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Abstract of “ Phase transitions in two-dimensional superconducting arrays in a transverse

magnetic field 7 by Enzo Granato, Ph.D., Brown University, May 1986.

In the last few years, a number of research groups have used artificially-structured
superconductors in the form of large two-dimensional ordered arrays of superconducting
grains in order to study the phase transitions in two-dimensional superconductors in its
lattice version. In the presence of a perpendicular magnetic field, completely new behavior
has been observed. Measurements by several groups reported a periodic variation of the
resistance of the array as a function of the magnetic field with resistance minima at each
integer value of the number of flux quanta per umit cell as well as secondary minima at

half-integer values of this number.

We review the general properties of an ordered superconducting array, set up the model
and discuss the approximations involved. The resistive behavior of the array at zero field
is shown to be determined by the vortex-unbinding transition in the pure XY model. Some

recent approaches to the finite-field case are also presented.

i’ The critical behavior of an array with a half flux quanta per unit cell is analysed in detail
using a coupled XY model representation based on a Landau-Ginszburg free energy. This
representation also describes others systems, and the analysis is extended to these systems
as well. The model is transformed into an equivalent electrodynamic representation and
recursion relations for small vortex fugacities and Migdal recursion relations are derived. A
semi-qualitative analysis involving vortices and strings is used to argue on the possibility
of a first order phase transition. The analysis is extended to different models like the fully
frustrated XY model with unequal ferromagnetic and antiferromagnetic bonds and an XY

mode] with competing periodicities.

A simplified model of a superconducting array with weak disorder is presented. The
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As first shown by Pearl (1965), in thin superconducting films, a vortex pair interacts
logarithmically only up to a characteristic distance of order of the transverse penetration
depth Ar for perpendicular magnetic fields. For larger separations the interaction energy
falls off as the inverse of the separation distance. The finite range of the logarithmic inter-

action in the superconducting film would then destroy the transition.

However, as pointed out by Beasley, Mooij and Orlando (1979), in thin-film dirty su-
perconductors with appreciable normal-state resistance, the transverse penetration depth
Ar can be comparable with the sample size. So, for practical systems, thermally excited
vortex pairs interact logarithmically .

Because of this, most experimental and theoretical work has been on high-resistance or
granular superconductor films. These systems, however, are far from ideal and randomness
and inhomogeneities make the detailed comparison of theory and experiment a difficult
task. It is also not yet clear what effect microscopic randomness or inhomogeneity has on

the vortex-unbinding transition.

In the last few years, a number of workers have turned their attention to artificially-
structured superconductors. In particular, several research groups have constructed large
two-dimensional arrays of superconducting weak links to study the two-dimensional super-
conductor problem in its lattice version. Lobb et al (1983) have worked out formulas relating
uniform film quantities to array quantities. Voss and Webb (1982) have made use of ar-
rays of Josephson-junctions which were constructed as a result of the IBM effort to produce
identical junctions for use in a superconducting computer. It is clear that such arrays offer a
useful experimental system for understanding the phase transition in two-dimensional super-
conductors since the effects of randomness can be minimized. In addition, it is also possible
to study the effects of artificially introducing inhomogeneities. For example, Davidson and
Tsuei (1981) have studied the effects of introducing inhomogeneities on a two-dimensional
Josephson tunnel junction array using a laser to cut a number of connections between the

superconducting grains.
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Figure 1.1 Resistive behavior of the IBM Josephson-junction arrays. Here
®/®, denotes the number of flux quanta ®, contained in the magnetic flux
® threading a unit cell of the array. a) Resistive behavior at low fields; b)
resistive behavior at larger fields and at various temperatures (Webb et al,

1983).

In the presence of a transverse magnetic field, completely new behavior has been ob-

served. Early measurements by Voss and Webb (1982) reported a periodic variation of the

resistance of the array as a function of the magnetic field, with a resistance minima at each

integer value of the flux quanta per unit cell. Subsequently, Webb et al (1983) (Figure 1.1),

Tinkham et al (1983) and Kimbhi et al (1984) (Figure 1.2) have observed secondary minima

at half-flux quantum per unit cell. Monte Carlo simulations by Teitel and Jayaprakash

(1983a) of phase transitions in uniformly frustrated XY models, which are used to model

these systems, are consistent with these observations and also indicate the existence of

subsidiary minima at others rational values of the number of flux quanta.
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In Chapter 3, we analyse in detail the critical behavior of an array with a half flux quan-
tum per plagquette using a coupled XY model representation based on a Landau-Ginzburg
free energy. This representation also describes others systems, and we extend the analysis
to these systems as well. The model is transformed into an equivalent electrodynamic repre-
sentation and recursion relations for small vortex fugacities and Migdal recursion relations
are derived. A semi-quantitative analysis involving vortices and strings is used to argue on
the possibility of a weak first order transition. The analysis is extended to different models
like the fully frustrated XY model with unequal ferromagnetic and antiferromagnetic bonds
and an XY model with competing periodicities.

In Chapter 4, we present a simplified model of a superconducting array with weak
disorder. The model is mapped into a Coulomb-gas of fractional charges perturbed by a
quenched distribution of random charges or dipoles for the two kinds of disorder considered.
Recursion relations using the replica trick are derived and the implications of the results
for the experimental system is discussed.

In Chapter 5, we propose an interpretation of the variation of the resistance minima
observed by Webb et al (1983) by modifying the simple model considered in Chapter 2
to include the presence of two incommensurate fundamental areas. We them combine the
results of this analysis with the results of Chapter 4 to explain their experimental results.

Finally, Appendices A, B and C provide some of the details that were left out in the

previous Chapters.









array can be generalized from (2.1) to
H=-J)_ cos(d, - 0,) (2.3)
<rrf>
where 6, are the phases of the order parameter of the grains located at the site 7 of a lattice.
In general J will be a function of temperature or the magnetic field (see Section 2.4), but
we will assume it constant from now on.
Equation (2.3) makes the oversimplified assumption of “point grains”. It also ignores

the charging energy which arise from finite intergrain capacitance. This term should be

added to (2.3} and it is of the form

Bo= 53y (2.4)

When (2.4) is added to the Hamiltonian (2.3) the problem is quite difficult and it

is a matter not yet fully resolved (see for example José, 1984). In general, large charge

energies , i.e., small capacitances tend to suppress phase coherence (Doniach, 1981). Charge

energy is roughly associated with small grain sizes. We therefore assume here that the

superconducting arrays to which (2.3) applies consist of grains that are simultaneously

large enough so that charging effects can be ignored and sufficiently small so that the field
dependence of the effective coupling is negligible (see Section 2.4).

In the presence of a perpendicular magnetic field, the phase difference in (2.1) is replaced

by a ”gauge-invariant” phase difference 8, - 8,/ — %% i) :, ;1 d-i’, where the extra term is just

the line integral of the vector potential and @, = é‘f In consequence (2.3) is replaced by

H=-J Z cos(f, — 6, — A1) (2.5)
<rel>
where
27|_ r' - -
A =—— A-dl .6
rr @0 . (2 )

- - -

Since B =V x A, we must require the constraint

N A =2f (2.7)
R
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It might appear at first sight that Z and therefore the quantities calculated from it
depend on the 4,/ configurations since one only requires the constraint (2.7). Note however
that under the gauge transformation A, — A , + A, — A, if we also perform a change
of variables #, — #, — A, the partition function (2.9) is now a function of 4 ,. Therefore
the partition function can only depend on gauge-invariant quantities such as (2.7). This
implies that the models with the same f are equivalent.

The meaning of the frustration can perhaps be better understood by considering the
so~called fully frustrated model, i.e., f = 1/2. Consider a square lattice array in a particular
gauge in which ; = Hzj (Landau gauge), then (2.6) can be written as

2 + 2
2

Direct substitution in (2.5) with f = 1/2 gives

A"i = 21Ff

(r — w.r) (2.10)

H=- Z J,rcos(f, — 8,1) (2.11)
<re!>
where J,.+ = J for horizontal bonds and J,.» = —J for alternating vertical bonds. The

model defined by (2.11) has been studied by Villain (1975) in the context of the spin glass
problem.

Note that because the product of the bond signs around a given plaquette is negative,
the spins cannot simultaneously satisfy the ground state configuration (Figure 2.1). Figure
2.1b shows a non-frustrated plaquette. Note that the presence of negative bonds is not a
sufficient condition for the frustration effect.

For the general case of (2.5), we look at the quantity ¢ Lrtrr = e2fi which is the
analogue of the product of the bond signs in the previous example. If f is an integer the

plaquette is not frustrated.

2.3 Zero-field behavior
We must pause now to briefly review the behavior of the superconducting array when no
field is applied. This will provide the motivation and the background necessary for the
discussion that follows.
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that for n > 1, the model has a continuous rotational symmetry. It has been established by
Mermin and Wagner (1966) that the global spin rotation symmetry of the ferromagnetic
model (2.12), with n > 2 in two dimensions, can not be spontaneously broken at finite
temperatures. This means that there is no possibility of conventional long-range order at
nonzero temperature. The absence of long-range order however does not imply that there
is no phase transition and a transition does in fact occur for d = 2, n = 2 although of
peculiar type, in the sence that the magnetic susceptibility is infinity below T, but the
average magnetization is zero (Kosterlitz and Thouless, 1973).

We shall concentrate now in the study of the phase transition for n = 2 and d = 2.
Since we are interested in the low temperature behavior we expand the cosine in {2.12) as

1 2
H= ~% Z (8, — 6.4)° + constant (2.13)

<rri>
For fluctuations of wave length much larger then the lattice spacing, we can replace

{(2.13) by a continuum approximation

H =~‘£[(ve, P&y (2.14)

I finally we neglect the § — @ + 27 n periodicity in § and extend the integration from —oco
to oo, correlation functions can be calculated by a straighfoward gaussian integration. One
then obtain

< élr=to) 5 —|gj=n (2.15)

where n = kf’%. This implies that there is no true long-range order but only a quasi-long-
range order.

This is a rather unexpected behavior. Since there is no long-range order one should
expect naively that the correlation (2.15) should decay like ¢’/¢ with finite £ as in a
conventional paramagnetic phase. Here however we have a power-law behavior. On the
other hand, power-law behavior is a characteristic of a critical point . In this case n is
usually a universal value for a particular class of models. So we can view (2.15) as a line
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finite energy

~ |
] (2.18)

T

Epair == o ln(| 2

At low temperatures vortices are therefore bound in pairs. However at sufficiently high
temperatures isolated vortices will appear due to the resulting gain in entropy. The entropy

of a single vortex is

L
S = 2y In— (2.19)

a,

So the free energy is F = (nJ — 2ks T)In = and it is zero at

ky T, = fzi (2.20)

This indicates that there is a finite temperature T, above which isolated vortices are fa-
vorable. Although the system does not have an ordered phase below T, topological order
exists. The topological order is lost as soon as vortices are energetically favorable.

In order to obtain a tractable theory, Kosterlitz and Thouless assume spin-wave excita-
tions superimposed on vortex configurations. The neglect of spin-wave vortex interactions
can be shown to be exact in the Villain’s approximation (see Appendix C). The Hamilto-
nian thus breaks up into independent spin-wave and vortex parts. The vortex part of the
Hamiltonian gives

_?HT =7K Y  MgMp ln'—— |R +Inyz (2.21)
R.R!

where Mp = *1 is the winding number of a vortex with center at B, KX = J/kg T and

¢ EclkgT

y= where E, is a core energy. The vorticities satisfy the neutrality condition

> Mg =0 (2.22)

Expression (2.21) corresponds to a coulomb gas Hamiltonian with charges ¢ = V7 KMp.
The number of charges is not conserved so y is the equivalent of the fugacity in a grand-
canonical ensemble.
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where vortices are irrelevant. At higher temperatures, y(/) eventually becomes large, indi-
cating that vortices are important even at long wavelengths. In this phase the correlation

function decays exponentialiy as
< ¢l0r—to) 5 1/t (2.24)
where the correlation length £, is related to the density of free vortices by

n (T) = €2(T) (2.25)

The renormalized value of K approaches the universal value 2/ as
2 =
K (o) = +C|t”, T— T, (2.26)

where t = 2T is the reduced temperature and ¥ = 1/2. The behavior of the correlation
length above T, can be evaluated from the recursion relations and turns out to be

L
€ (T) = elt” (2.27)

where ¥ is a non-universal constant.
The critical temperature itself is found by the intersection of the initial conditions

(dotted line in Figure 2.3) and the separatrix of the renormalization-group flows. To first

order in the fugacity, it is found to be

xJ
kg T,

— 1=2re Be/*BT (2.28)

2.3.2 Resistive behavior of the array

Using the current-phase relationship for a superconductor with uniform order parameter

. _ nhe 2e”

e LY (2.29)

16



where n, = |W¥|?, we see (A = 0 in the present case) that a vortex on the phases of the
XY model (2.3) corresponds to a vortex of supercurrent in the superconductor array with

tangential component

nohel.

Js = (2.30)

m r

The resistive behavior of the array is connected with the presence of free vortices.
A current flowing through the superconductor in the presence of free vortices, creates a
dissipative mechanism which cause a resistive behavior. The origin of this dissipation is the
Lorentz force acting on a vortex when a current flows (see for example Tinkham, 1975)

-

F=UJx®c (2.31)

where ® is the magnetic flux enclosed by the vortex. This arises because of the induced
magnetic field due to the vortex current so the force is basically given by F = -‘% x B. Due

to this force vortices tend to move transverse to the flowing current. Suppose they move

with drift velocity v, then they induce an electric field of magnitude

(2.32)

which is paralell to J. This act like a resistive voltage and power is dissipated.
When a net flux of vortices exists, a voltage drop is developed between the ends of the

superconductor. This voltage drop can be obtained by using the Josephson relation

hod
AV = Af (2.33)

where AV is the voltage drop. Af is the phase difference between the ends of the sample.
So if a phase difference proportional to t exists a constant voltage drop will be generated.
Now a phase slip of 2r occurs whenever a vortex crosses the width of the sample. This can
be understood by Figure 2.4. Consider points A and B at the ends of the sample. If a vortex
is all the way to the right, the phase difference 8, — f5 = O and it goes to 8, — 85 = 2r
when the vortex is finally at the left side.

17
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Figure 2.4 Phase slip due to a vortex. When a vortex cross the width of
the sample from right to left it causes a change of phase of 2r between
points A and B at the ends of the sample.

Now if we have n; free vortices with drift velocity vp then

dAf

"“"‘&'t— = 27fLﬂfJVD| (234)

where L is the length of the system. |vp| comes from the different directions of the vortices
of opposite signs. Since the drift velocity is proportional to the Lorentz force due to the

viscous damping (neglect pinning) we have

vp = uF o ul (2.35)
Combining these equations, we obtain
-d—?-;- o Lngul (2.36)

and the resistance per square is therefore given by

R un (2.37)

l.e., it is proportional to the mobility and density of free vortices.
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Using this result together with (2.25) and (2.27) we get
1

R= a,ue—bzm (2.38)
Thus we expect that at H = 0 and above T, the resistance has a exponential behavior.
Below T, since vortices are bound in neutral pairs, there is no phase slip process and
R = 0. Actually, below T, , R is not exactly zero due to finite current and finite size effects

(Nelson and Halperin, 1978). Figure 2.5 summarizes the behavior described in this Section.

KT BCS
CL) fluctuotions of ¢ | fluctuotions
of |§1
‘phose bound | free
waves' pairs (vortices
0 Te - T
[} 1
R/Rn ! [
|
b) P : f
1
| I
1 |
1 ]
0 Te Tes T

Figure 2.5 Resistive behavior of the array. a) Schematic diagram of the
successive transitions; b) Schematic behavior of the resistance as a function
of temperature for a two-dimensional superconducting array.

2.4 Finite-field effects
In the presence of an external field the vortex unibinding mechanism described in Section
2.3 is certainly more complicated.

If we consider a continuous version of the array problem, i.e., a two-dimensional su-
perconducting film, magnetic flux can only penetrate in form of quantized vortices. As
described in Section 2.3, under the influence of the Lorentz force from a driving current,
the vortex motion gives rise to a non-zero resistance. At zero external field, vortices can

19



only appear as a result of thermal excitation. At low temperatures and zero magnetic
field, vortices can appear only in bound pairs with total vorticity zero and so the resistance
of the array is zero. A magnetic field induces vortices of one polarity in addition to any
thermally excited ones. In the absence of thermal excitations or substrate potential, the
mutual repulsion of the vortices would lead to a regular triangular lattice, with spacing
determined only by the external magnetic field. It is not clear if this picture can also be
applied to the arrays that have been studied experimentally, but one can already realize
that this natural periodicity imposed by the external field will compete with the period of
the underlying substrate potential of the array. Thus it is natural to suggest that this may

lead to commensurate-incommensurate transitions effects when the external field is varied.

2.4.1 Mean-field theory results
Mean field theory provides a rough way to approach this problem for general f. Mean field
theory however is well known to be inadequate to understanding two-dimensional systems
and may even lead to misleading results. The application of this approximation to the
superconducting arrays has been pursued by Rammal et al (1983) and Shih and Stroud
(1983). Figure 2.6 shows the mean-field transition temperatures for the triangular and
honeycomb lattices. They are not very illuminating. The most striking feature however is
their irregularity.

If the mean-field equations are linearized about the transition tenperatures, it is found

(Shih and Stroud, 1985)

1 A1 o
e~ S Z Jeéherin =0 (2.39)

where , =< €Y7 > is the mean-field order parameter. Equation (2.39) is precisely the
Shroedinger equation in the tight-binding representation for an “electron” of charge 2e
in a magnetic field B and moving in a lattice. The order parameter 7, is the analog of
the complex wave function at site ;, J is the hopping integral and f = 7:;1? is the energy

eigenvalues. T, is the highest value of T for which the mean field equations have a non-trivial

20
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Figure 2.6 Mean-field transition temperatures and ground-state energies.

a) honeycomb and b) triangular lattice (Shih and Stroud, 1985).
solution, i.e., it maps directly onto the band edge of the tight-binding electron problem.
These band edges have been worked out by Hofstadter (1976) for the square lattice and by
Claro and Wannier (1979) for a triangular lattice.

Figure 2.6 also shows certain characteristic differences between the lattices. The tri-

angular lattice for example, as well as the square lattice, shows a secondary minimum at
/ = 1/2 which is very weak or non-existent for the honeycomb lattice. Evidence of this

lattice dependence has been seen experimentally (Resnick et al, 1984).

2.4.2 Coulomb-gas representation
Familiarity with the coulomb gas representation for the XY model discussed in Section 2.3
would suggest that much insight into the problem can be obtained by isolating from (2.5)
the vortex interaction terms. This can be acomplished by a very systematic procedure for
handling problems like this, introduced by José et al (1977).

To preserve the periodicity of the cosine term in (2.5), first expand into a Fourier series

21



EKCOS(Q, — 60— A,p) = Z Is,f! (K)C’is"" 6 — b~ A1) (2.40)

==00
frpt

The Fourier components are just Bessel functions of order s,,+. In the limit of large coupling

this reduces to

S,.,.iz

il _e 2K (2.41)
(2rK)2

When (2.40) is substituted in the partition function (2.9), the integrations in the #

L, () =

variables induce the constraint

I1s (2.42)

#__1.,0
'

were ), is a sum over all nearest neighbors ¥ and s, = —s.,. This constraint can be

—

automatically satisfied if we define new integer variables on the sites R of the dual lattice,i.e.,

the lattice formed by the centers of the plaquettes, by

> b = My (2.43)
R

where 3 . indicates a directed sum over the bonds surrounding the plaquette with dual site

-

R. Using the constraint (2.43), the partition function in terms of these new variables is

“5};} > (Mg — Mp P — 20fi)_ Mp

=1 e  or&> R (2.44)

R Mp
When f = 0 the above expression is the partition function of the discrete gaussian model of
Chui and Weeks (1976) used in the study of crystal growth. If f # O the discrete gaussian
model is subject to an imaginary field. The above expression can also be viewed as a
correlation function of the discrete gaussian model (with f = 0) (Fradkin et al, 1979).

One would like to replace the integer valued field My by an ordinary scalar field ¢. The

necessary manipulation is provided by the Poisson summation formula

o0

> g(m)= f: f_: dpg(g)e 7™ (2.45)

m=-—0o0 m==00

where g is an arbitrary function.
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Applying this identity to (2.44) and performing the resulting gaussian integral gives

—7K Y (Mg — f)G(R— R')(Mp: - f)

2=7,|[[>|e &= (2.46)

where Z,, results from the gaussian integration and can be identified as the spin wave
contribution whereas My can be identified as the vortex winding number. The large distance

behavior of G(R — R'} is given by (Appendix B)

G(R- B)=mE=Fl +-’; (2.47)
and the My satisfy the neutrality condition
> My=0 (2.48)
R

So the model (2.5) has been mapped into a coulomb gas of integer charges My interact-
ing with a background of frozen in fractional charges f. For f = 0 we recover the XY model.
As mentioned before in this approximation spin waves and vortices decouple. Since the spin
waves alone do not drive the phase transition, we need only to consider the coulomb gas

contribution.

2.4.3 Ground states for rational f.

In the ground state the lowest possible My consists of M = 0 and My = 1, arranged in
such a way that ) .(Mg — f) = 0. Therefore we need f vortices of charge Mz = 1 and
(1— f) vortices of charge My = 0.

Teitel and Jayaprakash (1983a) have performed computer simulations in the charge
model (2.46) for rational values of f = p/g, assuming the ground state has periodicity ¢x g.
For several f, the ¢ X ¢ assumption was checked by calculating on ng X ng lattices. Figure
2.7 shows the results of this calculation.

Figure 2.8 also shows the calculated critical current of the array as a function of f, using
Monte Carlo simulations. Note the large variations of ¢, (f) as a function of f. Working out

23



+ + +| [+
i + + +
+ + |+
=1
f=1/, - ru R4
+ + +
+
+
p =iy + + [+ [+
. +! [+ +1 1+
+ F st +
- + [+ [+ +
+ + + |+ +
+ 4 +i |+ +
+ ] I+ H [+
f=1/‘ §=1/7 f=3/7

Figure 2.7 Ground state configurations in the charge model. A plus de-
notes a charge 1— f, i.e., a vortex in the phase #, while an empty box
denotes a charge —f (Teitel and Jayaprakash, 1983a).
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Figure 2.8 Critical temperatures and ground state energies. a) Ground
state energies for several rational f; b) Zero-temperature critical currents
(solid circles) and zero-current critical temperatures T, (open circles) (Tei-
tel and Jayaprakash, 1983a).

the mathematical expression for 7., they were also able to establish a bound for the value
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of the critical current
: T e
w(p/q) < —q",gEo N (2.49)

where E, (f) is the ground state energy. So %, (f) exhibits a dramatic discontinuity variation

as a function of f. From energetic grounds and at 2 = O but finite T one would expect

bT.0)< (L) () (2:50)

since when T is large enough to produce an average current fluctuation in the array of order
1., vortices of current will appear an be able to move, and a resistive transition will occur.
Noting that the values calculated by Monte Carlo simulation satisfy this relation, equa-

tion (2.49) and (2.50) can be combined to give a bound on T (f) as

&nwws%mmt (2.51)

Note the dependence in ¢, it is crucial. For irrational f, ¢ = oo and T,(f) = 0. Let us
now consider the implications of these relations for the array resistance R(T,f). Consider
a given f, = p,/q,, for p/q sufficiently close to f,, all rational numbers satisfy ¢>> ¢, and
so using (2.51) T.(f) < T(f,). Now consider a temperature T such that T(f) < T < T(f,).
Then R(T,f,) = 0 and R(T,f) > 0. Since for f~ f, we can regard the ground state of f
as that of f, with a superlattice of defects or domain walls to ensure charge neutrality (see
Figure 2.9), the number of these defects is proportional to |f— f,|, then around f =~ f, we
can assume they density iso |f— f,|.

Now for T < T.(f) these defects can not move since they are pinned and therefore
R(f) — 0, so we can assume that for T > T, (f) they unpin and this motion like the free

vortex motion causes the nonzero E. Since resistance is proportional to number of free

defects we find for f ~ f, that
R(T,f) e |f - £l (2.52)
So a cusp in the resistance curve is predicted. A plot of R X H is sketched in Figure 2.10.

Note that as T is lowered more and more structure appears besides the dip at f = 1/2.
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and u, = €7. Here K, = K for nearest neighbors and 0 otherwise. The second term in
(2.54) has been introduced to make the P,,r positive definite. The Hubbard-Stratono vich

transform makes use of the gaussian identity

1 1 1
—=ZP  z+=(vz +uz —u P uy
[Hf dz,/ dz:] e 27" 2( i ):\/ 2n detP, . e2 ~ (2.55)

Applying this transformation to (2.9) we obtain, omiting overall constants

1

2z:P,‘,}z,r +> InL(z])
) [H/ dz,/ dz:] e r (2.56)

where I, is the Bessel function. The standard procedure now is to expand the Bessel

function and keep only the relevant terms

1 1
2ifz) = :1::? - —6—42" (2.57)

Note that due to the form of the matrix P, in (2.54), the exponent is not diagonalized
by a simple Fourier transform. However a LGW free energy can be obtained directly by
diagonalizing the resulting Fourier transformed matrix P, and expanding about the modes
corresponding to the maximum eigenvalues of this matrix. For example, for f = 1/2 on a

square lattice it is found (Choi and Doniach, 1985)

Z= [H/ d\p,qu»,] o Fi%) (2.58)

where
P, = [ [ oty 3097 +1a) + 5009 ~ v ar)

+ (9 +] 9 + o 92| 9 (2.59)

+ V] 9P187 cos 20~ 6)
and r = (T;—l—é—)- —3). ¢, > Oand v < 0 are constants which can be calculated directly from
the matrices that diagonalize P, . Here ¥ = |¥|¢” and ® = |®|¢* measure fluctuations
about the modes @, and @, corresponding to the two degenerate maxima of P, ;.

However, some care should be taken with this procedure because it can lead to mislead-

ing results. For f = 1/4, for example, on a triangular lattice, Choi and Doniach found the
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same expression as (2.59). This could imply that these two different cases have the same
critical behavior. The numerical results of Shih and Stroud (1985), however, shows that
this is not the case.

For f = 1/2 on a triangular lattice they found an expression similar to (2.59), but the
coupling between the phases now occuring in the sixth order term of the expansion which
gives cos 3(f — ¢) instead of the last term appearing in (2.59). This is in disagreement with
Yosefin and Domany (1985) who derived LGW free energies using symmetry arguments.
These authors obtained similar expressions as (2.59) for square and triangular lattices but
with o' > 0. The sign of « is crucial here. In two dimensions one assumes that the
phase transiton occurs well below the mean-field critical temeprature due to fluctuations.
Amplitudes fluctuations in ¥ and & are irrelevant near two dimensions (see for example,
Nelson, 1983), so |¥|? and |®|? are well approximated by their mean-field values. If we
minimize (2.59) we find that if ¥ > 0 either |¥| = 0 or |®| = 0. In this case Yosefin and
Domany have shown that higher other terms are irrelevant. On the other hand, if ¢ < 0

then the minimum of the free energy occurs for ¥ = @ with

o = “m (2.60)

In this case, a lattice version of (2.59) can be written as
A=« Z [cos(8, — 0,1) + cos(d, — ¢,+)] + hz cos2(f, — ¢,) (2.61)
<rri> r
where « is proportional to | ¥i? given by (2.60). When « > 0, one arrive at the same result

after performing a change of variables ¥ — & — ¥ and ¥ + & — &,

2.5 The fully frustrated XY model

Of course, the detailed nature of the phase transitons at the several non-integer values
of f is a complicated problem. However, one would expect to be able to understand the
behavior for simple values of f. In particular, the fully frustrated case, ie., f = 1/2 is a
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very interesting one because it is connected with different problems (Villain, 1977; Halsey,

1985b).

Teitel and Jayaprakash (1983b) have performed numerical simulations for the f = 1/2

case on a square lattice. Results for the helicity modulus and specific heat are shown in

Figures 2.12 and 2.13 respectively.
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Figure 2.12 Helicity modulus for f = 1/2. Helicity modulus Y (T) as a
function of temperature of the unfrustrated case (f = 0) and fully frustrated
case (f = 1/2) on a square lattice. The line of slope 2/7 indicates the
universal jump predicition for the KT transition (Teitel and Jayaprakash,

1983b).

The helicity modulus Y (T') measures the stiffness of the system when a long-wavelength

twist is applied to the phases. It is directly related to the renormalized value of the coupling

constant Kp in the unfrustrated case. In this case due to the behavior of K; as the transition

is aproached from below described by equation (2.26), a universal jump of this quantity has

been predicted by Nelson and Kosterlitz (1977). In terms of the helicity modulus one

expects

lim ¥ (T)ks T == (2.62)

O

T

The line of slope 2/7 in Figure 2.12, indicates the universal jump prediction for the
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Figure 2.13 Specific heat for f = 1/2.(Teitel and Jayaprakash, 1983b).

Kosterlitz-Thouless transition. Finite size effects have broadened the discontinous jump
but from its position the transition temperature for the unfrustrated case is estimated to
be kT, =~ 0.95J. For the fully frustrated case Figure 2.12 shows a clear evidence for a
phase transition at a finite temperature kp T, =~ 0.45J but it goes more steeply than in the
unfrustrated case and is inconsistent with the universal jump prediction, having a jump
larger that the Nelson-Kosterlitz result.

In marked contrast with the unfrustrated case in which the peak of the specific heat
saturates at a finite value about 1.5kp , the specific heat peak diverges linearly with the size
of the system in the frustrated case. This implies a logarithmic singularity as in the Ising
model. It also occurs roughly at the same temperature in which ¥ — 0. Similar results
have been found by Shih and Stroud (1985) for the triangular lattice. For the honeycomb
lattice however no specific heat divergence is observed. Instead for this case the ground
state configuration is multiply degenerate.

To understand the numerical results we have to look at the excitations above the ground
state and study the mechanism by which a phase transition could occur.

The doubly degenerate ground state of the fully frustrated XY model on a square lattice
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(Figure 2.1) has a bond phase difference of 7 /4 and a ground state energy of /2J per site.
We recall that in the coulomb gas representation the ground state has a chessboard structure
consisting of charges ¢ = 3@.} (Figure 2.14). In this representation the ground state is
clearly doubly degenerate since one can replace ¢ — — ¢ leaving the total energy unchanged.
If we identify the + and ~ charges as "up” and ”"down” spins, respectively, the model maps
into a long-range Ising antiferromagnet with conserved magnetization. Unfortunately one
can not do too much with this. There are two types of excitations in the ground state:
domain walls and vortex pairs. A vortex pair result from interchanging + and — in a given
pair with separation r and must have an energy proportional to lnr. Domain walls are Ising

type excitations and come from the double degeneracy of the ground state.
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Figure 2.14 Ground state excitations. Two types of excitations for the
f = 1/2. a) vortex pair; b) closed domain wall.

Consider small phase deviations above the ground state, then from (2.5) we obtain

H= *%2 3 coslt, - 0,) (2.63)

<rrl>

which gives an XY-like transition about

mJ

kg T, = ——=
‘B 2\/—2
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One can already see that in order to study the phase transition in more detail one then
needs an effective Hamiltonian which contains vortices and domain walls explicitly. The
two coupled XY models obtained in (2.58) provides a convenient representation to carry

out such an analysis,
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Chapter 3

CRITICAL BEHAVIOR OF COUPLED XY MODELS

3.1 Introduction
In this section we analyse the critical behavior of an array with a half flux quantum per
plaquette. As discussed in Section 2.5, in a triangular or square lattice, this corresponds to a
class of XY models where the ground state exhibit both continuous and discrete degeneracy
simultaneous]y. Other models such as the antiferromagnetic XY model on a triangular
lattice (Lee et al, 1986), the double-layer XY model (Parga and Himbergen, 1980) and the
helical XY model (Garel and Doniach, 1980) are also included.

As shown in Section 2.4, the LGW free energy for the fully frustrated case leads to a
coupled XY problem. The other models mentioned above can also be described by the same

free energy. We therefore consider a coupled XY model described by the action

H
A=- T = o Z cos(d, — 0.)+8 Z cos(@, — ¢ ) + hZ cosp(d, — ¢,) (3.1)

<rel> <rri>

where p is an integer and 8., ¢, are phases defined at the sites rofa square lattice with
lattice spacing a.

We study the phase transition in coupled XY models using renormalization-group ar-
guments (Granato and Kosterlitz, 1986a). We analyse this model for p = 2 and p = 3
which seems to be the relevant cases with respect to the superconducting array problem.
The model is transformed into an equivalent eletrodynamic representation and recursion
relations for small vortex fugacities are derived. Migdal recursion relations are used to
study the limit A — oo. A semi-qualitative analysis involving vortices and strings, using

35



a representation in which domain walls appear explicitly, is used to study the phase tran-
sitions. In particular, these arguments give some indication that the transition along the
a = 3 line could be first order.

Figure 3.1 shows the resulting phase diagram. The line APB corresponds to an Ising
(p = 2) or a 3-state Potts (p = 3) transition. If the initial points of the Hamiltonian are
along the line & = # a single transition occurs separating a locked phase with XY and Ising
(p = 2) order from a high-temperature XY and Ising disordered phase. The transition is
a complicated point which can be denoted as tetracritical but in an as yet undetermined
universality class. There are however some indications from the numerical work of Teitel
and Jayaprakash (1983b), Lee et al (1986) and Berge et al (1986) that this point may have
simultaneous Ising and XY-like behavior (p = 2). This problem has been studied by many

authors with mixed success. It remains however an outstanding problem.
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Figure 3.1 Topological features of the phase diagram. The manner the
lines merge at P is not determined. Two possibilities are indicated in the
insets A and B. Phases A and B are partial ordered phases.

The models mentioned before are represented by (3.1) with initial couplings @ = S.
It can be shown that the a # J line represents a frustrated XY magnet on a square
lattice in which the strength of the antiferromagnetic and ferromagnetic bonds are unequal
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(Granato and Kosterlitz, 1986b). This latter model has been studied recently by Berge
et al (1986) using Monte Carlo simulations. The frustration in each plaquette was made
vary by changing the negative bond strength. From a ground state analysis they found
that below a critical value of the ratio of 1/3 between the negative and positive bonds,
the ground state is paramagnetic, while for ratios greater than 1/3 it is doubly degenerate
with canted spin configurations. The phase diagram obtained by Monte Carlo simulations
is shown in Figure 3.2. The low transition temperature corresponds to Ising type and the
high transition temperature corresponds to the XY type when the bonds are of different
strengths. In the fully frustrated case, when the bonds have the same strength, the two
transitions merge into a single one of dominant Ising character.

tsing
! XY

Figure 3.2 Phase diagram for the frustrated XY model. n is the ratio
between the antiferromagnetic and ferromagnetic bonds. The nature of
the phase transition at P is not determined (Berge et al, 1986).

Unfortunately our analyses cannot determine the behavior of the system on the a =
line except for arguments which are fairly conclusive that there is a single transition directly
from a locked to disordered phase with no intervening phase with partial order as is the case
for p > 4. Also, it cannot unambiguously determine whether the transition from the locked
to disordered phase for o =~ f is a single transition or a double transition with an intervening
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unlocked phase with algebraic order in one of the phase and disorder in the other. We incline
to the view that there is such an unlocked phase in a region of the (o, 8) plane except for a
multicritical point on the a = # line. Thus we predict that such systems as the Josephson
junction array on a square and triangular lattice with half a flux quantum per plaquette,
the triangular XY antiferromagnet in zero magnetic field and the fully frustrated XY model
on a square lattice, all have a single transition from the completely ordered to completely
disordered phase.

Another model with similar properties is an XY model with interactions of different
but commensurate periodicities

A=a Z cos(f, — 0,)+ Z cos p(f, — 6,¢) (3.2)

<rrl> <rrl>

where the second term has periodicity # — 6 + 27/p. This model can be shown to be
described by a similar model to that discussed in (3.1), with a slight modification in the
coupling term

A=a Y cos,—6,)+f Y cos(d, — b)) +hY_ cos(ph, — 4,)  (3.3)

<rel> <rrl>

The model defined by (3.2} has also been studied recently by Lee and Grinstein (1985)
using a different analysis. In contrast to the fully frustrated case this model is not double
degenerate. For o < 48 each bond however has a metastable minimum at 4, — 6, = 7 in
addition to the absolute minimum at §, — 8, = 0. In addition to vortex excitations, the
ground state also have excitations which consist of one-dimensional strings of antiparallel
spins that terminate in half-integer vortices and antivortices (Figure 3.3). The phase di-
agram shown in Figure 3.4 consists of three phase separated by lines of conventional XY
transitions and lines of Ising transitions. This model also has an interesting phase diagram
when § < 0. However the action (3.3) is not appropriate to describe the behavior in this
region of the phase diagram.

This model is not realized by a superconducting array, but it can be related to fiuid
layers of liquid crystal where the molecules make a constant angle #, ¢ relative to the normal
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Figure 3.3 A half-integer vortex-antivortex pair connected by a string.
The center of the half-integer vortices are represented by the circles with
the plus and minus sign, and the string is represented by a dotted line (Lee
and Grinstein, 1985).
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Figure 3.4 Schematic phase diagram for an XY model with competing
periodicities. Phase A is a locked phase and phase B is a partial ordered
unlocked phase.

to the plane. Then the local director is given by n, = (singcosf,, singsinf, , cosp). When
the angle ¢ = 7/2 the molecules lie in the plane and the periodicity 8 — # + x must be

observed. When they are not in the plane, § and # + = are no longer equivalent and a
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possible action describing this is

A=-K) ) [mnf —niel P (3.4)

a B <rri>

When the local director n, is expressed in terms of angles #, and ¢ we obtain (3.3) with
a = 4Ksin’ pcos ¢ and B = Ksin'¢, which has the correct limit when ¢ = 7/2 and describes
a nematic. Depending on the tilt angle ¢, the transition smectic < isotropic will take place
either directly via an XY transition or through an intermediate nematic (unlocked) phase
with an XY followed by an Ising transition as the temperature is lowered. This ignores
the possibility of crystallization which may preempt one or both transitions. Unfortunately

there is no experimental realization of a two-dimensional nematic because of rupturing of

the film.

3.2 Electrodynamic representation for coupled XY models
In order to proceed with the investigation of the critical behavior in the model (3.1), we
need to treat vortex excitations explicitly. This can be achieved by transforming the model
to an equivalent electrodynamic representation (Kadanoff, 1976). In this representation
problems of two-dimensional statistical mechanics can be formulated in terms of two sets
of integer variables My and S, which reside on sites }_i; of the dual lattice and sites ;of the
original lattice. Interaction between charges of the same kind (the M’s for example) at large
separations is proportional to the logarithm of the distance between them. The interaction
between My and S,, on the other hand, are proportional to the angle between the vector
I;— ; and some fixed reference direction in the plane. The interaction between My and S,
is similar to charges and magnetic monopoles. An interesting property of the coulomb gas
representation is that duality transformations for the original model correspond to a simple
interchange of charges of the type My and &S, .

The main motivation to rewrite the model in a coulomb gas representation is that recur-

sion relations can be obtained by a procedure that is now considered standard (Kosterlitz,
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1974; Nelson and Halperin, 1980). In addition to this, the coulomb gas representation uni-
fies various models. The difference between the models are reflected only in changes in the
parameters of the interactions between the charges.

First we write the symmetry breaking term as

chcosp(@r = ¢,) _ % (5.6, - ¢) +Iny. S (3.5)

Sr

If y — 0, only the terms § = 0 and S = %1 contribute and the left and right-hand side of
(3.5) are equal provided y, = h/2. When y, — 1, 8, — ¢, is forced to take the values

2
B = =%r,, 5=0,L2 wyp—1 (3.6)

The equivalent electrodynamic representation of (3.1) is found to be (Appendix B)

2= O[T L 5] awen 1)

r S R Mp Np
where
A(M,N,8)=nay_ MgG(R~ R')Mp +78 Y _ NaG(R~- R')Np
R.R! R.R!
+2mg Y MpG(R— R')Np +pi)_»_56(r— R)[Mg — Ng)
R.R! r R
+7y Y 8 G(r— ¥)S, (3.8)
ror!
and

= Platb+2)
42 (of - &)

The primes on the summation over the three integer fields indicate that they are subject to

(3.9)

the neutrality condition

ZMR :ZNR:ZS":O (310)

The large-distance behavior of the Green’s functions G(R — R') and ©(r — R) are

-
-

|R-7] =
e g (3.11)

G(R-R)=In
6, = tan™" (y/2)
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where r = (z,y). Correlations functions can be treated similarly. The various phases in
Figure 3.1 can be distinguished by the large-distance behavior of the correlation functions.
The correlation functions < 7% %) > and < 49279 > which describe the XY order

in each variable, and the cross correlation function < €% %) > can be written in the

Coulomb-gas representation as

< @0ty 5 —|p— pl|—<12ﬁ/2rr(u A-0°) z-1 [H z’:][l'l z’:i]eA(M.N.S]

r Sy R Mp Np
o |i03 Mz 0~ B)- O - )
R

B +g) ZS

- - 6= ) (3.12)

< é0=ty] 5 = |p— pf|~e%a/2mla A=0?) g1 II i][ﬂ ii]eAm.N.Sl

a5 [f-qz Ne[®(p— R)- O(f — R)|

gpla +9) 3 -
+m25[91’ p)— G( P)]] (3.13)

100~ wg? g2} 2 gl
< gubp=¢] o =|p-p|™* 9/2m(a B~g%) ga%(a +A+29)/8la A=¢7)

LI e

r Sy R MR NR

exp [iqz Mp®(p— R)— Nz©()' — R)
R

+WZS[(!3+9)G(% p)+ (@ +g)G(r— 7)) (3.14)

for integer values of g. The correlation functions (3.12) and (3.13) are not convenient to
describe the XY-like behavior of the model in the different regions of the phase diagram.
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An appropriate one is
< dllOotdn)=Oute ] 5 = |5 pf|=9" e +-20)/2m(a f=g") -

F I 3 e

r Sy E M(R) N(R)
o |03 (M + Ne)lOlo - R)- 60 ~ B)
R

gp(f - a) e g e g
+27r(aﬁ—92)25'[G(r p)— G(r— 2}  (3.15)

To describe the long-range order in the locked phase we use the correlation function

: il _ . 2
< ¢Mlp=dp)=1t =0, - =|p-p|" (o +8+2g)/ 27 (2 B—g°)

IS e

T Sr R MR NR

exp [iqZ[(MR — Nz)®(p — R)
— (Mg — Np)O(' — R))

gpa + B + 29)

B ) & G- a-#)| @19

3.3 Recursion relations in the weak-coupling limit
In order to remove the short-ranged interactions from the representation (3.8), we need to
use an extension of the renormalization-group method for the XY model (Kosterlitz, 1974).

The |[R— R'| = a and |r— #| = o terms in (3.8) generate the followings terms

Y My, +Y Nilng, +  S2Iny, (3.17)
R R r

where
Ym = exp(— x? a/2)

Y. = exp(-7°5/2) (3.18)

v, = (h/2) exp(—7*7/2)
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By considering the region of the (e, g, #) parameter space for which 78 > 2 and using
Equation (3.19) it is apparent that the fugacity y, is irrelevant in this region. This irrele-
vance allows us to consider N(R) = 0 in (3.8). A numerical iteration of (3.19) and (3.20)

shows that there is in fact a region in which g, is irrelevant. The action is consequently

simplified to
AM,S)=71a ) MpG(R~ R')Mp +pi > 50(r— R)My
R.R! r R
P’ (e + 8 +2g)
41r(aﬂ 5 Z S, G(r— 78, (3.21)

It is now possibie to exploit the dual symmetry of this action under the transformation
M < S. As was shown by Kadanoff (1976), duality transformation in the original model
corresponds to the interchange of S by M in the Coulomb gas representation. Usually the
phase transition occurs at values of the parameters that make the Action self dual.

For the action in consideration (3.21), provided one chooses y,, = y,, there is a self-dual

surface in the (o, g, 8) parameter space given by

*alef - ¢) =p* (@ +8 +29) (3.22)

for p = 2 and p = 3 this must represent the boundary between two low-temperature phases.
The renormalization-group recursion relations (3.19) and (3.20) on the self-dual surface

Ym = ¥, = y now reads

(3.23)
— ==y’ (i [4 + 7% ag)

— =y (/4= )
It is clear from these equations that ma will decrease from an initial value greater than p/2.
It must eventually flow to a line of attractive fixed points somewhere else in the self-dual
surface. Assuming that Equations (3.23) are qualitatively true for all values of y, it can

be speculated that these fixed points occur for 7a = p/2 and rg = —p/2 with y = 1,
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where h, is the new integer field introduced by the Poisson formula.
Integrating freely over ¢, and using the identity > G_ rl, G,1,n = §,.n we obtain (up to
T’
constant factors)

R 1 A
— e T = .
I=|p-g| 2% [HZ] exp[ ;;zr:h,c;},h,.quz;;(Ah,,JrCh,,)

r by
where we made use of the large distance behavior of G,,, (Equation B.7). By definition
S b Gohy =Y (h—hy)
r.r! <rrl>
We can then recognize the second term in (D.3) as a particular correlation function of the
roughening model discussed in Section 2.4.2 (Equation 2.44 with f = 0). For the region
of the phase diagram na > 2, 78 > 2, we have 7y << 1. This corresponds tc a low
temperature for the roughening model. Since at low temperatures one expects a long range
order the second factor in (D.3) approaches a constant when |; - ;ﬂ — oo and (D.5) reduces
to a pure power law behavior. When this result is substituted in Equations 3.12 - 3.16, we

obtain for |p — p'| — oo

< e£q|8p—9p,] > = ‘p = p"...qzn
< étlbotpl 5 —|p— |0 (3.33)
< delte=ty] 5 — iP_ pll—q2ﬂ

and

< éalloo+op)=0u+9,)] 5 =15 f|=da’n (3.330)

< l@o=20)= =0y}l 5 s const {8.33b)

with n = m

Therefore in this region the correlation functions {3.32) and (3.33a) decay algebraically
and are characterized by the same renormalized constant n while long range order is reflected
in the correlation function (3.33b). The corresponding phase is locked. Although this
analysis was performed for the region 7o > 2 and nf > 2, the Migdal renormalization-

group analysis to be discussed later, suggests that the low-temperature side of the line APB
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et al, 1979) with F} =1 and
1

for the field ¢, we similarly find
< ler—o ] 5 = Ip — p'T_qQ” (3.28)

Near the line PB the correlation function F?=!(p— p') approaches a constant or decays
exponentially to zero as |p — p'| — oo if we are above or below this line, respectively. It
follows that for phase A

< ei[ﬂp—ﬂpp] = |p m pll—ﬂAh] Jg.f)

(3.29)
< dltr=d,l 5 - ip— pfl—frAia .9.8) e"|f":”|/€
where £ is the correlation length of the p-state clock model. Similarly, for phase B
< b 5 — lp — pfl—ﬂgiu .g.8)
(3.30)

< élto=tl 5 =|p— g nBla-08) &le=e'l/¢

Note that for ¢ = p, all correlation functions are algebraic in all ordered phases. In the
high temperature phase all correlation functions decay exponentially.

In the region where 7o > 2 and 78 > 2, we can take M(R), N(R) = 0. In this
region S(r) is relevant. Nevertheless, one can transform Equations 3.12 - 3.16 to another
representation with the corresponding integer fields dilute in that region using the Poisson
summation formula {2.45). With My = Np = 0, the term involving summations in S, in

equations 3.12 - 3.16 can be written as

= [1’[ Z] exp [— 2y Y 8, Gop Sy +2wAY S, (BG,, + cc,ﬂ,] (3.31)
r Sr ror! r

where G, is the lattice Green’s function defined in Equation (B.6).
Using (2.45) the above expression can be written as
M 1 /™
F 72 [H Z ] / dg, exp [— 2,972 6, G, 1.t + sz ¢.(ABG,, + ACG, s — 'ih,)]
r h=~oo" ¥ T ! r
(3.32)
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3.4 Strong-coupling limit and the Migdal recursion relations

The analysits of the preceding sections shows that in the locked phase y, is relevant; this
corresponds to A — co in (3.1). In this limit 8, — ¢, assumes the values given by (3.6). For
p = 2 one can define the Ising variables S(r) = 2r(r) — 1 and obtain

A=B " cos(¢,— pu)+a Y 55 cos(d, ~ ¢,) (3.35)

<re'> <rel>

This action will describe the critical behavior associated to the field ¢,. We can investi-
gate the phase diagram of this model by using an approximate position-space renormaliza-
tion group transformation introduced by Migdal (1975). Here we apply this transformation
in a form due to Kadanoff (1976).

First we need to consider a more general form of the action (3.35):

A=) V(g =)+ Y, S55:F(¢—6u)+L > 55, (3.36)

<rrl> <rel> <re!>

where V (¢) and F(¢) are periodic functions with period 2r. The original expression (3.35)
is recovered upon setting V (¢) = Bcosp, F(¢) = ccosp, and L = 0. The additional term
has to be included since the form (3.35) is not preserved under renormalization. To apply
the Migdal transformation one first moves bonds on the lattice such that the sites to be
integrated out at each stage are linked to their neighbors only in one spacial direction.
This bond moving allow us to perform a one-dimensional decimation to obtain an effective
interaction between the remaining degrees of freedom.

In terms of u(¢) = e"@)=VI0) » = MO+L and f(¢) = 7@)=F10) the parameters
(primed) of the new Hamiltonian are therefore given by the recursion relations

£ _2A0) +704,(0)
T A,(0) + 45 (0)

_ A2 (@) + 45 ()] As () + 7* As ()]

) =T 0 4 {0)][# 4, (0) + 7% 4, (0)]

(3.37)

£ () = 2200+ 4 O)ll# 4, (¢) + 74, (9)
#4:(0) + 77 44 (0)][42 (8) + 45 (¢)]
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above defined parameters provide a convenient way of following the renormalization flows.
Above and below the line PB, after a few iterations, f(¢) — 1 and u(¢) relaxes to a Villain
potential (Villain, 1975). Unfortunately the Migdal transformation does not actually lead
to a fixed line and a small drift toward higher temperatures is always present (José et al,
1977). Therefore the line CD separating the disordered high-temperature phase from the
fixed line 8§ > Bp cannot be precisely determined.

The line APB corresponds to Ising-like transition. In fact for # > «, f(¢) and u(s)
renormalize to f'(¢) = 1 and ¢/ (¢) = u* (¢). Using the recursion relations (3.37) we find
§L = &'"25L, where 6L and § L are the deviations from the fixed point and A = 0.74. This is
the same result one finds for the two-dimensional Ising model using the same approximation.

Near the point P, however, we cannot estimate the critical exponents due to the drift to
high temperatures in the Migdal approximation. Again we cannot determine the way the
two lines join or the kind of transition at that particular point. It is apparently consistent
with a single transition but if two successive transitions do in fact occur the Migdal ap-
proximation then indicates they are very close together with an XY transition followed by
an Ising transition as temperature is increased. In particular we find that the region above
the Ising line PB is a locked phase with power-law decay of correlations. Although we have
studied the limit 2 — oo for the case p = 2, we also expect similar results for p = 3, where

instead of an Ising we would have a 3-state Potts transition (Choi and Doniach, 1985).

3.5 Limear and logarithmic interacting vortices
In the model (3.1) , vortex excitations can appear as a result of the continuous symmetry
of the action in both #, and ¢, fields. Not all the ground states can be connected by a
continuous transformation and the ground state has a discrete degeneracy. A domain wall
excitation therefore separates a ground-state configuration corresponding to 8, — ¢, = 0
from another nonequivalent ground state 8, — ¢, = 2r/p.

The energy of an isolated vortex is proportional to In L, where L is the linear dimen-
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sion of the system. Therefore one expects logarithmic interacting vortex pairs of opposite
vorticities at low temperatures. Since the entropy of such a pair is also proportional to In L,
they can unbind at some higher temperature.

On the other hand, since there is a change of phase of 2r/p when crossing a domain
wall, one can also produce a vortex by joining to the same point the ends of p domain walls
(Einhorn et al, 1980). The energy of such a vortex is proportional to the linear dimension
of the system because a domain wall has a finite energy per unit length. Therefore, at low
temperatures one expects they are connected by strings (domain walls) in pairs of opposite
vorticities. This linear interaction suppresses an XY-like unibinding.

In the locked phase y, is strongly relevant. one can now transform (3.8) into another
representation where the corresponding integer fields are dilute in that regime using (2.45).
The necessary manipulations are described in Heinekamp and Pelcovits (1985). Dropping
an overall constant factor, we get

o
Z= [HZZ] M (3.39)
R Mp Np

where

AN _ g [,r(a_ ﬁq)ZMRG(R— R )My
R.E!

+w(8 - 457)ZNRG(R—R')NM
R.R!

vor(g+-E )> " MpG(R~ R')Nps

4”-27’1“?' f

X [H‘;} exp[» 2—2 Z [ky = hy — p§ nert (R) (Mg = N )P | (3.40)

r

.. (R) is the operator introduced by José et al (1977), it is +1 if  lies just to the right
and 7 just to the left of an arbitrary path going from R to oo in the positive z direction,
—1if r and ¥ are reversed, and O otherwise.
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The first three terms in (3.40) represent logarithmic interacting vortices now corrected
by a term p? /472~ due to domain walls. The last term corresponds to the partition function
for a set of domain walls of strengh p running from R to R’ in the roughening model
(Swendsen, 1978). Thus this term represents vortex pairs interacting linearly and connected
by p domain walls of unit strengh. The interaction energy for a vortex pair has therefore
two contributions: a logarithmic and a linear distance dependence. If the strings have
not melted these vortex pairs interact linearly for large distance separations and an XY-
unbinding transition is suppressed. However when the strings melt these vortices interact
logarithmically, as can be seen by replacing the sum of the integers &, by an integral over a
continuous field. The corresponding phase now depends on the behavior of these vortices.
The M vortices would unbind for 7@ < 2 and the N for 78 < 2. I the melting of the domain
walls occurs inside these regions the relevant vortex pair will unbind at that temperature

and disorder the corresponding field.

From (3.40) we can identify the free energy per unit length (divided by kT ) of a
domain wall as 5{7 when T — 0. Using a Peierls argument to determine when the free energy
of a domain wall goes to zero we obtain that the string melting occurs at temperatures given
by v = Eﬁ;_a This gives melting curves similar to APB in Figure 3.1 When g = 0, this curve

intersects the region where 7o < 2 and 7 < 2 only for p = 2.

However, the effect of a renormalized g < 0 is to move these lines further inside that
region. In particular, for § = —a along the line & = f#, the p = 3 melting curve also
intersects this region but p = 4 curve does not. Thus we expect that that for p = 2 and
p = 3 there is no intermediate phase with XY order and p-state clock disorder (p=2,3) and

we are left with the two possibilities indicated in Figure 3.1.

On the o« = f line, which is, of course, the most interesting from an experimental
point of view, the weak coupling recursion relations do not say very much because one can
construct a large number of relevant operators. In particular the M, N and S charges are
all relevant with increasing fugacities. Also, the hybrid vortices with M; = N on the same
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site are highly relevant, while the hybrid vortices with Mp = — Ny are irrelevant and will be
ignored now on. Now at large a the M, N and H vortices are irrelevant but y, is strongly
relevant which when integrated out gives the string picture. When the temperature is
increased (« decreased) although the recursion relations (3.19) seem to indicate that the M
and N vortices are relevant they are still bound together by strings. The hybrid vortices are
not bound by strings as can be verified by Equations (3.40). So the important configurations
are: (i) a pair of M(N) vortices of opposite signs bound by strings well separated from any
other N(M) vortices; (i) one M and one N vortex of the same sign close together bound by
string which can be regarded as a hybrid (H) vortex with a core size of the order of their

separation.

These extended objects interact logarithmically with each other on length scales large
compared to their size. The separation of the M and N of the same sign can be interpreted
as the core size of a hybrid vortex. For p = 2 and 3, simple estimates for the sequence of
transitions temperatures give T, < T¢ < Ty, where T, is the unbinding temperature of
M or N vortices, Ts is the string meltiﬁg temperature, an Ty is the hybrid vortex unbinding
temperature. The M vortices are bound by p strings so the transition in the absence of
hybrid vortices would be in the p-state universality class by the string melting. However,
the hybrid vortices are screened at T > T by the M and N vortices so that they must
unbind when the M and N do. Below Ts the M and N vortices are bound for separations
less than &, , the correlation length of the p-state model, which can be interpreted as the
core size of a hybrid vortex. Thus, in the presence of hybrid vortices, the XY order is lost
by the divergence of the hybrid vortex core size which leads one to expect a first-order
transition. Note that this picture is fairly close to that by Halsey (1985b) as discussed in
Section 2.5. Furthermore, this picture gives an explanation of the mixed p state and XY
character of the system as one approaches the transition provided it is rather weakly first

order.

These arguments can be applied to the same model with p = 1 which is the Villain
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representation of the double-layer XY model (Parga and Himbergen, 1980). However the
sequence of transition temperatures is T,y < Ty < Ts. So this scenario means that the
M and N vortices remain bound by strings and the transition is controlled entirely by the
hybrid vortices leading to the expected XY transition.

Unfortunately, there is no evidence for such a first-order transition from the extensive
Monte Carlo simulations performed on this and related models (Teitel and Jayaprakash,
1983b; Lee et al, 1986; Berge et al, 1986) in 80 x 80 systems which indicate a transition of
mixed Ising and XY character. However, because the unit cell in the triangular antiferro-
magnet is £, = 1/3a and in the frustrated XY model on the square lattice 2a, the largest
correlation length is about 30 unit cells long. So there is no sign of a frist-order transition

up to £/, ~ 30 and so the transition is at best weakly first order.

3.6 Competing periodicities
We turn now to a brief analysis of the XY model with competing periodicities described by
(3.2) in the coupled XY model representation (3.3). This representation can be obtained by
a Hubbard-Stratonovich transformation as we show next. A related model was discussed
by Lee and Grinstein (1985).

First we rewrite the partition function associated with (3.2) as

[Hf ] exp l z e¥rp et +—; ; e, e"”"r‘] (3.41)

l'.f’

Where P, = a,, + Kpb,,» and @, = B, + Kgé,,» with e, = a, B, = B when r and
Y are nearest neighbors and zero otherwise. Here, Kp and K, are appropriate constants
introduced to make the matrices positive definite. Applying the identity (2.55) separately

to the two terms of (3.41), we obtain

[H/ d:c,.[ dzr] exp [— Eer"}:cr - —;z: Q@ ze - Zﬂ(z,,z,)] (3.42)

where

2r

H(z,z)=-log [ df exp[—; (z. e +2 %)+ -; (77 + 2 & )]] (3.43)
0
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We can compute from (3.43) the first few low order terms contributing to the free

energy. For example, for p = 2 we find
1
H(z, %) =5 (=" +al)- ula +z ) - vz |2]* - vlz||2] cos(20- ¢)+0(6) (3.44)

In the last term, @ and ¢ are the phases associated with z, and z respectively. The quadratic
forms in (3.42) can be diagonalized using Fourier transforms. In a square lattice we have
P(g) = 2a(cosg,a + cosg,a), Q(g) = 2B(cos g,a + cos g,a) which reach a maximum at
¢ = 0. Expanding about ¢ = 0, the second order terms in (3.42) can be approximated by a

continuum form

S (Pl - Glal =36+ o)zl

q q

= [ 112l + eV Y) (3.45)

and similarly for the |2|? terms. As discussed in Section 2.4, in two dimensions the phase
transition occﬁrs well below the mean field transition temperatures where fluctuations in the
amplitude are irrelevant. Considering fixed amplitudes, from (3.42) and (3.45) we obtain
the representation (3.3) where o and 3 in this expression are proportional to.|:o:,|2 and | z |2
respectively.

The electrodynamic representation of the action is found, by the methods of Section

3.2 to be
A(M,N,S)=na)y  MzG(R— R')Mp +78 >  NpG(R— R')Np
R.R* R.R'
+219 Y MpG(R~ R)Np +3Y_ > 5.0(r— R)[pMg — Ng|
R.R! r R
+7y Y 5, Glr— 7)S, (3.46)
f,f"
where

_ (e + 778 + 2pg)
4% (af - ¢)

The analysis is almost identical and we find a self-dual surface when the N vortices are

(3.47)

irrelevant given by a = v which corresponds to a p-state transition. The renormalization-
group equations on this surface seem to flow to the fixed point at ra = p/2 and g =—1/2
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Chapter 4

QUENCHED DISORDER IN SUPERCONDUCTING ARRAYS

4.1 Introduction

Although an ordered array of superconducting elements minimizes the effects of disorder,
some is inevitably present and one should include these effects when studying the behavior
of the system. Weak disorder is irrelevant to the critical behavior of the XY model which
corresponds to the zero field case and is also expected to be irrelevant in finite field provided
the disorder does not couple to the field. Two kinds of disorder that we show to be relevant
to the critical behavior are: a) variations in the area of the superconducting elements of the
array which is presumably least serious in the IBM arrays studied by Voss and Webb (1982)
and Webb et al (1983) and most serious in the arrays of superconducting squares studied
by Tinkham et al (1983) and Kimhi et al (1984); b) randomness in the positions of the
nodes or superconducting grains of the array which will certainly be always present. The
first leads to uncorrelated variations in the area of each plaquette provided the penetration
depth in the grain is small compared to the grain size and hence to random variations in f
and the second to highly correlated variations in the flux per plaquette.

In this chapter we present a simple model of a Josephson junction array in a transverse
magnetic field with disorder (Granato and Kosterlitz, 1986c). We map the model into a
coulomb gas of fractional charges perturbed by a quenched distribution of random charges
in the uncorrelated random area situation and, in the random position case, a random
distribution of dipoles.

As in the uniformly frustrated model, the behavior at rational values of f is difficult to
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ascertain. However, if we restrict ourself to integer values of f, which corresponds to consider
the lower envelope of the resistance as a function of f, some more definitive conclusions can
be obtained. In this case the model reduces to a coulomb gas of integer charges perturbed
by the random distribution of charges or dipoles. In the former we found that there is no
superconducting phase for any finite field but there is a remnant of it provided the disorder
is small enough. In the latter case, a reentrant phase exist at low temperatures for values
of the magnetic field less than some disorder dependent critical value. For larger values and

higher temperatures there is no superconducting phase.

These results have direct experimental consequences. There is no published experimen-
tal data which may test the prediction for the random plaquette area case. We expect this
to be valid for arrays of lead squares since there is bound to be randomness in the individ-
ual square sizes. But in these arrays the junction size is quite large and T, (H) will itself
decrease as H® in a non-random array. The results for the positional disorder seems to have
some experimental support. For magnetic fields larger than the predicted critical value, the
resistance should increase slowly and at higher field one expects that this will cross-over to
the usual flux-flow resistance R(H) «x H. This seems to be in qualitative agreement with
the experiﬁents by Webb et al (1983). However the experimental data is also complicated
by oscillations in the lower envelope of resistance which are outside this simple model. In
Chapter 5, we propose an interpretation of these oscillations based on the existence of two

fundamental areas which can lead to oscillations of two different periodicities.

The reentrant transition predicted for the positional disorder has not been observed
experimentaly, but this will not be an easy effect to observe. One also has to consider that

the inclusion of charging effects in a non-random array also leads to a reentrant transition

(José, 1984).

The kinds of disorder considered here correspond to quenched disorder which implies
that one must average the logarithm of the partition function over the random distribution
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to produce the free energy, i.e.

F =~k Tln Z(f) (4.1)

where [ |; means an average over the randomness.

4.2 Random plaquette area
Provided the transverse penetration depth (O(A)) for the grains is less than the grain size
(O(um)), randomness in the shape of the grains will induce a randomness in the number of
flux quanta per plaquette f = HS/®, through the change in the area. If the field penetrates
homogenously the array, the flux in each unit cell will be the same regardless the change
in the shape. However the above effect will always be present but to a smaller degree even
when the penetration depth is comparable with the grain size because there is a tendency
for the field to be excluded via a partial Meissner effect and there will be more flux going
through a large than a small area between the grains.

We assume that the areas are gaussianly randomly distributed about some mean o

o *

Since f = HS/®,, the distribution for the f is given by

P(fz) x exp —ﬁ;{'% = fo)z] (4.2)

where A? is the variance of the area distribution.

The frustrated XY model (2.5) with the above random distribution is similar to a de-
scription of spin glass suggested by Hertz (1978). He has shown that this kind of randomness
is relevant below 4 dimensions and the f = 0 fixed point is completely unstable to this kind
of disorder.

In the coulomb gas representation (2.46), the random distribution (4.2) correspond
to a coulomb gas of fractional charges perturbed by a random distribution of charges. As
mentioned in Section 4.1, we are concerned here mainly with the effect of this kind of disorder
in the resistance minima where f, is an integer. In this case we can shift My — My + f,,
so that now we have the problem of a set of integer charges in a background of random
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charges with mean zero. Consider a test charge in a region of size L. Since the fluctuation
of a random charge at the dual site I—é is(6frf = ‘%i‘—g , the fluctuation of random charges
in the region of size L produce a total charge % . When this region is chosen of size larger
than £ = %&— the test charge will be completely neutralized by this random fluctuation.
Thus charges separated by distances larger than £ will be unbound. This argument is the
converse of that used by Kosterlitz and Thouless (1973). They argued that if charges are
unbound, the average total charge in a region of size L is proportional to L while if they
are bound in dipoles it is proportional to I*/?. Since the present argument leads to a total
charge proportional to L, we conclude that there is no screening. We can now identify ¢ as

the correlation length of the free vortices contributing to the resistance of the array. This

indentification also implies a scaling behavior for the correlation length as
£~ A (4.3)

where A, = HA/®, is the standard deviation of the random distribution of the f. This
result is in agreement with that obtained by Ritala (1984) in d = 4 — ¢ dimensions. Using

the arguments of Section 2.3.2, the resistance is given by R(H) o« £2, then
R(H)~ H* (4.4)

and the resistance will oscillate with a period corresponding to one flux quanta per mean area
and the lower envelope of the resistance will rise quadratically for small H. These arguments
are low temperature ones and lead one to expect quadratic increase in the resistance at

temperatures well below the critical temperature of the corresponding pure model.

4.3 Positional disorder

In the limit where the grain sizes are small relative to the areas between grains or a network
of superconducting wires of constant or very small cross section interpersed with weak links,
another source of disorder is in the positions of the nodes of the network. The effect of this
type of disorder can be easily seem qualitatively. Suppose that a superconducting wire
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separating two areas is displaced from its ideal position, increasing one area and decreasing
the other. This intuitively leads to two equal and opposite neighboring charges in the
equivalent coulomb gas representation or to a quenched distribution of random dipoles.
The same will happen for a displacement of the nodes of the array.

We now introduce positional disorder which consists in allowing displacements of the

sites from their average position r by an amount u, with a probability distribution

Pla)ocexy [—2—; 313] (4.5)

In practical systems this kind of disorder will induce disorder in the couplings between
nodes J,,». However, we show that small disorder of this kind is irrelevant along the fixed
line of the XY model. In order to show this, we have to perform the average over the
randomness in (4.1). This free energy can be averaged using the replica trick (Edwards and
Anderson, 1975), which makes use of the mathematical identity

[ka] = [PR l_nzn] ) (4.6)

d

Assuming that the limit process n — 0 and the average over the randomness commute, we
can first integrate over the randomness and then take the limit n — O at the end of the

calculation.

Consider the Hamiltonian (2.5) at integer f in the spin wave aproximation

é{? =—;(K¢, +6K)/ Er(VOP (4.7)

and assume that the distribution for the variable § K is

P(SK) o exp [-ﬁ; / dz?(m)?] (4.8)

Applying the replica trick, we find a replicated Hamiltonian

o =—(7) =K, | fig&au Peie [ f?g(&aa PVGY  @49)
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A more careful derivation taking into account the differences between the original and
dual lattices gives the same result to linear order in the displacements. Higher order terms

in fact can be shown to make no difference to the final result.

This can be viewed as a coulomb gas of fractional charges perturbed by a random
distribution of dipoles ;R o ;R. Here we concentrate only on the case where f, is an
integer. In this case shifting Mp — My + f,, we obtain a coulomb gas of integer charges
perturbed by a random distribution of dipoles. This problem has been previously studied

by Rubinstein et al (1983) in another context.

Renormalization-group recursion relations for this case can be conveniently constructed
by the replica trick. Identical results can be obtained, although in a more laborious way,
without using replicas. Proceeding with the replica trick (4.6), after performing the gaussian

average in u, using the distribution (4.5), we obtain from (4.12) the replicated coulomb gas

Hamiltonian
H |R- R'|
_m :ﬂ'}(i Z,Z M; M;f ln—a--—-—-
R#R' «
ot
e T bt R ] (419
R#R a #p %
+lny) > (MY
R a
where

K = K-t A K
(4.14)
Ky =—4r?f A K

Recursion relations for the above Hamiltonian can be obtained by the same procedure
as described in Chapter 3. We obtain
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2 =4 P (K + (v VK]

dK;
d
?!; =(2-7K)y

Taking the limit n — 0, we finally obtain

dK,

= =K - K)

fg_% = —4r° * 2K, K; — 2K7| (4.16)
d
= =@-xK)y

Combining the first two of the equations (4.16) and noting that K, — K; = K gives

dK

Pl =_4ﬂ.3y2K2
‘;‘L (4.17)
5 & 2-7K+4r°f£A°K?)y

Note that f, and A appear in the combination f, A which can be regarded as a measure
of the disorder which increases linearly with the applied field. For a given sample A is fixed
and the degree of disorder is varied by changing f, .

The renormalization group flows generated by equations (4.17) in the (K~!, y) plane
are shown in Figure 4.1 for small values of f, A.

There are two special points along the y = 0 line where the eigenvalue of y vanishes

K (LA) = [1:t (1- 32rf /_\.2)%] (4.18)

| N

The heavy line in Figure 4.1 correspond to a trajectory which start at a special point
K;! below K_! and ends at K;'. The region bounded by this trajectory is a domain of
atraction of the line y = 0. This correspond to the superconducting phase where thermal
excited vortex pairs are bound in pairs and correlations decay algebraically. Below K!,
the fugacity is relevant due to the random dipole potential. In the region K;! < K < K}!,

there are enough vortex pairs to screen out this potential. As f, A aproaches 2=, K;! and

\/32n’
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Figure 4.2 Qualitative phase diagram as a function of the temperature
and average number of flux quanta per plaquette f,. In the case we are
considering here f, is an integer.

at the two phase broundaries 7% (Af,). In the normal phase, there is the usual exponential

decay of the correlations. Near T%, £ diverge exponentialy like
&~ exp[C'iT— Tf|“’]$] (4.21)

where C is a constant, for constant f,. This result is the same of that obtained for the pure

XY model (Equation 2.27). At constant temperature we obtain

¢~ exp | QS — £(T)73] (4.22)

The renormalized spin-wave stiffness constant approaches

1
Ky ==
BT gz pcf

[1- (- 32r A7 23 (4.23)
on the phase boundaries of the superconducting phase. Therefore, in contrast with the pure
system (Equation 2.26) the superfluid density jump is not universal but depends on f, .
For f, > f., the density of free vortices where Mp = f,+ 1 is approximatly n; ~ £72 and
so the resistance increases very slowly at constant temperature as f, is increased beyond

f.. At higher fields, since the superconducting phase is unstable at any temperature, one
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expects that this will cross-over to the usual flux-flow resistance discussed in Section 2.3.2,

ie., R(H)~ H.
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Chapter 5

RESISTANCE OSCILLATIONS IN THE IBM ARRAYS

5.1 Introduction

As we discussed in the previous Chapters, the simple model for an idealized superconducting
array described in Section 2.2 can explain the main features of the experimental data in
particular the basic periodicity in f and also the existence of subsidiary minima at rational
values of f. However, there are certain features of the experimental results that have not
been explained.

The frustrated XY model used predicts that the resistance minima at integer values of
the flux should be zero at low temperatures {except for finite size effects) and should remain
zero until the applied magnetic field reaches its critical value at which the superconducting
elements making up the array go normal. The experiments, however, seem to disagree with
this at least in two respects, except of course at zero field. First, the resistance minima never
reaches zero except at zero field (Figures 1.1 - 1.2). Second, as can be seen in Figure 1.1,
in the IBM arrays studied by Voss and Webb (1982) and Webb et al (1983) the resistance
minima oscillate with a rather long period and beyond some critical value of the field these
resitance minima start rising slowly and linearly at higher fields.

The first point has been considered in Section 4.2. In this Chapter we address the sec-
ond point. We propose an interpretation of the variation of the resistance minima without
disorder by modifying the simple model considered in Section 2.2 to include the presence
of two incommensurate fundamental areas. The linear increase of the resistance at higher
fields is then accounted for by including an small amount of positional disorder as described
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in Chapter 4. In consequence, the fact that the critical field is also associated with the de-
velopment of a minimum in the lower envelope of the resistance curve must be attributed to

a coincidence since these two effects are independent of each other (Kosterlitz and Granato,

1986).

5.2 The model

The array studied by Voss and Webb (1982), consists of niobium superconducting wires in
form of crosses and squares of lum cross section. The Nb tunnel junctions were patterned
on oxidized Si chips. Whenever a cross overlaps a square a Josephson junction of 1um? of
area is formed as laid out in Figure 5.1. We will assume the junction to be simultaneously
large enough so that charging effects can be ignored but sufficiently small so that the field
dependence of the effective coupling across the junction is negligible. In what follows, the
finite size of the junction is completely ignored. We also make the further assumption that
the superconducting elements are sufficiently thin so that flux can leak through them. With
this assumption, the field is essentially uniform in the plane of the array and the system
can be considered to be in thermal equilibrium. Note that a partial Meissner effect for the
superconducting elements would lead to hysteresis and metastability and a total Meissner
effect would completely eliminate the effect we are trying to explain.

We can immediately see that, under these physically reasonable assumptions, there is
another area in the problem besides the fundamental area A; formed by a loop containing
four junctions. In the original analysis of Voss and Webb (1982), only the flux penetrating
the area A; was taken into account. _This is responsible for the main oscillations with a
period AB = -ﬁ—i ~ .170e. However, if this is the only area determining the period of
the oscillations, the frustrated XY model defined in Section 2.2 would predict no further
variation of the resistance which is contrary to the observation. With the assumption that
flux can leak across the superconducting wires, there is another fundamental area A4,, the
area of a square, which in general is incommensurate with A;. Since the fast oscillations
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5.3 Coulomb gas representation

We can now follow the procedure of Section 2.4.2 in order to obtain the Coulomb gas

Hamiltonian and write the partition function in the roughening representation. We obtain

2= [IZ|[IZ] v~ g = @507 -5 T -n?

“hoop <RR'> <RR>
—omfyi)  Sp— 2mfei) aR] (5.2)
£ R

where fo = Ba?/¢, and f, = B(F¥ — %2)/¢, is the number of flux quanta through A¢ and
Ay respectively. The next step is to use the Poisson summation formula (2.45). This gives

Zz[l‘;_[f::daﬁﬂ] [1;[_/::)@] exp[w%{ z (¢R_¢R")2"Eli Z (¢'R'_XI?)2

<RR'> <RR>

- 21”'2 (f[, 4 MR)¢R - 27(%‘2 U:Q + Mj, )Xﬁz] (5'3)
R R

To perform the resulting integration it is convenient to divide the dual lattice into unit
cells with three charges per cell as shown in Figure 5.1. The resulting cells form a square
lattice of lattice spacing /2 with charges at the vertices and centers of the bonds. Splitting
the ¢, variables into two interpenetrating square lattices, we can take Fourier transforms

in which case we can write (5.3) as

2= 11 [ @] e[~ 13 a3 @40

i=1

- 2000 Y M a) + 4 0. 0 (54)

where 1,7 specify the intra-cell positions and i} = £ = f;, 5 = fs. Here ¢, x have been
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replace by ¢; and

A . T _ (9 +ay) {9z —qy) ) 1
( = = 2 |cog =8 Jicpe st Lcoszq,\
=1 o 2 lgz+ay) (9z~ay) 4 2 2 1
G "(g) = | —2[cos T + cos L] = e —2 cosi g,
\ el . i
L 2% T 2 L

(5.5)

Finally, performing the gaussian integrals we obtain the Coulomb gas Hamiltonian

T = ZZ[M ) + £ (a)]G" s (9)[M; (a) + £ ()] (5.6)

=1 ¢
We find G';;' (0) = O in which case G;(R) diverges logarithmically with the size of the

system. However, taking the small ¢ limit we find

2LK [1
' (q) = —&;; + E,; ;
&.y(a) 2L+K[qzu+a.,]+0(f) (5.7)
When L >> K, we obtain

3K K _K
32 32

E=EI+|-£ +% -E& (5.8)
=% =

where E, is the usual core energy of a single vortex and I is the identity matrix. When

(5.7) is substituted in (5.6) we obtain

H _  2nLK , (R- R)
kBT——zHKth:;'[M(Rqu(R)ml| L
+ 20 D [M: (R) + £ (M (R) + ) (5.9)

The calculation of E; which is the short range part of the interaction G'; is an important
step. If E;; was neglected in (5.7), from (5.6) we could replace ), (M; + f) by 2., (M + f)
where f = 2f; + fs which is the number of flux quanta in one cell. This would make the
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Coulomb gas Hamiltonian periodic in f which in turn implies a single periodicity of the
resistance on the magnetic flux. Since the eigenvalue of E;; are all positive and distinct,
the energy minima occur when each f; is equal to an integer, so the expected periodicity is

restored by this short-range part.

5.4 Effects of competing areas and disorder
We can draw a few conclusions from the form of the Hamiltonian (5.9). I f; and fs are both
integers, the system reduces to three coupled Coulomb gases with integer charges which can

be studied by the methods of Chapter 3. In this case an XY-like transition is expected at

a temperature determined by

mLK i
2L+ K)

(5.10)
This corresponds to the same behavior at zero field. At other values of f; and jf;, the
resistance will be controlled mainly by f; and will be roughly proportional to|f; — n| where
n is the closest integer to f;, (see Section 2.52). So we expect that the resistance can be
approximated by

R(fe, fs) = Alf — n| + Blfs — ns| (5.11)

where A > B are proportional to the mobilities of the defects in the flux lattice.

Using the measured ratio of the areas Ay /As ~ 1.235, we have fo = f, A5/A;, ~ 0.809f;
so the deviation 8fc of fs from an integer will be minimum at certain values of f; where
fo is restricted to an integer value. For this ratio of areas, these occur at f; = 0(6fs = 0),
fo = 516(6fs =~ .05), f = 10,11(6fc =~ .09) and fr = 21(6fs ~ .004), etc. Thus from
(5.11) we expect subsidiary minima in the lower envelope of the resistance curve at these
values of f; with the deepest one at f; = 21, the next deepest at f; = 5, 16 and the highest
at f; = 10,11. Of course, since the areas are probably incommensurate, the resistance
variations are only quasiperiodic and are rather sensitive to the exact value of the ratio.

When the magnetic field is increased further, randomness in the positions of the nodes
of the superconducting array measured by a standard deviation A will disorder the su-
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perconducting phase at some critical value dependent on A. Combining these two results
together yields a lower envelope of the resistance which is in good qualitative agreement
but a detailed comparison requires a much more sophisticated theory. The experimental
observation by Webb et al (1983) that the deep minimum in resistance at f;, ~ 21— 25 (see
Figure 1.1) is correlated with the beginning of the monotonic rise of the lower enevelope
must be attributed to coincidence since the critical field and the exact value of f; at the

minimum are both sample dependent and independent of each other.
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Appendix A

DOMAIN WALL ENERGY FOR THE FULLY FRUSTRATED XY MODEL

The coulomb gas energy for this case can be written as

R— R
=~ Y ol F=F (4.1)
R#£R!

where gg =+ gand ¢ = —@. The charges gr are arranged in a chessboard ground state
as in Figure 2.14.

Consider a single vertical domain wall in this ground state. It divides the system in two
regions where one region, say (2), is obtained from region (1) by changing the sign of ¢z.
The domain wall energy is the excess energy produced by this configuration. It can easily
be seen that this energy is given by E, = ~ 2 ;) where Ey, o) is the interaction energy
between the lines of charges in one region with the other region. Since each line consists of
alternating + and — charges, this is a very simple eletrostatic problem. The energy between

two lines of charges separated by a distance R is given by

dE =~ (=1

dR? "ing R? + na? 4.2)
The series 1n the right hand side can be easily summed using complex integration and gives
— =% (sinh Z% )~! . Substituting in (A1) we obtain

Ep =+¢In tanh% (4.3)

where the + and — signs correspond to unequal and equal lines. For R >> a this gives a
exponential decay as in Equation (2.65).
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The domain wall energy can now be obtained by adding up the interaction energy of

the lines of charges of region (1) with those of region (2), i.e.

=, = R TR
E, =2 ~1)% Intanh — Ad
¢Y X = (4.4)

After using the approximation for large distances, this series can be summed to give

47"

I
T+ F

¢ =0.27J (A.5)

Halsey (1985b) working with the original model (2.5) has obtained, using numerical meth-
ods, E, = 0.34J. The small discrepancy is due to the fact that the transformation of the

original Hamiltonian (2.5) into the coulomb gas representation (A.1) is not an exact one.

79






Using this approximation, the partition function for the model (3.1) can be written as

z:[ II Zz][rr@]exp[_%;(s,_s,,_zm,,,f

:
<rel>m o rn g

g
- E Z (¢r = @ — 27, )2

<rri>
= Z (91' = = Zﬂmrf')(‘xbr =it 27r"'rr")
<rel>
+ip)_ 5. (8, ~ ¢.)+Iny, 33] (B.3)

We now make use of the gauge-invariance of (B.3), i.e., the invariance of the integrand

under a transformation
6, — 0, +2ng,

(B.4)

Mot — Myt + G — G

where ¢, is an integer. Similar transformations can be applied to the n,,.» variables. Because
of this invariance we can choose g, and p, such that on horizontal bonds ¢, — ¢+ + m,+ =0
and p, — p,+ + n,+ = 0. The remaining ¢, and p, appear in the combination 4, + 2r¢, and
¢, + 2rp, and can be used to extend the range of integrations of § and ¢ from —oo to co.

The exponent in (B.3) is now reduced to

A:—% Z (8,—9,:)2—2 z (¢’r_¢r')2_ g Z (gr_gr')(¢r_¢r')

<rr!> <rrl> <rrl>
| |
+or Y (6, - ) am, — B )+ 2w Y (8 — b )an, — Bm,.)

<rrl> <rr’>

3?2 Sf (Br - ¢r) (’Bs)

|
Here, ). denotes the sum over vertical bonds only.
<rrl>

Each quadratic form in (B.5) can be written as

Y 0. -0.F =) 6,610, (B.6)

<rrt> ror!

where G,,: is the lattice Green’s function. It diverges at r = ¥ (see for example José et al,

1977). To isolate the divergence G,,» can be splitted in two parts

G, = ——21; G(r- 1)+ G(0) (B.7)
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vortices decouple in this approximation, we obtain after performing the required gaussian

integrals

A :—92— Z MRMRr / thve(f‘-' R)Va(‘r— Rr)

R.E!
o Q;sz; NRNRa/frVG(r— RWVO(r- R')
-9y, MRNR:/ £VO(r— RVO(r- R')
R.R!
N S
sen )@ tA T zy)g 5.G, .5, (B.12)

Using the large distance behavior G,,, = — = lnj—’———“—:’-l and regarding G,,s as a function of
complex variable we have the property ®(r— v ) = — 27 ImG,,s. Using the Cauchy-Rienman
relations for complex functions, integrating by parts and using the property V2 G,,» = -6, .,

the integrals in the first three terms of (B.12) can be performed to give
/derVG(r— RWVO(r— R')= (2r) Ggp (B.13)

Using (B.13) we obtain directly (3.8). The same procedure can be easily applied to the

correlation functions (Equations 3.12 - 3.16).
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Appendix C

RECURSION RELATIONS IN THE COULOMB GAS REPRESENTATION

In this Appendix we outline a derivation of the renormalization-group recursion rela-
tions for the kind of Coulomb gas Hamiltonians studied in Chapter 3. Further details can
be found in Kosterlitz (1974) and Nelson and Halperin (1980). We also include in this
Appendix a derivation of recursion relations in the presence of hybrid vortices.

Consider a simpler case with only Mp and S, vortices. Setting Mp = 0 in (3.8) and
restricting attention only to excitations with charge =1, we expand the partition function
as power series in each fugacity as

mmllymzwyﬁm'm 2N’ .
=2 S wewsl) (] (LS en[lIf e e
=1 i=1
where N and N' are the number of the M and S charge pairs respectively, and
Ay =may My Mp G(Ri— B;)+ipy S, Mp ©(r,— R;)+ny ) _ 5,5, G(ri—1;) (C.2)
iy V£ £7#7

To take into account the underlying lattice each integration in (C.1) is excluded from
circles of radius a centered at the positions ;, and I_n;,,- of the others charges. In order to
contruct the renormalization transformation we scale the minimum charge separation from a
to a¢ and explicitly integrate out those configurations where two opposite charge approach
each other with separations between a and ae® with 6§ small. Recursion relations for the
parameters can then be obtained by finding the correction to the partition function resulting
from this procedure and requiring for the new partition function the same functional form

as the original one.
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To linear order in § we can rearrange the integrand in (C.1) as

i1/ en] 1) &) =i/ «=][i1/" #]

3l _n [ ex] [n [ &) [en] en

k#l 1”"1

Sl e[ i /e o, o

2 6(t)
FES M

+ 0(8°) (C.3)

where the integral [ > exclude circles of radii a¢’ centered at all others charges. The integral
over 6 (k) indicates an integration over the annulus a < |I}k— I-é,| < a¢ centered at the charge
at site B,. The sum in the second term of (C.3) takes into account only pairs of charges
of the same kind. Consideration of pairs of different charges correspond to the inclusion
of hybrid vortices. These can be considered as composite vortices and should be included
from the begining. For the same reason, we consider only pairs of opposite charges.

After these considerations, the next step is to carry out explicitly the integration over
Ry, R, r, and r, in (C.3). Consider the terms in Ay y+ which depends on R;, R, and 1,

N
L =f & Ry # R, exp [271'& Z Mg, [G(R; — R.)— G(R: — R)))
&(k)

g=1

i#k,l
+ tp Z S,-‘. [e(f,‘ e Rk)— e(ﬂ' T R;)]] (04)
i;f=kl.l

and

NJ
ke = f &r, & r, exp [2#’7 Z S, [G(r — n) - G(r; - 1)
5(t) =

i;é_t.u
+ip E Mz, 807~ B)- 00— R (c5)
:#t u
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It is convenient to change variables in the integrations in (C.4) and (C.5) as
— — - - 1 - —
z=h=t, Y=g tn)
T -y - (C.6)
X:Rk‘“‘Rh Y:—Z(Rk"f‘R;)

Expanding the exponential in (C.4) and (C.5) to second order in ; and Y we obtain
L =/ d“a:f aﬂy[l - (Zwa)ZZMRl.MRJ.{Y - VxG(R; — X)][Y - Vx G(R; — X)]
£.7

- P Y 5,8, 1Y VxO(s — X)|[¥ - Vx0(s - X) @)

and similarly for %, in (C.5). Note that the first order term in y or Y and the cross-term
of the form VOV G are identically zero when the integration is performed. Averaging over
the orientations of ‘;', using the property of the harmonic conjugates, ie., (VG) = (VO)?
and using (B.15) we obtain from (C.7)

Iy = 216 [A ~ (2raf7d® ) Mp My G(R; — B;)+p°nd® ) _ S, S, G(r: - r,-ﬂ (C.8)
£,7 .7 ki

Similarly

L. =27ra26[ (27r'7]227a225' 8, G(r: — r,)+p’ra ZMR My, G(R; — R, ) (C.9)

Using (C.3), (C.8) and (C.Q) and rearranging the surmnation in the additional term,

we can write the partition function as

o= 5 e ] 2] enll [ 4]

N=0 N!=

(N-’f_ 7 > on 5[— ~ 45°0® ) Mp, Mg G(R: — R;)

k=1 [ )

x[l—i—

+7p2 Y 8, G — 1)8, ]

'.!j

yz N'41 4
(N’ 1)2 Z 27(6[? - 4,,-3,72 Z S"z' Srj G(’c‘ = f:')
t.u=1l i

+7p* Y My, Mg, G(R; — R, )]] (c.10)

1,7
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The (N + 1)* and (N’ + 1 denominators are cancelled by the double summations. Since
the additional term is of order §, we can take the exponential to obtain an action of the

same form as (C.2), but with coupling parameters replaced by

a— a- o’ +apty?
(C.11)

gy S gt O,
Finally, we change ¢ — a+aé in the new partition function to bring the resulting expression
in the same form as the original one except that now the cut-off distance has been increased

from a to e¢. It can easily be seen that this only changes the fugacity since

— i

R~ B

R; —
ae’

tay Mg, Mg, In — 7a ) Mg, Mg, In

5.y 1.3

- — raby M3, (C.12)

From (C.11) and (C.12) we find renormalized couplings a(l),v(l) and y(l), where the

lattice spacing has been increased from a to a€, given by the equations

dy,
~a = (2- 7a)ym

dy,

. .
da 3 . 2.2 2.2 ( l )
vl =—4dr"a’y, +7p°Y;

b

j;g =—4r’y i +np’ 9,

The procedure can be easily generalized for the more general case of the Actions (3.8) or

(3.46).

Now consider recursion relations for (3.8) when hybrid vortices are also included. Only
hybrid vortices in which an M vortex and an N vortex have the same sign are found to
be relevant when ¢ < 0. If we regard these hybrid vortices as composite vortices we can
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rewrite the Action (3.8) as

A =1raz MRG(R'— R')MRr +7f ZNRG(R” R’)NR:

R.R! R.R!

+21g ) MpG(R— R )Ny +ip»_ Y 5,0(r— R)Mp
R

R.R! r

- épzz 5,©(r— R)Ng +1rfyz 8, G(r— )S.
r R !

r.r

+2r(a+9)> MgG(R~ R )Hpy +2n(8 +9) Y NpG(R~ R')Hp
R.R! R.R!

+7(a+B8+29) > HpG(R— R')Hp (C.14)

BB

Where Hy is a hybrid vortex at site R and the summation over My and Np exclude positions

where they reside at the same site. Recursion relations can now be obtained by the same

procedure as described before. We obtain

ig? =(2-7a)ym
W @B,
d:; = (2= m)v
% =[2- 7m(a+ 8+ 2¢)|yn (C.15)
% =—4r’d’y, — Pyl +np’yl — 4n (o + g vl
dg

o = 4t agy, — 4n°Bey; — n7Py; - 47 (o + 9)(B + 9)i
B8
— =Y - P+ - 4 (B + gf i
We note that the initial relation (3.9) and the initial form of the couplings a + 3,8 +¢
and a + 8 + 2¢ in (C.14) are all preserved under renormalization.

From the recursion relations for the yy fugacity we find that the yy is irrelevant for
ma +7xf > 2 when g = 0 initially. However as ¢ < 0, hybrid vortices are relevant in the

region where the XY and the Ising lines of Figure (3.1) meet.
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For the Action (3.34), the relevant hybrid vortices are the ones made up of K and L
vortices of opposite signs. In this case we obtain the recursion relations

dyx

= (2 - mea )yx
d
% =(2-78)u
dy.
5;1 = (2— 7"72);”"
7-[ — 7oz + B2 — 29)|yx "
dov .
ﬁ% =—4ralyt — 4P Ey + 4% (0o — 0 )5
d
_% =l ik — 4By + 4% (0 — )8 — &)¥E
dg;

i A a3 T S L e YR
If we now write a;, g and 3; in terms of the initial values, ie,a; =a+p8+2¢,5. =p

and g = —f— g, when this relations are substituted in (C.16) we obtain the same recursions

as in (C.15) provided we identify the vortices as K — H,H— M and L— N.
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