SUPERCONDUCTING ARRAYS 

4.1 Introduction 

Although an ordered array of superconducting elements minimizes the effects of disorder, 

some is inevitably present and one should include these effects when studying the behavior 

of the system. Weak disorder is irrelevant to the criticai behavior of the XY model which 

corresponds to the zero field case and is also expected to be irrelevant in finite field provided 

the disorder does not couple to the field. Two kinds of disorder that we show to be relevant 

to the criticai behavior are: a) variations in the area of the superconducting elements of the 

array which is presumably least serious in the IBM arrays studied by Voss and Webb (1982) 

and Webb et ai (1983) and most serious in the arrays of superconducting squares studied 

by Tinkham et ai (1983) and Kimhi et ai (1984); b) randomness in the positions of the 

nodes or superconducting grains of the array which will certainly be always present. The 

first leads to uncorrelated variations in the area of each plaquette provided the penetration 

depth in the grain is small compared to the grain size and hence to random variations in f 

and the second to highly correlated variations in the flux per plaquette. 

In this chapter we present a simple mode' of a Josephson junction array in a transverse 

magnetic field with disorder (Granato and Kosterlitz, 1986c). We map the mode' into a 

coulomb gas of fractional charges perturbed by a quenched distribution of random charges 

in the uncorrelated random area situation and, in the random position case, a random 

distribution of dipoles. 

As in the uniformly frustrated model, the behavior at rational values of f is difficult to 
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ascertain. However, if we restrict ourself to integer values of f, which corresponds to consider 

the lower envelope of the resistance as a function of f, some more definitive conclusions can 

be obtained. In this case the model reduces to a coulomb gas of integer charges perturbed 

by the random distribution of charges or dipoles. In the former we found that there is no 

superconducting phase for any finite field but there is a remnant of it provided the disorder 

is small enough. In the 'atter case, a reentrant phase exist at low temperatures for values 

of the magnetic field less than some disorder dependent criticai value. For larger values and 

higher temperatures there is no superconducting phase. 

These results have direct experimental consequences. There is no published experimen-

tal data which may test the prediction for the random plaquette area case. We expect this 

to be valid for arrays of leacl squares since there is bound to be randomness in the individ-

ual square sizes. But in these arrays the junction size is quite large and Te  (H) will itself 

decrease as Ir in a non-random array. The results for the positional disorder seems to have 

some experimental support. For magnetic fields larger than the predicted criticai value, the 

resistance should increase slowly and at higher field one expects that this will cross-over to 

the usual flux-flow resistance R(H) oc H. This seems to be in qualitative agreement with 

the experiments by Webb et ai (1983). However the experimental data is also complicated 

by osciliations in the lower envelope of resistance which are outside this simple model. In 

Chapter 5, we propose an interpretation of these oscillations based on the existence of two 

fundamental areas which can lead to oscillations of two different periodicities. 

The reentrant transition predicted for the positional disorder hos not been observed 

experimentaly, but this will not be an easy effect to observe. One also has to consider that 

the inclusion of charging effects in a non-random array also leads to a reentrant transition 

(José, 1984). 

The kinds of disorder considered here correspond to quenched disorder which implies 

that one must average the logarithm of the paxtition function over the random distribution 
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to produce the free energy, i.e. 

F = — kB  T[ln Z (M d 	 (4.1) 

where 1  )d  means an average over the randomness. 

4.2 Random plaquette area 

Provided the transverse penetration depth (0(.4) for the grains is less than the grain size 

(0(p.m)), randomness in the shape of the grains will induce a randomness in the number of 

flux quanta per plaquette f = H S14), through the change in the area. If the field penetrates 

homogenously the array, the flux in each unit cell will be the same regardless the change 

in the shape. However the above effect will always be present but to a smaller degree even 

when the penetration depth is comparable with the grain size because there is a tendency 

for the field to be excluded via a partial Meissner effect and there will be more flux going 

through a large than a small ama between the grains. 

We assume that the areas are gaussia,nly randomly distributed about some mean a 20 . 

Since f = HS/ 4)0  , the distribution for the f is given by 

PVB )oc exp [ 2/./2°A2  (fn — )2 	 (4.2) 

where A2  is the variance of the area distribution. 

The frustrated XY model (2.5) with the above random distribution is similar to a de-

scription of spin glass suggested by Hertz (1978). He has shown that this kind of randomness 

is relevant below 4 dimensions and the f = O flxed point is completely unstable to this kind 

of disorder. 

In the coulomb gas representation (2.46), the random distribution (4.2) corresp ond 

to a coulomb gas of fractional charges perturbed by a ra,ndom distribution of charges. As 

mentioned in Section 4.1, we are concemed here mainly with the effect of this kind of disorder 

in the resistance minima where Á is an integer. In this case we can shift MR ME + 10, 

so that now we have the problem of a set of integer charges in a background of random 
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charges with mean zero. Consider a test charge in a region of size L. Since the fluctuation 

of a random charge at the dual site R is (6 fp) 2  = 11,-4 2-, the fluctuation of random charges 

in the region of size L produce a total charge . When this region is chosen of size larger 

than = PÉ' the test charge will be completely neutralized by this random fluctuation. 

Thus charges separated by distances larger than e will be unbound. This argument is the 

converse of that used by Kosterlitz and Thouless (1973). They argued that if charges are 

unbound, the average total charge in a region of size L is proportional to L while if they 

are bound in dipoles it is proportional to L' 12 . Since the present argument leads to a total 

charge proportional to L, we conclude that there is no screening. We can now identify e as 

the correlation length of the free vortices contributing to the resistance of the array. This 

indentification also implies a scaling behavior for the correlation length as 

e 
	

(4.3) 

where At  = Hi5/4)0  is the standard deviation of the random distribution of the f. This 

result is in agreement with that obtained by Ritala (1984) in d = 4— E dimensions. Using 

the arguments of Section 2.3.2, the resistance is given by R(H)a e-2, then 
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(4.4) 

and the resistance will oscillate with a period corresponding to one flux quanta per mean ama 

and the lower envelope of the resistance will rise quadratically for small H. These arguments 

are low temperature ones and lead one to expect quadratic increase in the resistance at 

temperatures well below the critical temperature of the corresponding pure model. 

4.3 Positional disorder 

In the limit where the grain sizes are small relative to the amas between grains or a network 

of superconducting wires of constant or very small cross section interpersed with weak links, 

another source of disorder is in the positions of the nodes of the network. The effect of this 

type of disorder can be easily seem qualitativ ely. Suppose that a superconducting wire 
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separating two areas is displaced from its ideal position, increasing one area and decreasing 

the other. This intuitively leads to two equal and opposite neighboring charges in the 

equivalent coulomb gas representation or to a quenched distribution of random dipoles. 

The same will happen for a displacement of the nades of the array. 

We now introduce positional disorder which consists in allowing displacements of the 

sites from their average position r by an amount u, with a probabilit y distribution 

P (tir ) oc exp [-
2 1  

Ur j 	 (4.5) 

In practical systems this kind of disorder will induce disorder in the couplings between 

nodes J„,. However, we show that small disorder of this kind is irrelevant along the fixed 

line of the XY model. In arder to show this, we have to perform the average over the 

randomness in (4.1). This free energy can be averaged using the replica trick (Edwards and 

Anderson, 1975), which makes use of the mathematical identity 

1 —  

[ F 	 n j 	
(4.6) 

d 
  

Assuming that the lirnit process n O and the average over the randomness commute, we 

can first integrate over the randomness and then take the limit n O at the end of the 

calculation. 

Consider the Hamiltonian (2.5) at integer f in the spin wave aproximation 

H 	1 , 	 - 

	

kB  T jk l‘o ± 8  IC) f r(V 60 2 	 (4.7) 

and assume that the distribution for the variable 5K is 

	

P(5K) a exp [— —1  f er (5 K)2 1 	 (4.8) 
2A2  

Applying the replica trick, we find a replicated Hamiltonian 

H 	 1 	
ra. 

1 	 - 
(4.9) 

64 



Z = E expbr K E (Mj  — fo ) In  I  R 
— R' 

fo)+ lnYEWR .0 2  
R 

a 
{MR) 	RR 1  

(4.12) 

where a and 13 are replica indices. The last term in (4.9) is clearly irrelevant along the 

gaussian fixed fine because it involves four powers of the gradient operator. Under a length 

reescaling á iterates to zero. This does not apply to granular superconductors because in 

this case the disorder is very large and presumably dominates the behavior (see for example 

Goldman and Wolf, 1984). From now on, we assume the coupling Ji = J, a constant. 

In order to determine the effect of positional disorder defined by (4.5) in the critica! 

behavior of the frustrated XY model, consider the coulomb gas representation (2.46). Posi-

tional disorder will induce a change in the arcas of the plaquettes. 1f we take a continuum 
■•■ 

limit of the lattice model, we do not distinguish between a lattice point r ia the original 

lattice and a lattice point R in the dual lattice. In this case the change in the area of a 

given plaquette is aproximately S S o  So V R  ah. where S0  is the area of the plaquette in 

the undisplaced lattice. Since f = HSP:1)„, this gives 

 

(4.10) 

To be consistent with this linear aproximation, when (4.10) is substituted in (2.46), we must 

disregard (6f)2  terms, and obtain 

Z = E exptirK E(M _ )G(R — )(mR, — f.) 
-{mR} 
	

R#R 1  

d2  R 
21r.  Klo 	f 	• UR G(1? - )(Mit, — fo )] 

a2  

A partia! integration in the last term finally gives 

(4.11) 

21r Kl, E .1 d2f uR • 	 
a 

I R — R'1 2  

where y is the vortex fugacity y C"21C/ 2  and the vortices satisfy the neutrality condition 

ER (MR fo)= o. 
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A more careful derivation taking into account the differences between the original and 

dual lattices gives the same result to linear arder in the displacements. Higher order terrns 

in fact can be shown to mole no difference to the final result. 

This can be viewed as a coulomb gas of fractional charges perturbed by a random 

distribution of dipoles pR  x tzR . Here we concentrate only on the case where fo  is an 

integer. In this case shifting MR MR f we obtain a coulomb gas of integer charges 

perturbed by a random distribution of dipoles. This problem has been previously studied 

by Rubinstein et ai (1983) in another context. 

Renormalization-group recursion relations for this case can be conveniently constructed 

by the replica trick. Identical results can be obtained, although in a more laborious way, 

without using replicas. Proceeding with the replica trick (4.6), after performing the gaussian 

average in ur  using the distribution (4.5), we obtain from (4.12) the replicated coulomb gas 

Hamiltonian 

H  - 	= 	 , IR — R' I E E iteR  -- 
kB  T 	 a R#Rt  

IR— Ril 	 (4.13) 
— irK2  E E mi-, 4, ln 

a 
.1? Ri  

I- 11 1 yEE(An 
R a 

where 

= K — 4r2  A2  K2  
(4.14) 

K2 = 47C2  ga2 K2  

Recursion relations for the above Hamiltonian can be obtained by the same procedure 

as described in Chapter 3. We obtain 
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dKi  
dl 	- 471.3 Y2 	(n 	1)11  

dK2  
dl == 

4/1-3  Y2  [2Ki K2 + (ti - 2)g] 	 (4.15) 

dy 
--d-i  = (2- rrKi )y 

Taking the limit n -+ O, we finally obtain 

dKi  
47r3  Y2  [K12. 

dK2  
= - 47r3  y2  [2K1  K2  - 	 (4.16) 

dy 
=. (2 7rK1 )Y 

Combining the first two of the equations (4.16) and noting that K1  - K2 = K gives 

dK 
= 47r3  Y2  1(2  

dy 	
(4.17) 

--d-i = (2- rrK 47r3£ 4n,2 K2 )y 

Note that jo  and A appear in the combination fo  A which can be regarded as a measure 

of the disorder which increases linearly with the applied field. For a given sarnple A is fixed 

and the degree of disorder is varied by changing fo  . 

The renormalization group flows generated by equations (4.17) in the (K -1 , y) plane 

are shown in Figure 4.1 for small values of fo  A. 

There are two special points along the y = O fine where the eigenvalue of y vanishes 

IÇ 1  (fo  A) = [1± (1- 327r£ A2  )] 	 (4.18) 

The heavy line in Figure 4.1 correspond to a trajectory which start at a special point 

Kj 1  below K-1  and ends at 1Ç 1 . The region bounded by this trajectory is a domain of 

atraction of the fine y = O. This correspond to the superconducting phase where thermal 

excited vortex pairs are bound in pairs and correlations decay algebraically. Below Kj 1 , 

the fugacity is relevant due to the random dipole potential. In the region Kj 1  < K < .1ç 1  , 

there are enough vortex pairs to screen out this potential. As fo  A aproaches 	, 	1  , K-4 1  and 
v32. 
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11 
fm = 	 

327r A 
(4.19) 

Figure 4.1 Renormalization-group flows. The heavy trajectory starting in 
Kj 1  and ending in 1r 1  bounds the superconducting region. The dotted 
une indicates a locus of initial conditions. 

le i  merge and the superconducting phase shrinks to zero. This leads to a criticai value of 

above which there is no superconducting phase. 

Figure 4.2 shows the resulting phase diagram. For sufficiently small fo  there is the usual 

resistive transition at a temperature Tc  = T+ (J.o ). In contrast with the pure model one also 

finds a reentrant unbinding transition at a lower temperature 7 (L). These temperatures 

are determined by the intersection of the curve of initial values (dotted line in Figure 4.1) 

with the phase boundary of the renormalization-group flows which separates the two regions 

where y is relevant and irrelevant. 

The properties of both transitions are determined by the renormalization-group flows 

near K.7. 1 . The exponent characterizing the algebraic decay of the correlation function 

approaches the value 

1 
ri* (fo  á) = —8  {1 + (1— 321r 2 £ )4] + 27rGi2 f! 
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fm 	 fo 

Figure 4.2 Qualitative phase diagrarn as a function of the temperature 
and average number of flux quanta per plaquette f0.  In the case we are 
considering here f, is an integer. 

at the two phase broundaries T (Lif0 ). In the normal phase, there is the usual exponential 

decay of the correlations. Near T, e diverge exponentialy like 

e exp [C1 T — 	 (4.21) 

where C is a constant, for constant f0.  This result is the same of that obtained for the pure 

XY model (Equation 2.27). At constant temperature we obtain 

e exp [Cl f, — f c  (T )1 -  4] 	 (4.22) 

The renormalized spin-wave stiffness constant approaches 

KR = 	1 	[1 (1 -  327r A2 f: 
87r2  Z52  g 	

(4.23) 

on the pha.se boundaries of the superconducting phase. Therefore, in contrast with the pure 

system (Equation 2.26) the superfluid density jump is not universal but depends on f0. 

For fo  > f, the density of free vortices where MR = ± 1 is approximatly 711  e-2  and 

so the resistance increases very slowly at constant temperature as f, is increased beyond 

f, At higher fields, since the superconducting phase is unstable at any temperature, one 
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expects that this will cross-over to the usual flux-flow resistance discussed in Section 2.3.2, 

i.e., R (H) — H. 
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Chapter 5 

RESISTANCE OSCILLATIONS IN THE IBM ARRAYS 

5.1 Introduction 

As we discussed in the previous Chapters, the simple model for an idealized superconducting 

array described in Section 2.2 can explain the main features of the experimental data in 

particular the basic periodicity in f and also the existence of subsidiary minima at rational 

values of f. However, there are certain features of the experimental results that have not 

been explained. 

The frustrated XY model used predicts that the resistance minima at integer values of 

the flux should be zero at low temperatures (except for finite size effects) and should remain 

zero until the applied magnetic field reaches its critical value at which the superconducting 

elements making up the array go normal. The experiments, however, seem to disagree with 

this at least in two respects, except of course at zero field. First, the resistance minima never 

reaches zero except at zero field (Figures 1.1 - 1.2). Second, as can be seen in Figure 1.1, 

in the IBM arrays studied by Voss and Webb (1982) and Webb et ai (1983) the resistance 

minima oscillate with a rather long period and beyond some criticai value of the field these 

resitance rninima start rising slowly and linearly at higher fields. 

The first point has been considered in Section 4.2. In this Chapter we address the sec-

ond point. We propose an interpretation of the variation of the resistance minima without 

disorder by modifying the simple model considered in Section 2.2 to include the presence 

of two incommensurate fundamental areas. The linear increase of the resistance at higher 

fields is then accounted for by including an small amount of positional disorder as described 
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in Chapter 4. In consequence, the fact that the criticai field is also associated with the de-

velopment of a rninimum ia the lower envelope of the resistance curve must be attributed to 

a coincidence since these two effects are independent of each other (Kosterlitz and Granato, 

1986). 

5.2 The model 

The array studied by Voss and Webb (1982), consists of niobium superconducting wires ia 

form of crosses and squares of 1ttm cross section. The Nb tunnel junctions were patterned 

on oxidized Si chips. Whenever a cross overlaps a squaxe a Josephson junction of lízm2  of 

area is formed as laid out in Figure 5.1. We will assume the junction to be simultaneously 

large enough so that charging effects can be ignored but sufficiently small so that the field 

dependence of the effective coupling across the junction is negligible. In what follows, the 

limite size of the junction is completely ignored. We also rnake the further assumption that 

the superconducting elements are sufficiently thin ao that flux can leak through them. With 

this assumption, the field is essentiafly uniforrn ia the plane of the array and the system 

can be considered to be in thermal equilibriurn. Note that a parfial Meissner effect for the 

superconducting elements would lead to hysteresis and metastabilit y and a total Meissner 

effect would completely elirninate the effect we are trying to explain. 

We can immediately see that, under these physically reasonable assumptions, there is 

another area in the problem besides the fundamental area A L  formed by a loop containing 

four junctions. In the original analysis of Voss and Webb (1982), only the flux penetrating 

the area A L  was taken into account. This is responsible for the main oscillations with a 

period AB = .170e. However, if this is the only area determining the period of 

the oscillations, the frustrated XY model defined in Section 2.2 would predict no further 

variation of the resistance which is contrary to the observation. With the assumption that 

flux can leak across the superconducting wires, there is another fundamental arca A 8 , the 

area of a square, which in general is incommensurate with A L . Since the fast oscillations 
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_. _. 
Figure 5.1 The IBM Josephson-junction array. Solid dots at ri , r2  represent 
the lattice of nodes of the superconducting network, crosses the weak links 
and solid lines the superconducting wires. The dual lattice sites are denoted 
by open dots (R) and squares (I?). The two fundamental areas are the large 
squares (A s ) and hatched area (A L ). A unit cell is marked with a dashed 
line. 

of the resistance are determined mainly by h,. 1-3:--,, A I,  , we concentrate in particular on the 

minima at fL  = integer. 

The Hamiltonian of the system can be parametrized as 

H 
KB  T 

= — K E cos(Ori  — Or2  - A ri. r2  ) - L E cos(0,2  — 0, — A ,2 r5 ) 
	

(5.1) 
< r1r2> 	 <r2r5> 

, - 	- 
where A„, = 72,-.1-t f 1.  A- dl. In (5.1) two parameters K and L were introduced to describe 

the coupling across a junction between nodes on a cross and square (K) and between two 

nodes on a squ are (L), with K << L. Although the squares do not contam n weak links, flux 

will leak in and out of the square so they have to be treated in the same way as the weak 

links but with a larger coupling constant. Of course the choice of the nodes of the network 

is completely axbitrary but a different choice makes no difference to the final result. 
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5.3 Coulomb gas representation 

We can now follow the procedure of Section 2.4.2 in order to obtain the Coulomb gas 

Hamiltoniaxi and write the partition function in the roughening representation. We obtain 

1 
(SR  — SR:)2 — 	E (SR  — u, )2 

2K R 	L 1.? ai? 	 < RR I > 	 <RR> 

—2lrfLi>2 SR — 2rfs  iE a-  h] 

R 

	 (5.2) 

where fs  = Baz 10o and fL = B(172  — 4)100 is the number of flux quanta through A s  and 

AL  respectively. The next step is to use the Poisson summation formula (2.45). This gives 

1 
= [11 f e°  dOn][11 f XI?]exP 	E (&- 4R'— —2L E (oR - 

R -c° 	R 	 <Ri?'> 	 <RR> 

— 271" iE 	R)(  1C' R 27r iE (fs 	1?)X 
	

(5. 3) 
R 

To perform the resulting integration it is convenient to divide the dual lattice into unit 

cells with three charges per cell as shown in Figure 5.1. The resulting cells form a square 

lattice of lattice spacing b\/ with charges at the vertices and centers of the bonds. Splitting 

the OR variables into two interpenetrating square lattices, we can take Fourier transforms 

in which case we can write (5.3) as 

3 
1 Z= [ri f 	exp [_  

i=1 

27r iE 	[mi ( q) + (q)10, (q)1 	 (5.4) 

where i, j specify the intra-cell positions and fl  = 	=fj , f = fs  . Here (/), x have been 
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replace by Oi  and 

4 
7 "1-  L 

(q) - Ecos I 	gi +2 " ) + cos (g' 	-2 " )  

k 	- 1  cos 1  a L 	.x 

- -2-- [COS I" 	+") + C lqz-q)] os ----. 
K 	2 	 2

v 
 

4 	2 

- cos q, 2 • 

  

(5.5) 

Finally, performing the gaussian integrais we obtain the Coulomb gas Hamiltonian 

3 

= 27r2  E E [mi (q) ±fi(q)1G'ii(oin (q) 	(o] 	(5.6) 
i.;=, ç 

We find 	(0) = O in which case G, (R) diverges logarithrnically with the size of the 

system. However, taking the small q lhnit we find 

The calculation of Eii  which is the short range pa,rt of the interaction G'ij  is an important The calculation of Eii  which is the short range pa,rt of the interaction G'ij  is an important 

step. If E was neglected in (5.7), from (5.6) we could replace Ei  (mi  + fi ) by E i (M + f) step. If E was neglected in (5.7), from (5.6) we could replace Ei  (mi  + fi ) by E i (M + f) 

where f = 2fL, + fg which is the number of flux quanta in one cell. This would ma,ke the where f = 2fL, + fg which is the number of flux quanta in one cell. This would ma,ke the 
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He IC 	 (R - R') 

	

V9 T =" 
27r L 

2L + K 	E [ivi (R )  +fil [ml (R')  + 	o 1 r 
i,3 ROR' 

+ E Eimi (R) -i- filEii Em.i(R) + hl 	 (5.9) 
R i.j 
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Coulomb gas Hamiltonian periodic in f which in tum implies a single periodicity of the 

resistance on the magnetic flux. Since the eigenvalue of R, are ali positive and distinct, 

the energy minima occur when each f, is equal to an integer, so the expected periodicity is 

restored by this short-range part. 

5.4 Effects of competing areas and disorder 

We can draw a few conclusions from the form of the Hamiltonian (5.9). If fL  and fc are both 

integers, the system reduces to three coupled Coulomb gases with integer charges which can 

be studied by the methods of Chapter 3. In this case an XY-like transition is expected at 

a temperature determined by 

7f LK  

(2L K) "-2. 1  
(5.10) 

This corresponds to the same behavior at zero field. At other values of f L  and f ,  the 

resistance will be controlled mainly by A and will be roughly proportional to IfL  -n where 

ti is the closest integer to fL  (see Section 2.52). So we expect that the resistance can be 

approximated by 

R(JL,P) = Aik 	+ Bifs nsl 	 (5.11) 

where A > B are proportional to the mobilities of the defects in the flux lattice. 

Using the measured ratio of the areas A L /A s  1.235, we have fs  = fL  A s /A L  c-,  0.809fL  

so the deviation 8fs  of fs  from an integer will be minimurn at certain values of fL  where 

fL  is restricted to an integer value. For this ratio of areas, these occur at fL  0(Sfs  = 0), 

fL  = 5, 16(45fs  .05), k= 10, 11(8f .09) and fL  = 21(6fs  .004), etc. Thus from 

(5.11) we expect subsidiary minima in the lower envelope of the resistance curve at these 

values of fL  with the deepest one at fL  = 21, the next deepest at fL  = 5, 16 and the highest 

at fL  = 10, 11. Of course, since the areas are probably incommensurate, the resistance 

variations are only quasiperiodic and are rather sensitive to the exact value of the ratio. 

When the magnetic field is increased further, ra,ndomness in the positions of the nodes 

of the superconducting array measured by a standard deviation d will disorder the su- 
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perconducting phase at some criticai value dependent on A. Combining these two results 

together yields a lower envelope of the resistance which is in good qualitativ e agreement 

but a detailed comparison requires a much more sophisticated theory. The experimental 

observation by Webb et ai (1983) that the deep minimum in resistance at fi, r...- 21— 25 (see 

Figure 1.1) is correlated with the beginning of the monotonic rise of the lower enevelope 

must be attributed to coincidence since the criticai field and the exa,ct value of fi, at the 

minimum are both sample dependent and independent of ea.ch other. 
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Appendix A 

DOMAIN WALL ENERGY FOR THE FULLY FRUSTRATED XY MODEL 

The coulomb gas energy for this case can be written as 

Ri 	R'r  
qR  qR, In 	 (A.1) 

a 

V2ir   
where qR  = q and q = 	

J 
 . The charges qR  are arranged in a chessboard ground state 2 

as in Figure 2.14. 

Consider a single vertical domain wall in this ground state. It divides the system in two 

regions where one region, say (2), is obtained from region (1) by changing the sign of q. 

The domain wall energy is the excess energy produced by this configuration. It can easily 

be seen that this energy is given by E„, = - 24 1 ), (2 ) where 4 1 ), (2)  is the interaction energy 

between the lines of charges in one region with the other region. Since each fine consists of 

alternating + and - charges, this is a very simple eletrostatic problem. The energy between 

two lines of charges separated by a distance R is given by 

--- = q2 	 (A.2) dR2 	R2  + na2  -.o 

The series in the right hand side can be easily summed using complex integration and gives 

(sinh 1L  )-1  . Substituting in (A1) we obtain 

2rR 

	

Eint =±q2  ln tanh —
2a 	

(A.3) 

where the + and - signs correspond to unequal and equal lines. For R >> a this gives a 

exponential decay as in Equation (2.65). 
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The domam wall energy can now be obtained by adding up the interaction energy of 

the lines of charges of region (1) with those of region (2), i.e. 

co 	oo 
R 	 7r R 

	

= 2q2 E E (- ln tanh —
2a 	

(A.4) 
P=1 R = P 

After using the approximation for large distances, this series can be summed to give 

E,„ = 	q2  = 0.27J 	 (A.5) 
(1 -1- e--12  

Halsey (1985b) working with the original model (2.5) has obtained, using numerical meth-

ods, EU) = 0.34J. The small discrepancy is due to the fact that the transformation of the 

original Hamiltonian (2.5) into the coulomb gas representation (A.1) is not an exact one. 
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Appendix B 

COULOMB GÁS REPRESENTATION 

Kadanoff (1978) has given a general prescription for transforming two-dimensional sta-

tistical mechanical models into a coulomb gas representation. In this Appendix we briefly 

outline the derivation. 

The first step is the replacement of all cosine interaction terms by the Villain's approx-

imation 

eK e... = E e_4-2m)2 (B.1)  
m.—ce 

Using the Poisson summation formula (2.45) and perforrning the resulting gaussian integral 

the above expression can also be written as 

00 
1 	2 elf cos x = E e- 21c m -1-sm. 

m.-00 
(B.2)  

So the Villain's approximation consists basically in the replacement of the Fourier coeffi- 

1  2 
cients of e1. COS  by 	C2K m  which is a good approximation for low temperatures. 

This is the same approximation we use in Section 2.4.2. Note that (B.1) has the same 

symmetry as the original cosine interaction. The difference between the Villain and cosine 

interaztions was shown to be irrelevant to the critical behavior of the XY model (José et ai, 

1977). The Villain's approximation allow an exact decomposition of spin wave and vortex 

configurations as obtained in Equation (2.46). 
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Using this approximation, the partition function for the model (3.1) can be written as 

Z = [ 	E E] [HE] exp [ — E - 0„ - 2rm, r) 
2 

<rr i > rn rr t 	 r ST.  

- - 	- o r, - 2rn„, 
2 <rrt> 

— g E (9,. — 	— 	)(Or  - 	 - 271-n", ) 

ipE S, (O, - 
	 (B.3) 

We now make use of the gauge-invariance of (B.3), i.e., the invariance of the integrand 

under a transformation 
O,. 	0,. + 27r q, 

(B.4) 
—) 	q, - gr) 

where gr  is an integer. Similar transformations can be applied to the n rr, variables. Because 

of this invariance we can choose g,. and p,. such that on horizontal bonds g,. — gr, + 	= O 

and pr  — p„) n„) = O. The remaining g,. and p, appear in the combination O,. + 2rq,. and 

2rpr  and can be used to extend the range of integrations of O and 4) from —oo to oo. 

The exponent in (B.3) is now reduced to 

a 
A = 	E (e - e ri f - E (0 - (1) - 9 E - 9,. )(& - oro 2 

<rr'> 	 <rri > 

271-  E 	- 	) mr  - fln" , ) 271-  E cor - ort)frkfirft Onayr ,  
<rr f > 	 <- r i > 

ip 	S,. (O,. — 	) 	 (B.5) 

Here, E denotes the sum over vertical bonds only. 
<rr t > 

Each quadratic form in (B.5) can be written as 

E (e - 	= E o GrI, 	 (B.6) 
< rr3 > 

where Gr ,., is the lattice Green's function. It diverges at r = ti (see for example José et ai, 

1977). To isolate the divergence Gr,/ can be splitted in two parts 

1 
• = — —27r G(r — 	+ G(0) 	 (B.7) 
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with a large distance behavior G(r ri) ln 7-141  -I- , and G(0) 	oo 

After performing the gaussian integrations in (B.4) and using (B.5), the resulting ex-

pression in terms of m„, and n„, can be simplified if new variables in the dual lattice are 

defined by 

Af.,, =E ?rir, , 
	N„ =E nrri 
	

(B.8) 
R 
	 R 

where E means a discrete curl around a plaquette with dual site R. The detailed calculation 

that follows can be found in Kadanoff (1978) and also in the Appendix of the paper by 

Yosefin and Domany (1985). The singular term G(0) irnposes charge neutrality conditions 

With these definitions, one obtain the representation (3.8). The same procedure can be 

applied to obtain coulomb gas representations for the correlation functions. 

Kadanoff's method, although systematic and straighforw ard, is sometimes unecessary 

for the kinds of models studied in Chapter 3. As noted by Nelson and Halperin (1980), the 

final result can be easily obtained by expanding from the beginning O, and O, about vortex 

configurations as 
O,. =O +E MR e(r — R) 

R 

(kr = (15(: +E Arn e(r — R) 
(B.10) 

where e(r — R) has the assymptotic form given in (3.11) and Oc,'. , 0. are smooth functions 

which correspond to the spin wave part. This is the same expansion used originally by 

Kosterlitz (1974) to obtain the coulomb gas Hamiltonian for a single XY model. Since 

(B.10) contains vortices explicitly, the action can be simply approximated by a gaussian 

A =f cPr(V9)2  — —
2
f cfr(Vq5)2  — gf ierVO•Vq5 

2 

ip 	(9, 	(kr ) 	 (B.11) 

The quadratic terms have been temporarily approximated by their continuum forms for 

convenience of calculation. Inserting the expansions (B.10) and noting that spin wave and 
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vortices decouple in this approximation, we obta.in after performing the required gaussian 

integrais 

A = - E MR  MR , f rv efr - v e(r - ) 
Rd?' 

13 	N N
R 
of d2 r57 0(r R)V0(r- R') 

2-• R   
2? R' 

- g E mRN„, f cprve(r— R)Ve(r - R') 

p2  

2(c/9 - g2) 	
+ + 2g)E G.,.,., 	 (B.12) 

Using the large distance behavior Gi = 	in 	and regarding Grrs as a function of 
2/T 	a 

complex variable we have the property e(r- ri) = - 27r ItnG,.,.# . Using the Cauchy-Rienman 

relations for complex functions, integrating by parts and using the property V 2  Grr l = , 

the integrais in the first three terms of (B.12) can be performed to give 

f cf rVe(r- R)Ve(r - R') = (2702  GRR I 

Using (B.13) we obtain directly (3.8). The same procedure can be easiiy applied to the 

correlation functions (Equations 3.12 - 3.16). 
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Appendix C 

RECURSION RELATIONS IN THE COULOMB GÁS REPRESENTATION 

In this Appendix we outline a derivation of the renormalization-group recursion rela-

tions for the kind of Coulomb gas Hamiltonians studied in Chapter 3. Further details can 

be found in Kosterlitz (1974) and Nelson and Halperin (1980). We also include in this 

Appendix a derivation of recursion relations in the presence of hybrid vortices. 

Consider a simpler case with only MR and Sy. vortices. Setting MR = 0 in (3.8) and 

restricting attention only to excitations with charge ± 1, we expand the partition function 

as power series in each fugacity as 

co0O 	 2N 	12N' [2N 	 2NI  z 	 1 1 	
{ 

L. 	
[y„,} 	 ri l d2 Ri][ H f cerl eAN.N, 

N' P  a2 	a2 	
(C.1) 

N=0Ni=o 	 i.1 	3=1 

where N and N' are the number of the M and S charge pairs respectively, and 

AN N? = rct E 14 mR5 G ( Ri - Ri ) + ip E Sti  MR3. e(ri  — )+11-1 E Sr . G(ri — ri ) (C.2) 3  
¡Ai 

To take into account the underlying lattice each integration in (C.1) is excluded from 

circles of radius a centered at the positions r i  and Ri  of the others charges. In order to 

contruct the renormalization transformation we scale the minimum charge separation from a 

to aé and explicitly integrate out those configurations where two opposite charge approach 

each other with separations between a and ae with 5 small. Recursion relations for the 

parameters can then be obtained by finding the correction to the partition function resulting 

from this procedure and requiring for the new partition function the same functional form 

as the original one. 
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To linear order in 8 we can rearrange the integrand in (C.1) as 

2N t 	21V 	> 	21V °  f > 	.1 
[fliceRi ] (llfêrl,[111 d2R]íri d2 r 3 

i=1 	 j=1 

	

> 	2N f  f > 4_ [ _.1 v■ ilIV 
 f 

d2 Ril 	[ ll 
2 ‘--• I lci - i=1 	j=1 i/s.1 

	

1- 2N f  > 	-1 r 21V' f > 1 
H- —

2 
E ri 	d'Ri  
ti, I- i=1 	"I 1-  j=1 

j=t.te 

d2  ri ] f cê& f 12  Ri  
bik) 

d2  ri] f - f cf2  
b(t) 

+ 0(62  ) 	 (C.3) 

where the integral f >  exclude circles of radii aeP centered at ali others charges. The integral 

over 6(k) indicates an integration over the annulus a < 1 Rk —  Ril < CU')  centered at the charge 
- 

at site Rk . The sum in the second term of (C.3) takes into account only pairs of charges 

of the same kind. Consideration of pairs of different charges correspond to the inclusion 

of hybrid vortices. These can be considered as composite vortices and should be included 

from the begining. For the same reason, we consider only pairs of opposite charges. 

After these considerations, the next step is to carry out explicitly the integration over 

Rk , Ri rt  and ru  in (C.3). Consider the terms in AVNi  which depends on Rk RI and rt , 

41  = f R k f d2  exp [27ra E m„,p(R, - Rk)- G(Ri  - Ri )] 
tr(k) 

i~k , i  

ip E 	[e ( -  Ri, ) - 8(ri  - 	 (C.4) 

and 

h. 
 =f  d2  rt  f 	exp [2n'y E sri p(ri - rt) - G(ç ru )1 

b(t) 

+ip E mEi re(rt - Ri)- e(r. - Ri)11 	 (c.5) 

i#=t 
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It is convenient to change variables in the integrations in (C.4) and (C.5) as 
- 1 -' 

= ft 	 y = - ( + ) 
2 (C.6) - 	1 - 	- 

X = Rk - 	Y = -
2 

(Rk  + Ri  ) 

Expanding the exponential in (C.4) and (C.5) to second order in y and Y we obtain 

Iki =f exf rf y[l + (27ra)2  E Afn e  MR 3  [Y--.  • V X G(R g  	G(Rj X)] 

- 172  E ST  1 Y Vx e(ri  - X)EY • Vx  e(r3  - X)1 (C.7) 

and similarly for /tu  in (C.5). Note that the first order term in y or Y and the cross-term 

of the forrn vey G are identically zero when the integration is performed. Averaging over 
- 

the orientations of Y, using the property of the harmonic conjugates, i.e., 	= crer 
and using (B.15) we obtain from (C.7) 

	

lki = 27r a2 5 A - (27ra )2  7r a2  E MR i  MR G(Ri Rj) p2  a2 	si., Sr3. G(ri  - ri )] 
t..i 

S imilarly 

27r a2  8[A - (27r7 )2  7r a2  E Sr . Sr . G(ri  - ri ) + p2  Ir a2  E MR. MR. G(Ri  - R1 )] (C.9) 

Using (C.3), (C.8) and (C.9) and rearranging the summation in the additional term, 

we can write the partition function as 
00 00 [ 2N 	2Ni  2N 	 2N I  1 	1 ymi  

Z  = 	NP N' P a2 	a2 	 R illr f rjj cA N , N' 

	

N =() NI =o 	 i=1 	 j=1 

sen 	N-Ei 	A  

	

x [1 + 	 
(N + 1 )2 E 27r5  - 47r

3
°2

2 E Mre • MR. G(Ri - R) 

	

t 	 3 
k,1=1  

+ irp2  E STi G(r- - r -)S rã 

N'+1 
A Y!   2x [—a2 47r3  E S,.. 	G(ri 	) 

(N' + 1)2  

	

+ irp2 	Alrei MRi  G(Ri  - Ri)1 
	

(C.10) 
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The (N 1)2  and (N' + 1)2  denominators are cancelled by the double summations. Since 

the additional term is of arder 5, we can take the exponential to obtain an action of the 

same form as (C.2), but with coupling parameters replaced by 

- 47r3  a2 	71192  

(C.11) 
4g 3  -12  + 1-p2  Y2m 

Finally, we change a 	a+ aS in the new partition function to bring the resulting expression 

in the saxne form as the original one except that now the cut-off distance has been increased 

from a to a?. It can easily be seen that this only changes the fugacity since 

- - 
Ri  - R5 	 Ri  - R;  

ira E MRi  MRi  ln 	 --4 7ra E MR . MR . ln 	 ra5 E iln i 	(C.12) 
a 	 . 	, 	ae 

From (C.11) and (C.12) we find renormalized couplings a(/), (1) and y(/), where the 

lattice spacing has been increased from a to aé , given by the equations 

= (2 Ir°  )Ym. dl 
dy,, 

-717-  = (2— 11-1)Y0 

da 	
(C.13) 

= 47r3 (22  Y2m 7r  P2  dl 
rfry dl 	_ 421.3 12 31.2 + p2 y2.  

The procedure can be easily generalized for the more general case of the Actions (3.8) or 

(3.46). 

Now consider recursion relations for (3.8) when hybrid vortices are also included. Only 

hybrid vortices in which an M vortex and an N vortex have the same sign are found to 

be relevant when g < O. If we regard these hybrid vortices as composite vortices we can 
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rewrite the Action (3.8) as 

A = Ira 	MR  G(R — )MR t + N.O 	NR G (R — IONR , 
R,R 1 	 Rd?' 

+2ir g E MR  G (R — RIM ?, + ip E E Sr e (r - R )MR  
R 

— ip E E ST. e(r - R)ArR ir-/ E G(r —  ri )5',./ 

r R 

+ 2r( + g) E m„G(R 	)HR, + (I3 + g) E N,, G(R 	)11Ri 

R.R t 	 R.Rf 

+ 	+ fi  + 2g) E HR G(R — )H R , 
Rd?,  

(C.14) 

Where 11R  is a hybrid vortex at site R and the summation over MR and NR  exclude positions 

where they reside at the same site. Recursion relations can now be obtained by the same 

procedure as described before. We obtain 

dy„, 
= (2 — ara)y,,, 

dl 

dYn = (2— w/3 )Y. dl 
4. 
—dl = (2  — 7r7)Y. 

clyx 
[2— 7r (a + /3 + 2g)]yR 

ui 
da 

—(ã  = — 47r3  a2  Y — 47r3  y2„ + p2  — 47r2  (a + g )2  y2R  

dg 

	

711  = —49r s agy 	42r'f39y — 7rp2 y„2  4r3 (a + g)(13 + g)y2H  

dfi 

	

_ 471.3 fl2 y2n 	42.3 g2 y2n 	p2 y.82 	421.3 Q3 + 	y2H  

(C.15) 

We note that the initial relation (3.9) and the initial form of the couplings a 	+ g 

and a + [3 + 2g in (C.14) are ali preserved under renormalization. 

From the recursion relations for the y li  fugazity we find that the yli  is irrelevant for 

+ rfi > 2 when g = O initially. However as g < O, hybrid vortices are relevant in the 

region where the XY and the Ising lines of Figure (3.1) meet. 
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For the Action (3.34), the relevant hybrid vortices are the ones made up of K and L 

vortices of opposite signs. In this case we obtain the recursion relations 

dyK  
- '2– CY2)3IK dl 

—(1" = (2– 7r)32  
dl 
dy„ 
— = (2– 7r12 )y„ 

dy 
dl 

—
dl 

= '2– (cx2  +/32 – 2g)lyH 	 ( c. 16) 

CIC2 

dl = 

dg2  
—dl = 

dfi2 = 
dl 

411-3(1'22 ÀL-  

– 41r3  a2 92 

41r3 íg Y2L, 

47r3 	92z, + 47r3  

- 471-3  /32 g2 y2L 

4r3 	r P2  

– 92 )2 92H 

47r3  (a2 – 92)632 

47r3 (/32 
–

92 

– 92W, 

)2  

If we now write a2 , 92  and 02  in terms of the initial values, i.e., a 2  = a +fl +2g, 132  = /3 

and 92  = – /3 –  g, when this relations are substituted in (C.16) we obtain the same recursions 

as in (C.15) provided we identify the vortices as K M and L N. 
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